
POWER8 Processor User’s Manual for the
Single-Chip Module

Advance
16 March 2016
Version 1.3

Title Page

®

Copyright and Disclaimer
© Copyright International Business Machines Corporation 2014, 2015, 2016

Printed in the United States of America March 2016

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corp.,
registered in many jurisdictions worldwide. Other product and service names might be trademarks of IBM or other compa-
nies. A current list of IBM trademarks is available on the Web at “Copyright and trademark information” at
www.ibm.com/legal/copytrade.shtml.

The OpenPOWER word mark and the OpenPOWER Logo mark, and related marks, are trademarks and service marks
licensed by OpenPOWER.

Intel, Intel logo, Intel Inside, Intel Inside logo, Intel Centrino, Intel Centrino logo, Celeron, Intel Xeon, Intel SpeedStep,
Itanium, and Pentium are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Other company, product, and service names may be trademarks or service marks of others.

All information contained in this document is subject to change without notice. The products described in this document
are NOT intended for use in applications such as implantation, life support, or other hazardous uses where malfunction
could result in death, bodily injury, or catastrophic property damage. The information contained in this document does not
affect or change IBM product specifications or warranties. Nothing in this document shall operate as an express or implied
license or indemnity under the intellectual property rights of IBM or third parties. All information contained in this docu-
ment was obtained in specific environments, and is presented as an illustration. The results obtained in other operating
environments may vary.

Note: This document contains information on products in the design, sampling and/or initial production phases
of development. This information is subject to change without notice. Verify with your IBM field applications
engineer that you have the latest version of this document before finalizing a design.

While the information contained herein is believed to be accurate, such information is preliminary, and should not be
relied upon for accuracy or completeness, and no representations or warranties of accuracy or completeness are made.

This document is intended for development of technology products compatible with Power Architecture®. You may use
this document, for any purpose (commercial or personal) and make modifications and distribute; however, modifications
to this document may violate Power Architecture and should be carefully considered. Any distribution of this document or
its derivative works shall include this Notice page including but not limited to the IBM warranty disclaimer and IBM liability
limitation. No other licenses, expressed or implied, by estoppel or otherwise to any intellectual property rights are granted
by this document.

THE INFORMATION CONTAINED IN THIS DOCUMENT IS PROVIDED ON AN “AS IS” BASIS. IBM makes no represen-
tations or warranties, either express or implied, including but not limited to, warranties of merchantability, fitness for a
particular purpose, or non-infringement, or that any practice or implementation of the IBM documentation will not infringe
any third party patents, copyrights, trade secrets, or other rights. In no event will IBM be liable for damages arising directly
or indirectly from any use of the information contained in this document.

IBM Systems
294 Route 100, Building SOM4
Somers, NY 10589-3216

The IBM home page can be found at ibm.com®.

Version 1.3
16 March 2016

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Contents

Page 3 of 450

Contents

List of Tables .. 13

List of Figures .. 17

Revision Log .. 19

About this Document ... 21
Who Should Read this Document .. 21
Conventions Used in This Document ... 21

Representation of Numbers ... 21
Bit Significance .. 21
Other Conventions ... 21

Related Documents .. 22

1. POWER8 Processor Overview ... 23
1.1 General Features .. 23

2. POWER8 Processor Core ... 27
2.1 Key Design Fundamentals .. 27

2.1.1 64-Bit Implementation of the Power ISA (version 2.07) ... 27
2.1.3 Speculative Superscalar Inner Core Organization .. 28
2.1.4 Specific Focus on Storage Latency Management ... 29

2.2 Pipeline Structure .. 29
2.3 Microprocessor Core - Detailed Features ... 31

2.3.1 Instruction Fetching and Branch Prediction ... 31
2.3.3 Instruction Dispatch, Sequencing, and Completion Control .. 33
2.3.4 Fixed-Point Execution Pipelines .. 35
2.3.5 Load and Store Execution Pipelines .. 35
2.3.6 Branch and Condition Register Execution Pipelines ... 37
2.3.7 Unified Second-Level Memory Management (Address Translation) 37
2.3.8 Data Prefetch ... 38
2.3.9 VSU Execution Pipeline ... 38
2.3.10 DFP Execution Pipeline ... 39

3. Power Architecture Compliance .. 41
3.1 Book I - User Instruction Set Architecture ... 41

3.1.1 Defined Instructions ... 41
3.1.1.1 Illegal Instructions ... 41
3.1.1.2 Instructions Supported ... 41
3.1.1.3 Invalid Forms .. 41

3.1.2 Branch Processor .. 42
3.1.2.1 Instruction Fetching .. 42
3.1.2.2 Branch Prediction ... 42
3.1.2.3 Instruction Cache Block Touch Hint ... 42
3.1.2.4 Out-of-Order Execution and Instruction Flushes .. 42
3.1.2.5 Branch Processor Instructions with Undefined Results .. 43

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Contents

Page 4 of 450
Version 1.3

16 March 2016

3.1.3 Fixed-Point Processor .. 43
3.1.3.1 Fixed-Point Exception Register (XER) ... 43

3.1.4 Storage Access Alignment Support Overview ... 44
3.1.4.1 Misaligned Flushes ... 44
3.1.4.2 Alignment Interrupts ... 45
3.1.4.3 Fixed-Point Load Instructions ... 63
3.1.4.4 Fixed-Point Store Instructions .. 63
3.1.4.5 Fixed-Point Load and Store Multiple Instructions ... 63
3.1.4.6 Fixed-Point Move Assist Instructions .. 64
3.1.4.7 Integer Select (ISEL) .. 65
3.1.4.8 Fixed-Point Logical Instructions .. 65
3.1.4.9 Move To/From Special Purpose Register (SPR) Instructions .. 65
3.1.4.10 Move to Condition Register Fields Instruction .. 65
3.1.4.11 Fixed-Point Invalid Forms and Undefined Conditions .. 66

3.2 Floating-Point Processor (FP, VMX, and VSX) ... 67
3.2.1 Vector Single-Precision Bandwidth .. 67
3.2.2 IEEE Compliance ... 68
3.2.3 Divide and Square-Root Latencies .. 68
3.2.4 Early Forwarding Conditions .. 68
3.2.5 Floating-Point Exceptions .. 69
3.2.6 Floating-Point Load and Store Instructions .. 69

3.2.7.1 NaN Propagation .. 70
3.2.7.2 Square Root Overflow and Underflow .. 70
3.2.7.3 Hardware Behavior on Enabled Underflow and Enabled Overflow Exception 70

3.2.8 Handling of Denormal Single-Precision Values in Double-Precision Format 71
3.2.8.1 Producing Single-Precision Denorms ... 71
3.2.8.2 Consuming Single-Precision Denorms ... 71

3.2.9 Floating-Point Invalid Forms and Undefined Conditions .. 72
3.3 Optional Facilities and Instructions .. 73
3.4 Little Endian ... 73
3.5 Book II - Virtual Environment Architecture .. 73

3.5.1 Classes of Instructions ... 73
3.5.1.1 Optional Instructions ... 73

3.5.3 Data Prefetch ... 74
3.5.5 Storage Model .. 75

3.5.5.1 Atomicity ... 75
3.5.5.2 Vector Element Atomicity ... 75
3.5.5.3 Transactional Memory .. 75
3.5.5.4 Storage Access Ordering ... 76

3.5.6 Atomic Updates and Reservations ... 76
3.5.7 Storage Control Instructions .. 76

3.5.7.1 Overview of Key Aspects of Storage Control Instructions .. 76
3.5.7.2 Instruction Cache Block Invalidate (icbi) ... 77
3.5.7.3 Instruction Cache Synchronize (isync) .. 77
3.5.7.4 Data Cache Block Touch (dcbt and dcbtst) .. 77
3.5.7.5 Data Cache Block Touch - No Access Needed Anymore (TH = ‘10001’) 78
3.5.7.6 Data Cache Block Touch - Transient (TH = ‘10000’) .. 78
3.5.7.7 Data Cache Block Zero (dcbz) ... 78
3.5.7.8 Data Cache Block Store (dcbst) .. 78
3.5.7.9 Data Cache Block Flush (dcbf, dcbfl and dcbflp) .. 79

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Contents

Page 5 of 450

3.5.7.10 Load and Reserve and Store Conditional Instructions ... 79
3.5.7.11 sync Instruction .. 79
3.5.7.12 eieio Instruction .. 79
3.5.7.13 miso Instruction ... 79
3.5.7.14 Transactional Memory Instructions .. 80
3.5.8.1 Time Base .. 81

3.5.9 Hypervisor Decrementer (HDEC) .. 82
3.5.10 Decrementer (DEC) ... 82
3.5.11 Book II Invalid Forms ... 82

3.6 Book III - Operating Environment Architecture .. 83
3.6.1 Classes of Instructions .. 83

3.6.1.1 Storage Control Instructions ... 83
3.6.1.2 Reserved Instructions ... 84

3.6.2 Branch Processor .. 84
3.6.2.1 SRR1 Register ... 84
3.6.2.2 MSR Register ... 84
3.6.2.3 Branch Processor Instructions ... 84
3.6.2.4 Current Instruction Address Breakpoint (CIABR) ... 85
3.6.2.5 Instruction Effective to Real Address Translation Cache (I-ERAT) 85

3.6.3 Fixed-Point Processor ... 86
3.6.3.1 Processor Version Register (PVR) ... 86
3.6.3.2 Processor ID Register (PIR) ... 87
3.6.3.3 Chip Information Register (CIR) ... 87
3.6.3.4 Move To/From Special Purpose Register Instructions ... 87

3.7 HID Registers (HID0, HID1, HID4, and HID5) ... 93
3.7.2 HID1 Register .. 95
3.7.5 Real Mode Offset (RMO) Region Sizes ... 99
3.7.7 Core-to-Core Trace SPR ... 100
3.7.8 Trigger Registers ... 100
3.7.9 IMC Array Access Register ... 100
3.7.10 Performance Monitor Registers ... 100
3.7.11 Other Fixed-Point Instructions ... 101

3.8 Storage Control ... 101
3.8.1 Virtual and Physical Address Ranges Supported .. 101
3.8.2 Data Effective-to-Real-Address Translation (D-ERAT) ... 101
3.8.3 Translation Lookaside Buffer (TLB) ... 103
3.8.4 Large-Page Support .. 105
3.8.6 Segment Lookaside Buffer (SLB) .. 106
3.8.7 Address Space Register .. 106
3.8.9 Reference and Change Bits .. 107
3.8.10 Storage Protection ... 107
3.8.11 Block Address Translation ... 107
3.8.13 Storage Access Modes - WIMG Bits ... 108
3.8.14 Speculative Storage Accesses .. 109
3.8.15 mtsr, mtsrin, mfsr, and mfsrin Instructions ... 109
3.8.16 TLB Invalidate Entry (tlbie and tlbiel) Instructions .. 109
3.8.17 TLB Invalidate All (tlbia) Instruction .. 111
3.8.18 TLB Synchronize (tlbsync) Instruction .. 111
3.8.19 Page Replacement Policy ... 111
3.8.20 Support for Store Gathering .. 112

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Contents

Page 6 of 450
Version 1.3

16 March 2016

3.8.21 Cache Coherency Paradoxes .. 112
3.8.22 Handling Parity Error, Multi-Hit, and Uncorrectable Errors .. 113

3.8.22.1 Parity Error ... 113
3.8.22.2 Multi-Hit .. 113
3.8.22.3 Both Multi-Hit and Parity Error .. 113
3.8.22.4 Uncorrectable Error Handling ... 114
3.8.22.5 TLB Parity Error and Multi-Hit Action .. 114
3.8.23.1 Interrupt Vectors ... 115
3.8.23.2 Interrupt Definitions .. 116
3.8.23.3 System Reset Interrupt ... 118
3.8.23.4 Machine Check Interrupt .. 119
3.8.23.5 Hypervisor Maintenance Interrupt .. 122
3.8.23.6 External Interrupt .. 122
3.8.23.7 Alignment Interrupt ... 123
3.8.23.8 Trace Interrupt .. 124
3.8.23.9 Performance Monitor Interrupt .. 124
3.8.23.10 SPMC Performance Monitor Interrupt .. 124
3.8.23.11 Facility Unavailable Interrupt .. 125

3.8.24 Logical Partitioning Support ... 125
3.8.24.1 Thread-to-LPAR Mapping ... 125
3.8.24.2 Dynamic LPAR Switching ... 125

3.8.25 Strong Access Ordering Mode (SAO) .. 125
3.8.26 Graphics Data Stream Support .. 125
3.8.27 Performance Monitoring, Sampling, and Trace ... 126
3.8.28 Processor Compatibility Mode ... 126

4. Storage Subsystem ... 127
4.1 L1 Cache ... 127
4.2 L2 Cache ... 127

4.2.1 L2 Cache Features .. 127
4.3 L3 Cache ... 128

4.3.1 L3 Features, Queues and Resources .. 128
4.4 NCU ... 130

4.4.1 NCU Characteristics .. 130
4.5 Memory Controller ... 131
4.6 POWER8 Memory Stack Partitioning .. 131
4.7 POWER8 Chip Memory Controller Unit Features ... 132

4.7.1 Bandwidth .. 133
4.7.2 POWER8 Memory Controller Characteristics .. 133

5. Simultaneous Multithreading ... 135
5.1 Overview ... 135
5.2 Partitioning of Resources in Different SMT Modes ... 135
5.3 Program Priority Register (PPR) ... 136
5.4 Thread Priority NOPs .. 137
5.5 Control Register .. 138
5.6 Thread Priority, Status, and Control Requirements ... 140
5.7 Thread Balance Control Requirements ... 140

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Contents

Page 7 of 450

5.8 Thread Switch Control Register (Hypervisor Access Only) ... 141
5.9 Thread Time-Out Register (Hypervisor only) .. 143
5.10 Forward Progress Timer ... 144
5.11 Thread Priority Boosting .. 144
5.12 Priority Boosting to Medium-High in User Mode .. 144
5.13 Thread Priority Boosting on Asynchronous Interrupt .. 145

5.13.1 When to Boost Thread Priority .. 145
5.14 Thread Prioritization Implementation .. 146

5.14.1 Thread Switch Fetch Priority ... 146
5.14.1.1 SMT2 Fetch Pattern ... 147

5.14.2 Thread Switch Decode Priority .. 147
5.14.3 Software-Set Thread Priority ... 149
5.14.4 Low-Power Modes for Application ... 149
5.14.5 Dynamic Thread Priority .. 149

5.15 Support for Multiple LPARs ... 150
5.15.1 Instruction Fetch .. 150
5.15.2 Decode .. 150
5.15.3 Microcode Fairness ... 151
5.15.4 Instruction Cache ... 151
5.15.5 Thread Set Allocation .. 151
5.15.6 Data Cache .. 151
5.15.7 ERATs ... 152

5.16 Controlling the Flow of Instructions in SMT ... 152
5.16.1 Dispatch Flush ... 152

5.16.1.1 Dispatch Flush Rules ... 152
5.16.1.2 Stall at Dispatch ... 153

5.16.2 Decode Hold .. 153
5.16.2.1 Balance Flush ... 153

5.17 Dynamic Thread Transitioning .. 154
5.17.1 Overview .. 154
5.17.2 Thread Set Definition ... 154
5.17.4 Thread Set Reconfiguration ... 155

5.17.4.1 Balancing .. 155
5.17.4.2 Mixing ... 156
5.17.4.3 Action ... 156

6. POWER8 SMP Interconnect ... 157
6.1 POWER8 SMP Interconnect Features .. 157

6.1.1 General Features ... 157
6.1.2 POWER8 Specific Features .. 158
6.1.3 Off-Chip Features .. 158
6.1.4 Power Management Features ... 158
6.1.5 RAS Features .. 158

6.2 External POWER8 SMP Interconnect ... 159
6.2.1 POWER8 SMP Interconnect Multichip Configurations .. 159
6.2.2 Protocol and Data Routing in Multichip Configurations ... 159

6.3 Coherency Flow .. 160
6.3.1 Physical Broadcast Flow ... 160
6.3.2 Broadcast Scope Definition ... 160

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Contents

Page 8 of 450
Version 1.3

16 March 2016

6.4 Command Ordering Support ... 160
6.5 Memory Coherence Directory ... 160

6.5.1 Directory Size ... 160
6.5.2 Operation ... 160

7. Interrupt Control Presenter .. 163
7.1 Features .. 165

7.1.1 Routing Layer ... 165
7.1.2 Presentation Layer ... 166

7.2 Interrupt Control Presenter Registers .. 168
7.2.1 ICP Address Map ... 168
7.2.2 Interrupt Base Address Register (ICPBAR) ... 168

8. PCI Express Controller ... 175
8.1 Specification Compliance .. 175
8.2 PEC Feature Summary ... 175

9. Power Management ... 177
9.1 Overview ... 177
9.2 Power Management Infrastructure .. 177
9.3 Power Management Policies and Modes of Operation ... 178

9.3.1 Maximum Power Savings Based on Utilization and Idle .. 178
9.3.2 Adaptive Power Savings with Performance Loss Floor ... 178
9.3.3 Power Cap ... 178
9.3.4 Turbo Performance Boost .. 178

9.4 Feature Summary .. 179
9.5 Overview of Chip Hardware Power-Management Features .. 179

9.5.1 Communication Paths for System Controllers ... 179
9.5.2 Sensors .. 179
9.5.3 Accelerators ... 180
9.5.4 Actuators/Controls ... 180

9.5.4.1 Configurations with Unused Components .. 181
9.6 Chip Hardware Power-Management Features .. 182

9.6.1 Chiplet Voltage Control .. 182
9.6.2 Chip-Level Voltage Control Sequencing .. 182

9.6.2.1 SPIVID VRM Control Sequencing .. 182
9.7 Functional Description of Processor Core Chiplet ... 182

9.7.1 Power Gating ... 182
9.7.2 Idle States .. 183

9.7.2.1 Core and Thread Doze ... 185
9.7.2.2 Single Thread Nap, Sleep, and Winkle ... 185
9.7.2.3 Sleep .. 186
9.7.2.4 Nap ... 187
9.7.2.5 Winkle ... 187

9.7.3 Special Wake-up .. 188
9.7.4 Pstates ... 188

9.7.4.1 Architectural Overview .. 188
9.7.4.2 Definitions ... 189

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Contents

Page 9 of 450

9.7.4.3 Permissible Behavior .. 191
9.7.4.4 Interaction with Idle Modes ... 191

9.8 Architected Control Facilities ... 192
9.8.1 Power Management Control Register (PMCR) ... 192

10. Performance Profile .. 199
10.1 Core .. 199

10.1.1 Level-1 Instruction Cache .. 199
10.1.2 Level-1 Instruction ERAT ... 200
10.1.3 Instruction Prefetch .. 200

10.1.4.1 Branch Direction Prediction using the Branch History Tables 201
10.1.4.2 Branch Prediction using Static Prediction and “a”, “t” Bits .. 202
10.1.4.3 Address Prediction Using the Link Stack ... 203
10.1.4.4 Address Prediction using the Count Cache .. 204
10.1.4.5 Round-Trip Branch Processing .. 205
10.1.4.6 BC+4 Handling ... 206
10.1.4.7 BC+8 Handling ... 206

10.1.5 Store-Hit-Load Avoidance Table ... 207
10.1.6 Instruction Buffer ... 207
10.1.7 Group Formation ... 208

10.1.7.1 General Rules .. 208
10.1.7.2 Rules Specific to ST Mode ... 209
10.1.7.3 Rules Specific to SMT Modes .. 209

10.1.8 Group Ending NOP .. 209
10.1.9 First and Last Instructions ... 209
10.1.10 2-Way and 3-Way Cracked Instructions .. 213
10.1.11 Microcode .. 214
10.1.14 Instruction Issue .. 216

10.1.14.1 Steering Policy ... 217
10.1.14.2 BRQ and CRQ Operation ... 217
10.1.14.3 UniQ Issue Policies .. 217
10.1.14.4 FXU and VSU Selection ... 217
10.1.14.5 LU Selection ... 217
10.1.14.6 LSU Selection ... 218
10.1.14.7 Dispatch Bypass Instruction Selection ... 218
10.1.14.8 Back-to-Back Issue Policy .. 218
10.1.14.9 Limitations of Back-to-Back .. 219
10.1.14.10 Dual-Issued Stores ... 220
10.1.14.11 Wake-up Misspeculations .. 220
10.1.14.12 Chains of Misspeculations .. 220
10.1.14.13 Other Issue Inefficiencies ... 220
10.1.14.14 Issue-to-Issue Latencies .. 221
10.1.15.1 ISU Rejects .. 223
10.1.15.2 LSU Rejects ... 226
10.1.15.3 Flush Conditions ... 226
10.1.16.1 Storage Alignment .. 228
10.1.16.2 Special Case of Store Crossing a 64-Byte Boundary ... 228

10.1.17 Level-1 Data ERAT .. 228
10.1.18 Level-2 Data ERAT .. 229
10.1.19 Translation Look-Aside Buffer ... 230

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Contents

Page 10 of 450
Version 1.3

16 March 2016

10.1.20 Load Miss Queue ... 230
10.1.21 Transactional Memory ... 231
10.1.22 Store Queue and Store Forwarding ... 231

10.1.22.1 Stores in Real Mode (MSR[DR] = 0) .. 232
10.1.23 Data Prefetch ... 232

10.2 Chiplet ... 234
10.2.1 Level-2 Cache .. 234
10.2.2 Level-3 Cache .. 234

10.3 Latencies ... 235
10.3.1 Cache Latencies and Bandwidth ... 235

10.4 PCI Express Performance ... 253
10.4.1 Bandwidth .. 253
10.4.2 Latency .. 253
10.4.3 Cluster Latency 2K Message ... 253
10.4.4 I/O Bandwidth .. 253
10.4.5 PCIe Performance Goals ... 253

10.5 Performance Specific Instructions ... 254
10.5.1 Store Multiple and Store String .. 254

10.5.1.1 Store Quadword ... 254
10.5.1.2 eieio .. 254

10.6 Other Topics .. 255
10.6.1 Hot/Cold Page Affinity Support .. 255

11. Performance Monitor .. 269
11.1 Performance Monitor Overview ... 269
11.2 Performance Monitor Functions .. 270

11.2.1 Performance Monitor Event Selection ... 270
11.2.2 Machine States and Enabling the Performance Monitor Counters 270
11.2.3 Trigger Events and Enabling the Performance Monitor Counters 270
11.2.4 Performance Monitor Exceptions, Alerts, and Interrupts ... 270
11.2.5 Sampling .. 271
11.2.6 Thresholding .. 271
11.2.7 Trace Support Facilities ... 271

11.3 Special Purpose Registers and Fields Associated with Instrumentation 271
11.4 Enhanced Sampling Support ... 272
11.5 POWER8 Performance Monitor Event Selection .. 273

11.5.1 Event Bus Events and Event Bus Ramp .. 273
11.5.2 Direct Events .. 273

11.6 Performance Monitor Facility ... 274
11.6.1 Performance Monitor Facility Registers ... 274

11.6.1.1 Performance Monitor Counters (PMC1 - 6) .. 274
11.6.1.2 Monitor Control Register 0 (MMCR0) ... 275
11.6.1.3 Monitor Mode Control Register 1 (MMCR1) ... 280
11.6.1.4 Monitor Mode Control Register 2 (MMCR2) ... 283
11.6.1.5 Monitor Mode Control Register A (MMCRA) .. 284
11.6.1.6 Core Monitor Mode Control Register (MMCRC) ... 288

11.7 Hypervisor Performance Monitor ... 289
11.7.2 Monitor Mode Control Register H (MMCRH) ... 290

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Contents

Page 11 of 450

11.8 Supervisor Performance Monitor .. 292
11.8.1 Supervisor Performance Monitor Counters (SPMC1 - 2) .. 292
11.8.2 Monitor Mode Control Register S (MMCRS) Register ... 292

11.9 Sampled Instruction Event Register (SIER) .. 294
11.10 POWER8 CPI Stack .. 300

11.10.1 Completion Stall Accounting: LSU Related Stalls ... 303
11.10.1.1 Completion Stall Accounting: Data Cache Misses ... 303
11.10.1.2 Completion Stalls: Data Cache Miss that Resolves in a Local Core’s L2 or

L3 Cache ... 303
11.10.1.3 Completion Stalls: Data Cache Miss that Resolves in a Local Chip’s L2 or

L3 Cache ... 303
11.10.1.4 Completion Stalls: Data Cache Miss that Resolves from Remote Chip’s

Cache or Memory .. 303
11.10.1.5 Completion Stalls: Data Cache Miss that Resolves from Local Core’s L2 or

L3 (Dispatch Conflict) .. 304
11.10.1.6 Completion Stalls: Data Cache Miss that Resolves from Local Memory 304
11.10.1.7 Completion Stalls: Stores ... 304
11.10.1.8 Completion Stalls: Store Forwarding .. 304
11.10.1.9 Completion Stalls: LSU Rejects ... 304
11.10.1.10 Completion Stalls: LSU Rejects Due to ERAT Miss ... 304
11.10.1.11 Completion Stalls: LSU Rejects Due to LMQ Full .. 304
11.10.1.12 Completion Stalls: LSU Rejects Due to Load-Hit-Store Reject 304

11.10.2 Completion Stalls: FXU ... 304
11.10.3 Completion Stalls: VSU ... 304
11.10.4 Completion Stalls: IFU ... 305
11.10.5 Front-End Stalls ... 305

11.10.5.1 GCT Empty: I-Cache Miss .. 305
11.10.5.2 GCT Empty: I-Cache Miss That Also Missed the Local L3 Cache 305
11.10.5.3 GCT Empty: Branch Redirects ... 305
11.10.5.4 GCT Empty: Branch Redirects and I-Cache Miss .. 305
11.10.5.5 GCT Empty: Dispatch Hold Conditions .. 306

11.11 Exploiting Advanced Features of the PMU ... 306
11.11.1 Correlating Fabric Responses to Effective Addresses .. 306

11.11.1.1 Operation .. 306
11.11.1.2 Tools Exploitation ... 307
11.11.2.1 PMU Usage .. 309

11.11.3 Per LPAR Memory Bandwidth ... 310
11.11.4 Monitoring Fabric Command Scope at a Thread Level ... 310

11.12 PMC Events .. 311
11.13 SPMC Events .. 311

Appendix A. POWER8 Instruction Summary by Category 313

Appendix B. POWER8 Instruction Summary by Mnemonic 339

Appendix C. POWER8 Instruction Summary by Opcode .. 363

Appendix D. Performance Monitoring Events .. 387

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Contents

Page 12 of 450
Version 1.3

16 March 2016

Appendix E. SPMC Performance Monitoring Events ... 435

Glossary ..443

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

List of Tables

Page 13 of 450

List of Tables
Table 3-1. XER Bits and Fields ... 43

Table 3-2. Operand Alignment Effects on Performance (Non-Watchpoint Mode) 46

Table 3-3. Operand Alignment Effects on Performance (Watchpoint Mode) .. 54

Table 3-4. Latencies of Floating-Point Divide/Square-Root Instructions ... 68

Table 3-5. Storage Control Instructions ... 76

Table 3-6. Cache and TLB Management Instruction Effects on Transactional Accesses 80

Table 3-7. I-ERAT I and G Bit Setting ... 86

Table 3-8. SPR Table .. 87

Table 3-9. HRMOR Update Sequence .. 100

Table 3-10. D-ERAT I and G Bit Setting .. 102

Table 3-11. 256 MB Segments .. 104

Table 3-12. 1 TB Segments .. 104

Table 3-13. PTE and SLBE Correspondence ... 105

Table 3-14. WIMG Bits .. 108

Table 3-15. IG Bits .. 108

Table 3-16. Segment Size and Page Size Specifications for tlbie and tlbiel (L = 0) 110

Table 3-17. Segment Size and Page Size Specifications for tlbie and tlbiel (L = 1) 110

Table 3-18. Reference-Bit Array Update ... 112

Table 3-19. Summary of POWER8 Behavior on Parity Error, Multi-Hit, and Uncorrectable Error 114

Table 3-20. Interrupt Vector .. 115

Table 3-21. Interrupt Vectors for the POWER8 Core .. 116

Table 3-22. Implementation-Specific Interrupt Types .. 116

Table 3-23. Implementation MSR and SRR1/HSRR1 Bits .. 116

Table 3-24. System Reset Interrupt .. 118

Table 3-25. Synchronous Machine Checks ... 120

Table 3-26. Direct External Interrupt (LPES = ‘0’) ... 122

Table 3-27. Direct External Interrupt (LPES = ‘1’) ... 122

Table 3-28. Mediated External Interrupt (LPES = ‘0’) ... 123

Table 3-29. Mediated External Interrupt (LPES = ‘1’) ... 123

Table 3-30. Alignment Interrupt ... 123

Table 3-31. Trace Interrupt .. 124

Table 4-1. Maximum Frequencies ... 133

Table 4-2. Minimum Frequencies .. 133

Table 4-3. Bandwidth (per MCS/POWER8 Memory Buffer) .. 133

Table 4-4. POWER8 Memory Controller Characteristics .. 133

Table 5-1. SMT Modes .. 135

Table 5-2. Front-End Execution Core Resource ... 135

Table 5-3. Thread Priority Nops .. 137

User’s Manual
Single-Chip Module
POWER8 Processor Advance

List of Tables

Page 14 of 450
Version 1.3

16 March 2016

Table 5-4. mfspr CTRL Data Formatting ..139

Table 5-5. Thread Balance Control (Balance Flush) ...140

Table 5-6. Asynchronous Interrupt ..145

Table 5-7. Scoring System Summary ..150

Table 5-8. SMT Mode Boundary Crossing Reconfigurations ..155

Table 5-9. Thread Balancing Scenarios ..155

Table 6-1. POWER8 Broadcast Scope Definition ..160

Table 7-1. Interrupt Management Area: Interrupt Presentation Layer Ports ..166

Table 7-2. Facility Definitions ...166

Table 7-3. Resetting the Interrupt Condition ..167

Table 7-4. Interrupt Presenter Register Address Map ...168

Table 8-1. Supported I/O Configurations ...176

Table 9-1. Supported Chiplet Power Management Modes ..184

Table 9-2. Power Management Control Register (PMCR) - SPR 884 ...192

Table 9-3. Power Management Idle Control Register (PMICR)- SPR 852 ..194

Table 9-4. Power Management Status Register (PMSR) - SPR 853 ..196

Table 9-5. Power Management Memory Activity Register (PMMAR) - SPR 854197

Table 10-1. Handling of bclr and bclrl Instructions ...204

Table 10-2. Handling of bcctr and bcctrl Instructions ..205

Table 10-3. bc+8 Pairable Instructions ..206

Table 10-4. Stores Ineligible for SHL Avoidance ...207

Table 10-5. IBuffer Rows per Thread ..207

Table 10-6. List of Instructions Marked as First ..210

Table 10-7. List of Instructions Marked as Last ..211

Table 10-8. 2-Way Cracked Instructions ...213

Table 10-9. 3-Way Cracked Instructions ...214

Table 10-10. Resource Requirements for Dispatch ...216

Table 10-11. Example where Back-to-Back is not Possible A->C, B->C ...219

Table 10-12. A -> B -> C ...219

Table 10-13. Issue-to-Issue Latencies ...221

Table 10-14. Flush Conditions ...227

Table 10-15. Cache Latencies and Bandwidth ..235

Table 10-16. Instruction Latencies and Throughputs ..236

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm258

Table 10-18. Soft Patch Instruction on Unaligned Stores ..268

Table 11-1. Performance Monitor Counter Register ..275

Table 11-2. MMCR0 Register ..276

Table 11-3. MMCR1 Register ..280

Table 11-4. MMCR1 PMCxSEL Selection of Direct Events versus Event-Bus Events282

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

List of Tables

Page 15 of 450

Table 11-5. MMCR2 Register .. 283

Table 11-6. MMCRA Register ... 284

Table 11-7. Threshold Start/Stop Event Selection .. 285

Table 11-8. Random Sampling Eligibility Criteria .. 286

Table 11-9. MMCRC Register ... 288

Table 11-10. Hypervisor Performance Monitor Counter Register ... 290

Table 11-11. Monitor Mode Control Register H Register .. 290

Table 11-12. Supervisor Performance Monitor Counter .. 292

Table 11-13. Monitor Mode Control Register S Register .. 292

Table 11-14. Sampled Instruction Event Register (SIER) ... 295

Table 11-15. Implementation-Dependent Extension to Data Source Encodes ... 297

Table 11-16. Implementation-Dependent Extension Bits for Data Source Encodes (SIER[EXT]) 299

Table 11-17. POWER8 Accounting ... 300

Table 11-18. CPI Stack ... 302

Table A-1. Category Listing ... 313

Table A-2. POWER8 Instructions by Category .. 314

Table B-1. POWER8 Instructions by Mnemonic .. 339

Table C-1. POWER8 Instructions by Opcode .. 363

Table D-1. POWER8 Event List by Event Name ... 388

Table E-1. SPMC Performance Monitoring Events ... 435

User’s Manual
Single-Chip Module
POWER8 Processor Advance

List of Tables

Page 16 of 450
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

List of Figures

Page 17 of 450

List of Figures
Figure 1-1. Block Diagram for the POWER8 Processor ... 23

Figure 2-1. POWER8 Processor Core .. 27

Figure 2-2. Pipeline Structure ... 30

Figure 4-1. Memory Stack Partitioning ... 131

Figure 5-1. Dual SMT4 Decode Priorities ... 148

Figure 5-2. Decode Priority in 4 LPAR Mode ... 151

Figure 6-1. Two Socket Configuration (24-way) .. 159

Figure 6-2. Four Socket Configuration (48-way) ... 159

Figure 7-1. POWER8 Logical Interrupt Controller Structure ... 164

Figure 9-1. Idle Mode Summary ... 183

Figure 9-2. Sleep and Winkle Power Gating Progression .. 185

Figure 10-1. Basic Building Blocks ... 255

Figure 10-2. HCA Cache .. 257

Figure 11-1. POWER8 CPI Stack Example .. 301

User’s Manual
Single-Chip Module
POWER8 Processor Advance

List of Figures

Page 18 of 450
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Revision Log

Page 19 of 450

Revision Log

Each release of this document supersedes all previously released versions. The revision log lists all signifi-
cant changes made to the document since its initial release. In the rest of the document, change bars in the
margin indicate that the adjacent text was modified from the previous release of this document.

Revision Date Description

16 March 2016 Version 1.3.
• Revised Section 3.8.24 Logical Partitioning Support on page 125.
• Added Section 11 Performance Monitor on page 269.
• Added Appendix D Performance Monitoring Events on page 383.
• Added Appendix E SPMC Performance Monitoring Events on page 429.
• Revised Glossary on page 443.

17 June 2015 Version 1.2.
• Revised Section 3.1.4.5 Fixed-Point Load and Store Multiple Instructions on page 63.
• Revised Section 3.1.4.6 Fixed-Point Move Assist Instructions on page 64.
• Revised Section 3.1.4.11 Fixed-Point Invalid Forms and Undefined Conditions on page 66.
• Revised Section 3.5.5 Storage Model on page 75.
• Revised Section 3.5.5.4 Storage Access Ordering on page 76.
• Revised the spr heading in Table 3-8 SPR Table on page 87.
• Revised the following sprs in Table 3-8 SPR Table on page 87: DSCR, PMCR, TRACE.
• Revised Direct External Interrupt on page 122.
• Revised Mediated Exernal Interrupt on page 123.

10 March 2015 Version 1.11
• Revised Section 3.6.3.4 Move To/From Special Purpose Register Instructions on page 87.
• Revised Table 3-8 SPR Table on page 87.
• Revised Section 10.4.4 I/O Bandwidth on page 253.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Revision Log

Page 20 of 450
Version 1.3

16 March 2016

29 January 2015 Version 1.1.
• Revised Section 3.1.4.2 Alignment Interrupts on page 45.
• Added a note to Section 3.1.4.5 Fixed-Point Load and Store Multiple Instructions on page 63.
• Added a note to Section 3.1.4.6 Fixed-Point Move Assist Instructions on page 64.
• Revised Section 3.1.4.11 Fixed-Point Invalid Forms and Undefined Conditions on page 66.
• Moved L1 cache desription from Section 3.5.2 Cache on page 74 to Section 4.1 L1 Cache on page 127.
• Added Section 3.5.5.2 Vector Element Atomicity on page 75.
• Revised Section 3.5.7.2 Instruction Cache Block Invalidate (icbi) on page 77.
• Removed tsr. from the list of transactional memory instructions and store conditional instructions in

Section 3.5.11 Book II Invalid Forms on page 82.
• Added BESCR (806) to Table 3-8 SPR Table on page 87.
• Renamed spr 848 to IC and spr 849 to VTB in Table 3-8 SPR Table on page 87.
• Renamed the following sprs to Reserved in Table 3-8 SPR Table on page 87: spr 31, spr 888, and spr

889.
• Removed the following sprs from Table 3-8 SPR Table on page 87: APSCR (spr 138), APSCRU (spr

139), LDBAR (spr 850), RWMR (spr 885), and TSR (spr 897) .
• Revised Section 3.7.1 HID0 Register on page 94.
• Revised Table 3-23 Implementation MSR and SRR1/HSRR1 Bits on page 116.
• Revised Section 3.8.23.6 External Interrupt on page 122. Added subsections Direct External Interrupt

and Mediated Exernal Interrupt.
• Revised Section 3.8.28 Processor Compatibility Mode on page 126.
• Removed reference to icswx in Section 4.2.1 L2 Cache Features on page 127.
• Reorganized the order of sections in Section 5 Simultaneous Multithreading on page 135.
• Revised Section 5.3 Program Priority Register (PPR) on page 136.
• Revised Section 5.16.1.1 Dispatch Flush Rules on page 152.
• Changed winkle instruction to rvwinkle instruction in Section 9.5.4 Actuators/Controls on page 180,

Section 9.7.2.5 Winkle on page 187, Section 9.7.4.2 Definitions on page 189, and Table 9-3 Power Man-
agement Idle Control Register (PMICR)- SPR 852 on page 194.

• Removed reference to ACOP in Section 9.7.2.2 Single Thread Nap, Sleep, and Winkle on page 185.

29 January 2015
(continued)

Version 1.1. (continued)
• Added Section 10.1.8 Group Ending NOP on page 209.
• Removed the following instructions from Table 10-6 List of Instructions Marked as First on page 210:

icswx, icswx., pbt., tsr., and waitasec.
• Removed the following instructions from Table 10-7 List of Instructions Marked as Last on page 211:

mtspr_TACR, mfspr_ldbar, mtspr_ldbar, mfspr_rwmr, mtspr_rwmr, tsr., and waitasec.
• Removed the pbt(.) instruction from Table 10-8 2-Way Cracked Instructions on page 213.
• Revised Section 10.1.11 Microcode on page 214. Removed table previously known as Table 10-10.

Instructions that Access Microcode.
• Revised Section 10.1.12 Instruction Fusion on page 215.
• Removed a reference to icswx in the section Conflicts Due to Write-Back Collisions and VSU/SPR

Resources on page 223.
• Revised Section 10.1.22 Store Queue and Store Forwarding on page 231.
• Defined pclk in Section 10.3.1 Cache Latencies and Bandwidth on page 235
• Corrections in Table 10-16 Instruction Latencies and Throughputs on page 236.
• Revised Section 10.4.1 Bandwidth on page 253.
• Moved Section 3.5 Instruction That Can Soft Patch to Section 10.6.2 Instruction That Can Soft Patch on

page 258.
• Added Appendix A POWER8 Instruction Summary by Category on page 313.
• Added Appendix B POWER8 Instruction Summary by Mnemonic on page 339.
• Added Appendix C POWER8 Instruction Summary by Opcode on page 363.

April 22, 2014 Version 1.0 (initial version).

Revision Date Description

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

About this Document

Page 21 of 450

About this Document

This user’s manual describes the IBM® POWER8 processor. This document provides information about the
registers, facilities, initialization, and use of the POWER8 processor.

This document provides information about the POWER8 processor that is visible from a programming model
point of view, and is intended to be a companion to the baseline architecture documentation (see Related
Documents on page 22). While there are some programming model considerations associated with chips and
subsystems outside of the Central Electronics Complex (CEC), this document focuses primarily on the micro-
processor core and the storage subsystem. For information about other chips that might appear in POWER8
systems, see the functional specifications for these individual chips.

Who Should Read this Document

This manual is intended for system software and hardware developers and application programmers who
want to develop products for the POWER8 processor. It is assumed that the reader understands operating
systems, microprocessor system design, basic principles of reduced instruction set computer (RISC)
processing, and details of the Power ISA.

Conventions Used in This Document

This section explains numbers, bit fields, instructions, and signals that are in this document.

Representation of Numbers

Numbers are generally shown in decimal format, unless designated as follows:

• Hexadecimal values are preceded by an “x” and enclosed in single quotation marks.
For example: x‘0A00’.

• Binary values in sentences are shown in single quotation marks.
For example: ‘1010’.

Note: A bit value that is immaterial, which is called a “don't care” bit, is represented by an “X.”

Bit Significance

In the POWER8 documentation, the smallest bit number represents the most significant bit of a field, and the
largest bit number represents the least significant bit of a field.

Other Conventions

POWER8 instruction mnemonics are shown in lower-case, bold text. For example: tlbivax. I/O signal names
are shown in upper case.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

About this Document

Page 22 of 450
Version 1.3

16 March 2016

Related Documents

The following documents can be helpful when reading this specification. Contact your IBM representative to
obtain any documents that are not available through IBM Customer Connect or Power.org.

POWER8 Processor Single-Chip Module Datasheet

POWER8 Memory Buffer Datasheet

POWER8 Memory Buffer User's Manual

Power ISA User Instruction Set Architecture - Book I (Version 2.07)

Power ISA Virtual Environment Architecture - Book II (Version 2.07)

Power ISA Operating Environment Architecture (Server Environment) - Book III-S (Version 2.07)

Power ISA Transactional Memory (Version 2.07)

PowerPC Architecture Platform Requirements (PAPR+) Specification

PCI Express Base Specification, Revision 3.0

http://www.pcisig.com/specifications/pciexpress/base3/
http://www.ibm.com/technologyconnect
https://www.power.org/documentation/power-isa-version-2-07/

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Processor Overview

Page 23 of 345

1. POWER8 Processor Overview

The POWER8 processor is a superscalar symmetric multiprocessor designed for use in servers and large-
cluster systems. It uses IBM’s CMOS 22 nm SOI technology with 15 metal layers.

1.1 General Features

The POWER8 processor can have up to 12 cores enabled on a single chip in the single-chip module (SCM)
configuration. Each core has eight threads using simultaneous multithreading (SMT). The SMT is dynamically
tunable, so that each core can have one, two, four, or eight threads.

The POWER8 processor supports the following architectural features:

• PowerPC Architecture Book I, II, and III version 2.07
• PowerPC Architecture Platform Requirements (PAPR+), Version 2.1
• IEEE P754-2008 floating-point compliant
• Big-endian, little-endian, strong-ordering support extension
• 50-bit real address, 68-bit virtual address

Figure 1-1 provides a block diagram of the POWER8 processor on the SCM.

Figure 1-1. Block Diagram for the POWER8 Processor

complementary metal–oxide–semiconductor

silicon on insulator

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Processor Overview

Page 24 of 345
Version 1.3

16 March 2016

The following features describe the main components of the 12-core POWER8 processor chip:

• POWER8 core and cache

– Up to 12 processor cores

– 16 execution pipes

– 8-way SMT, Out-of-Order (O-o-O)

– 124 × 2 GPR and 144 × 2 VMX/VSX/FPR renames

– Software-architected register file

– Concurrent support of 1 - 4 LPARs per core

• Chiplet

– 32 KB instruction cache (I-cache)

– 64 KB data cache (D-cache)

– 512 KB private L2 cache

– Local 8 MB L3 cache region

• POWER8 SMP on-chip interconnect

– Eight 16-byte data buses, two address snoop buses, 32 on/off ramps

– Asynchronous interface to core/L2/L3 and off-chip interconnect

• Four 9.6 GHz differential memory interfaces (each with 2-byte read and1-byte write) to the POWER8
Memory Buffer chip

• POWER8 SMP off-chip interconnect

– Maximum 48-way SMP

– Three 6.4 GHz differential SMP interfaces (each with 2 bytes per direction)

• 8 GHz differential PCIe Generation 3 buses: 32 lanes configured as (16× + 16×) or (16× + 8× + 8×)

• Coherent Accelerator Interface Architecture (CAPI) allows an FPGA or ASIC to connect coherently to the
POWER8 processor SMP interconnect via the PCIe.

• Power management support

– Hypervisor-directed power change requests using a PState mechanism

– Sensors
— Digital thermal sensor (DTS2) ±5°C
— Off-chip analog thermal diode ±1 - 2°C
— Dedicated performance, microarchitecture, and event counters

– On-chip controller (OCC)
— On-chip PowerPC 405 for real-time frequency and voltage modification
— On-chiplet hardware assist (automated core chiplet management)
— On-chip power management controls automated communications to the voltage regulation mod-

ules (VRMs) anf voltage and frequency sequencers for automated Pstate and idle state support

– Actuators
— Per-chiplet frequency control through the DPLL
— Per-chiplet internal VRMs for independent voltage control
— Architected idle states: nap, sleep, and winkle; each with increasing power savings capability

(and latency)

General purpose register

Virtual machine extensions

Vector-scalar extension

Floating-point register

Logical partition

Symmetric multiprocessing

Digital phase-locked loop

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Processor Overview

Page 25 of 345

— SPR power management control registers (PMCR, PMICR, PMSR) for hypervisor support

– Memory/DIMM throttling for memory subsystem power and thermal management

• Features

– On-chip accelerators
— On-chip: compression, encryption, data move initiated by hypervisor
— In-core: user invocation encryption (AES, SHA)

– Cloud computing enhancements: page replacement/affinity assist, micropartition prefetching, IPL
time reduction, four concurrent LPARs per core

– Transactional memory

– Random number generator

– RAID6 support in VMX

– Support for industry standard BMC

– Multi-level TCE support

– Turbo mode support

special purpose register

Advanced Encryption Standard

secure hash algorithm

initial program load

baseboard management control

translation control entry

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Processor Overview

Page 26 of 345
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Processor Core

Page 27 of 450

2. POWER8 Processor Core

This section provides an overview of the POWER8 processor core, including key design fundamentals, an
overview of the master pipeline operation, and a detailed summary of key design features.

Figure 2-1. POWER8 Processor Core

512KB, 8-way

L2 Cache

2048-entry
Translation
Lookaside

Buffer

(TLB)

Instruction
Cache

32KB, 4-way

Instruction
Translation

32-entry
Segment

Lookaside
Buffer

(SLB)

3rd Level Translation

Predecode

Eight
instructions

Instruction Fetch
Buffer

Instruction
Decode

Instruction
Dispatch

Effective Address
Table

Global
Completion

Table

Load
Reorder
Queue

Store
Reorder
Queue

Branch
Issue

Queue

Condition
Register

Issue
Queue

FP / VMX / FX / LSU
Unified Issue Queue

Branch
Execution

Unit

CR
Execution

Unit

FP/VSX
Execution

Unit

FP/VSX
Execution

Unit

VMX
Execution

Unit

VMX
Execution

Unit

Data Cache

64KB, 8-way

1st & 2nd Level
Data

Translation

FX
Execution

Unit

FX
Execution

Unit

LS / FX
Execution

Unit

LS / FX
Execution

Unit

Load Miss
Queue

Store
Data
Queue

Translation
Data

64B reload

16B store data

8 QW-aligned ins

Branch History
Table
Return
stack
Count
Cache

Branch Prediction

Advanced
Data Prefetch

Engine

Memory subsystem

16B

16B

PgP Core power
– 9.2W target for 190W Chip
– vs. P7 core 14W

PgP Core area
– 17.7 mm2
– vs. P7+ 14.4mm2 and P7: 20.8 mm2

2 * (3+1) instructions

Pegasus Core Overview

L / FX
Execution

Unit

L / FX
Execution

Unit

2 subgroups2 subgroups

Crypto
Unit

DFU
Unit

2.1 Key Design Fundamentals

This section describes the key design fundamentals of the POWER8 processor core.

2.1.1 64-Bit Implementation of the Power ISA (version 2.07)

• Compatibility for all Power ISA application-level code (problem state)

– Supports partition mobility

• Supports IEEE P754-2008 for binary floating-point arithmetic

• Support for 32-bit operating system bridge facility

Institute of Electrical and Elctronics Engineers

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Processor Core

Page 28 of 450
Version 1.3

16 March 2016

2.1.2 Layered Implementation Strategy for High-Frequency Operation

• Deeply pipelined design:

– 16 stages from I-cache access to writeback for most fixed-point register-to-register operations
– 18 stages for most load/store operations (assuming an L1 D-cache hit) from I-cache to writeback
– 23 stages for most floating-point operations from I-cache access to writeback

• Dynamic instruction cracking1 for some instructions allows for simpler inner core data flow:

– Dedicated data flow for cracking one instruction into two or more internal operations
– Microcoded templates for longer emulation sequences

2.1.3 Speculative Superscalar Inner Core Organization

• Multi-threaded core design:

– Single thread (ST), 2-way multithread (SMT2), 4-way multithread (SMT4), and 8-way multithread
(SMT8) modes supported in single LPAR mode.

– (SMT8) supported in 2 and 4 LPAR mode.

• Aggressive branch prediction:

– Prediction for up to eight branches per cycle
– Support for up to 24 predicted taken branches in flight per thread in ST and SMT2 mode, 12 pre-

dicted taken branches in SMT4 mode, and six predicted taken branches in SMT8 mode. The number
of predicted not-taken branches tracked can be higher.

– Prediction support for branch direction and branch target addresses

• In single-thread mode, in-order dispatch of up to eight internal operations (iops) into distributed issue
queues per cycle:

– Up to two branches in a dispatch group; the first branch can be predicted taken or not-taken
– Up to six non-branch instructions in the dispatch group
– Second branch terminates the group
– No VS-routed instruction after a branch in the group

• In SMT2 and beyond there are two dispatch sets each with

– Up to one branch in dispatch group, the first branch can be predicted taken or not-taken
– Up to three non-branch instructions in the dispatch group
– No VS routed instruction after a branch in the group

• Out-of-order issue of up to 10 operations into the following 10 issue ports:

– Two ports to do loads or fixed-point operations.
– Two ports to do stores, fixed-point loads, or fixed-point operations.
– Two fixed-point operations
– Two issue ports shared by two floating-point, two VSX, two VMX, one crypto, and one DFP opera-

tions
– One branch operation
– One condition register operation

• Register renaming on GPRs, FPRs, VRFs (VMX and VSX Registers), CR fields, XER (parts), FPSCR,
VSCR, Link and Count Registers

1.Process by which some complex instructions are broken into multiple simpler, more RISC-like instructions.

vector scalar

Vector-scalar extension

Virtual machine extensions

decimal floating point

General Purpose Register

Floating Point Register

Vector Register File

Condition Register

Fixed-Point Exception Register

Floating-Point Status and Control Register

Vector Status and Control Register

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Processor Core

Page 29 of 450

• Sixteen execution units:

– Two symmetric load/store units (LSU), capable of executing stores, fixed-point loads, and simple
fixed-point operations

– Two load-only units (LU) also capable of executing simple fixed-point operations
– Two symmetric fixed-point units (FXU)
– Four floating-point units (FPU), implemented as two 2-way SIMD operations for double- and single-

precision. Scalar binary floating-point instructions can only use two FPUs.
– Two VMX execution units capable of executing simple FX, permute, complex FX, and 4-way SIMD

single-precision floating-point operations
– One Crypto unit
– One decimal floating-point unit (DFU)
– One branch execution unit (BR)
– One condition register logical execution unit (CRL)

• Large number of instructions in flight:

– Up to 64 instructions in the instruction fetch buffer in ST mode and up to 128 instructions total in
SMT2, SMT4, and SMT8 modes (up to 64 instructions per thread in SMT2 mode, 32 instructions per
thread in SMT4, and 16 instructions per thread in SMT8)

– Up to 48 instructions in 3 decode pipe stages and 3 dispatch buffers
– Up to 224 instructions in the inner-core (after dispatch)
– Up to 40 stores queued in the SRQ (available for forwarding), shared by the available threads

• Fast, selective flush of incorrect speculative instructions and results

2.1.4 Specific Focus on Storage Latency Management

• Out-of-order and speculative issue of load operations

• Support for up to 16 outstanding L1 cache-line misses

• Hardware- or software-initiated instruction prefetching from L2 cache, L3 cache, and memory

• Hardware-initiated data-stream prefetching (using effective addresses). Support for up to 12 active
streams

• Critical word forwarding, critical sector first

• Hardware instruction prefetching supported

2.2 Pipeline Structure

The pipeline structure for the processor can be subdivided into a master pipeline and several different execu-
tion unit pipelines. The master pipeline presents speculative in-order instructions to the mapping, sequencing,
and dispatch functions. It ensures an orderly completion of the real execution path (throwing away any other
potential speculative results associated with mispredicted paths). The execution unit pipelines allow out-of-
order issuing of both speculative and non-speculative operations. The execution unit pipelines progress inde-
pendently from the master pipeline and from one another.

single-instruction, multiple-data

Store reorder queue

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Processor Core

Page 30 of 450
Version 1.3

16 March 2016

Figure 2-2 illustrates these pipelines, where each box represents a pipeline stage.

Figure 2-2. Pipeline Structure

Features
• Two load pipes
• All four LSU pipes can do simple FX
• Two independent group formation and dispatch in SMT modes
• Execution pipelines are symmetric for the two UniQ
• ermute, XS, XC have two separate pipelines
• AES execution pipeline, 7-cycle issue-to-issue
• Each XS can also execute SHA operations
• Three additional pipe-stages for misprediction followed by FX/LD
• Three additional pipe-stages for misprediction followed by FP

IFB0

IFB1

IFB2

IFB3

IFB4

IFB5

IFB6

IFB7

ICA

SMT8

Taken Branch

2 Independent Group Formation,
Decode, and Dispatch

Instruction Fetch Group Formation adDecode Dispatch

map

map

map

map

sel

sel

sel sel2

issue

issue

issue

RF

RF1

RF2

RF2

RF1

EX

EX

WB

WB

xmit

RF1 RF2

comp

WB

DAcc FmtAgen

DFN

Interrupts and Flushes

Branch Misprediction

Out-of-Order Execution

Branch Instruction (1 BR, 1 CRL)

(VPR, FPR, FPSCR, VSCR)

(CR, LR, CTR) (CR, LR, CTR)

(GPR, XER, CR)(GPR, XER)

(GPR)

VSU Instruction (2 issue ports)

Fixed-Point Instruction (2 FX)

Load Instruction (2 LS, 2L)

FX Simple, SHA

Binary FP (SP, DP)

FX Complex

Crypto (AES)

FX Complex

FX Simple, SHA

Binary FP (SP, DP)

Decimal FP

WB

SxfrGF GF2 Dcd Mrg Set Disp

SxfrGF2GF Dcd SetMrg Disp

ucode ucode ucode ucode

xmit

xmit

issue XFER

Bypass

FP1 FP2 FP3 FP4 FP5 FP6 FP7

XS1

XC1 XC2 XC3 XC4 XC5 XC6 XC7

PM1

CY1 CY2 CY3 CY4 CY5 CY6

PM1

xmit

Bypass

XC1 XC2 XC3 XC4 XC5 XC6 XC7

XS1

XFR2 DF1 DF2

FP1 FP2 FP3 FP4 FP5 FP6 FP7

BrPred

BrPred

EDIFXR

IFAR

DSP WRT GCT

DSP WRT GCT

The legend for Figure 2-2 is as follows:

IFAR Instruction fetch address register

ICA Instruction cache access

ixfer Instruction transfer

ED Early decode cycle

D0 IDU predecode stage and instruction-fetch buffer latches

GF and GF2 Dispatch group determination

Dcd Main decoder

Mrg For assembly

ucode Microcode

gxfer Microcode selection and group transfer

Disp Inter-dependency determination for instructions in the group

map Register mapping

Sel Issue queue selection

Issue Instruction Issue

RF and RF2 Register file access

EX Execution

WB Writeback to the register file

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Processor Core

Page 31 of 450

The processor core is divided into following seven units:

• IFU - Instruction fetch and decode unit
• ISU - Instruction dispatch and issue unit
• LSU - Load/store unit
• FXU - Fixed-point execution unit
• VSU - Vector and scalar unit (consists of VMX, binary floating-point, Crypto, and VSX)
• DFU - Decimal floating-point unit
• PC - Pervasive core unit

2.3 Microprocessor Core - Detailed Features

See Section 10.1.12 Instruction Fusion on page 215, Section 10.1.13 Instruction Dispatch on page 216, and
Section 10.1.14 Instruction Issue on page 216 for additional details.

2.3.1 Instruction Fetching and Branch Prediction

• 32 KB, 8-way set-associative I-cache:

– 128-byte lines (broken into four 32-byte sectors).

– Dedicated 64-byte interface from the L2 cache that can supply 64 bytes in every other processor
clock

– Critical-sector-first reload policy

– Effective-address index, real-address tags.

EA/CA Effective-address generation and data-cache decode

CA/fmt Data-cache access and data formatting

FP1 Floating-point alignment and multiply

FP2 Floating-point alignment and multiply

FP3 Floating-point add

FP4 Floating-point add

FP5 Floating-point normalize result

FP6 Floating-point round and local 6-cycle forwarding

xmit Finish and transmit

DSP Group dispatch

WRT Format and write into the GCT

GCT Global completion table

Comp Group completion

For VMX operations

FP1 - FP6 Pipeline stages for the 4-way SIMD single-precision pipeline stages

XS1 Simple FX operation stage

XC1 - XC6 Complex FX operation stages

PM1/PM2 Permute stages

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Processor Core

Page 32 of 450
Version 1.3

16 March 2016

– Banked I-cache, supports one read and one write per cycle when there is no bank conflict.

– Eight additional predecode bits per word to aid in fast decoding and group formation.

– Parity protected; force invalidate and reload on parity error.

• 64-entry effective-to-real address (ERAT) translation cache, fully associative.

– Each entry can translate 4 KB, 64 KB, or 16 MB pages. For MSR[IR] = ‘1’ and VRMA accesses,
16 MB and 16 GB pages take multiple 64 KB entries (the same is true for 1 MB pages; however,
1 MB pages are not visible to server workloads).

– In MSR[IR] = ‘0’ mode and non-VRMA accesses, 16 MB and 16 GB pages are installed as 4 KB
translation blocks in the I-ERAT (the same is true for 1 MB pages).

– In SMT mode, each entry is tagged to indicate invalid, valid for thread 0, valid for thread 1, valid for
thread 2, valid for thread 3, valid for thread 4, valid for thread 5, valid for thread 5, or valid for thread 7.

• Fetch quadword aligned block of eight instructions per cycle.

– In ST mode, instructions are fetched from the thread in every cycle

– In all other modes, instructions are fetched from a given thread based on thread priority. If the threads
are of equal priority, each thread gets approximately an equal number of fetch cycles, while optimiz-
ing the core throughput.

• Branch prediction:

– Scan all eight fetched instructions for branches in each cycle

– Predict up to eight branches per cycle (if the first one is predicted, fall-through)

– Three table prediction structures: global, local, and selector (16K entries × 2 bits, 16K entries × 2 bits
and 16K entries × 2 bits, respectively).

— BHT tables are 16-way banked for concurrent read and write, when there is no bank conflict.

— Global BHT is accessed using 20 bits of past global fetch history (folded into 11 bits to access
global BHT)

– 32-entry link stack for subroutine return address prediction (with some of these entries allocated for
speculation) per thread in ST and SMT2 modes. For SMT4 mode, there are 16 entries available per
thread. In SMT8 mode, there are 8 entries available per thread.

– 768-entry count cache for address prediction shared by all the active threads running on the core.
Five-hundred twelve (512) of the count cache entries are accessed based on the effective address of
the bcctr instruction XORed with the folded GHV with two confidence bits used to provide hysteresis
for replacement. The other 256 entries are accessed with just the effective address of the bcctr with
one confidence bit.

– No instruction fetch bubble to fetch from sequential path of a predicted not-taken branch.

– In ST mode, there are two cycles of instruction fetch bubbles to fetch from the target address of a pre-
dicted taken branch.

– In SMT2 and SMT4 mode, thread priority is factored in to determine which thread to fetch from (to
improve overall fetch throughput).

– Track up to 24 outstanding taken branches per thread in ST and SMT2 mode, 12 outstanding taken
branches in SMT4 mode, and six outstanding taken branches per thread in SMT8 mode. The number
of predicted not-taken branches tracked can be higher.

virtualized real mode area

branch history table

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Processor Core

Page 33 of 450

2.3.2 Instruction Decode and Preprocessing

• 3-cycle pipeline to decode and preprocess instructions

– Dedicated data flow for cracking one instruction into two or four internal operations. All instructions
that crack into two internal operations and a subset of instructions that crack into four internal opera-
tions use the dedicated data flow. The rest of the cracked instructions use the microcoded templates.

– Microcoded templates for longer emulation sequences of internal operations.

– All internal operations expand into an approximately 80-bit internal form to simplify subsequent pro-
cessing and explicitly expose register dependencies for all register pools.

– Dispatch groups with up to eight instructions are formulated in ST mode. Two groups of up to four
instructions are formulated in all other modes.

– All cracked instructions must be the first instruction in a group.

– Cracked and microcoded instructions have access to three renamed eGPRs, one renamed eCR-field,
and two eVRs (for cracking 128-bit DFP instructions). The eGPR, eCR and eVR are extensions to the
architected facilities.

• Logically there is one instruction fetch buffer (IFB) per thread (sizes differ based on the ST, SMT2, or
SMT4 mode). Each IFB entry has four instructions.

– There are 16 entries in an IFB per thread in ST and SMT2 mode, eight entries per thread in SMT4,
and four entries per thread in SMT8 mode.

– Physically, the IFB is implemented as one register file, partitioned for ST, SMT2, and SMT4 modes.

• Up to eight instructions can be placed in the IFB in a cycle (ST or SMT mode).

• Up to eight instructions can be taken out from the IFB in a cycle (ST or SMT mode).

• Instructions taken out for group formation and decode are from one (ST mode) or two threads.

2.3.3 Instruction Dispatch, Sequencing, and Completion Control

• Three dispatch buffers that can hold up to three dispatch groups when GCT is full.

• Inter-instruction dependence generation for RAW and WAW dependences.

• 28-entry global completion table:

– Each entry is assigned to a particular thread at instruction dispatch.

– Entries can be allocated nonsequentially and intermixed among the threads in SMT modes.

– Group-oriented tracking associates up to two 4-operation dispatch groups or one 8-operation dis-
patch group to a single GCT entry.

– Tracks internal operations from dispatch to instruction completion for up to 224 operations.

– Branch instruction can be placed in the middle of a group (predicted taken or not-taken). A second
branch always ends the group.

– Branch misprediction for a branch placed in the middle of a group causes a partial group flush. The
LSU flushes cause a flush of the entire group, even though the load/store operation might be in the
middle of the group (no partial flush for LSU).

– Capable of restoring the machine state for any of the instructions in flight.
— Fast restoration for instructions on group boundaries (such as, branches).
— Slower restoration for instructions contained within a group (such as, load/store operations).

read after write

write after write

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Processor Core

Page 34 of 450
Version 1.3

16 March 2016

• Supports precise exceptions (including machine check exceptions).

• Register renaming resources. A given thread can use any entry in the renamed register files, which can
be dynamically shared amongst threads.

– GPR rename mapper:
— 124 entry in ST mode (32 architected and 92 for rename)
— 2 × 124 entry in SMT2 mode (32 architected and 92 rename, per thread)
— 2 × 124 entry in SMT4 mode. One GPR register file supports half the threads, and the other GPR

register file supports the other half. Each GPR register file has 64 architected, leaving 60 for
rename.

— 2 × 124 entry in SMT8 mode. One physical register file supports half of the threads and the other
register file supports the other half. The number of architected GPRS is limited to 64 at a time in
the GPRs. The other least recently used GPRs are located in the SAR. This leaves 60 for rename
per thread set.

— Four eGPRs used on demand per thread (used for microcoded instructions)
— In SMT2, SMT4, and SMT8 modes, a total of 106 renames (nonarchitected) are available, across

both thread sets
— The SAR is 72 entries per thread (32 GPR + 4 eGPR, × 2 for TM checkpointing) and contains

castouts from the register file.

– FPR and VR rename mapper:
— 144 entry in ST mode (64 architected and 80 rename).
— 144 × 2 entry in SMT2 mode (64 architected and 80 rename, per thread).
— 144 × 2 entry in SMT4 and SMT8 modes (limited to 64 architected and 80 rename, per thread set

- castouts in the SAR).
— In SMT2, SMT4, and SMT8 modes, a total of 106 renames (non-architected) are available,

across both thread sets.
— The SAR is 128 entries per thread (64 VSX, × 2 for TM checkpointing) and contains castouts

from the register file.

– 30-entry XER rename mapper plus 32-entry ARF for the current architected values (XER broken into
four mappable fields (ov, ca/oc, fxcc, tgcc) and one non-mappable field per thread)

– Non-mappable bits: dc, ds, string-count; other_bits special fields (value predict): so

– 20-entry LR/CTR/TAR rename mapper plus 24-entry ARF for architected values (one LR and one
CTR, and one TAR per thread).

– 32-entry CR rename mapper plus 64-entry ARF for architected values (eight CR fields per thread).

– 28-entry FPSCR rename mapper (each entry corresponds to a GCT entry, which can belong to at
most one particular thread at a given time).

• No register renaming on any architected registers not mentioned previously.

• Instruction queuing resources:

– Two 32-entry unified issue queues (UniQ) are used for fixed-point, floating-point, VMX, VSX, DFU,
Crypto, and load/store instructions. The two queues are split per thread-set in SMT2, SMT4, and
SMT8 mode.

– In ST, each IOP is assigned to the opposite queue, half from the IOP before it.

– One 15-entry issue queue for branch instructions.

– One 8-entry issue queue for CR-logical instructions.

Second-level Architected Register

floating-point register

vector register

Architected register file

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Processor Core

Page 35 of 450

2.3.4 Fixed-Point Execution Pipelines

• Two symmetric fixed-point execution pipelines:
– Both are capable of basic arithmetic, logical and shifting operations.
– Both are capable of multiplies, divides, and SPR operations.

• Out-of-order issue with a bias towards oldest operations first.

• Symmetric forwarding between fixed-point and load/store execution pipelines.

• In ST mode, instructions from a given thread can be executed in either pipeline.

• In SMT2, SMT4, and SMT8 mode, instructions from thread set 0 execute in pipeline 0, and instructions
from thread set 1 execute in pipeline 1.

• Threads are dynamically assigned to a given thread set.

2.3.5 Load and Store Execution Pipelines

• Two load/store and two load execution pipelines, with 3-cycle, load-to-use latency (2-cycle bubble) for
fixed-point loads and 5-cycle load-to-use latency for VS and floating-point loads. See Table 10-16 Instruc-
tion Latencies and Throughputs on page 236 for additional information.

• Load/store units execute both load and store operations.

• Load units execute only load operations.

• Loads that update a FP, VSX, or VMX register execute in the LU. Loads that update an XER, execute in
the LSU. Loads that update only a GPR can execute in either the LU or LSU.

• All four units can execute simple fixed-point operations:

– In ST mode, a given load/store instruction can execute in either pipeline.

– In SMT2, SMT4 and SMT8 modes, instructions from thread set 0 execute in pipeline 0, and instruc-
tions from thread set 1 execute in pipeline 1.

• Out-of-order issue with bias towards oldest operations first:

– Fixed-point D-form stores are issued twice: an address-generation operation (issued to the LSU) and
a data-steering operation (issued to the LU).

– Fixed-point X-form stores are cracked into store_agen and store_data by the IFU (a cracked instruc-
tion starts a new group).

– 64-bit floating-point and 64-bit VSX stores are issued twice: the store_agen is issued to the LSU and
the store_data is issued to the VSU.

• 64 KB, 8-way set-associative, banked D-cache:

– Supports four reads and one write in every cycle, when there is no bank conflict between write or
read and a read. A given bank can support either two reads or one write in a given cycle.

– 3-cycle load-use penalty for FXU loads (2-cycle bubble between a load and a dependent operation).

– 5-cycle load-use penalty for FPU/VMX/VSX loads (4-cycle bubble between a load and a dependent
operation).

– Store-through (to L2 cache) policy; no allocate on store misses.

– 128-byte cache line .

– True LRU replacement policy.

Least-recently used

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Processor Core

Page 36 of 450
Version 1.3

16 March 2016

– Dedicated 64-byte reload interface from the L2 cache, which can supply 64 bytes in every processor
clock.

– Effective address index, real address tags (hardware fix-up on alias cases. That is, two different EAs
that map to the same RA are not allowed to co-exist in the D-cache).

– Parity protected; precise machine check interrupt on parity error (software fix-up).

• 48-entry, fully-associative primary and 144-entry secondary data effective-to-real address (D-ERAT)
translation cache shared across the two thread sets:

– Each entry translates either 4 KB, 64 KB, or 16 MB pages:
— 16 GB pages take multiple 16 MB pages (used for server-mode only).
— MSR[DR] = ‘0’ is also created in the D-ERAT and shared by all threads.

– Binary LRU replacement policy.

– In SMT mode, each entry is tagged to indicate the valid threads.

– In ST mode, 48-entry primary and 256-entry secondary D-ERAT are available

– In SMT mode, there are 48-entry primary and 128-entry secondary D-ERAT available for each thread
set. Entries are dynamically shared between the two threads (a given entry is not shared by multiple
threads, unless it is MSR[DR] = ‘0’).

• 32-entry, fully-associative segment lookaside buffer (SLB) per thread:

– Each entry can support 256 MB or 1 TB segment sizes.

– Multiple pages per segment (MPSS) feature is supported: 4 KB, 64 KB, and 16 MB pages (at most 2
pages) can be present concurrently in a given segment.

• 40-entry store re-order queue logically above the D-cache (real address based; CAM structure):

– Sixty-four virtual entries (with no physical entity in SRQ) are available to allow a total of 64 outstand-
ing stores to be dispatched per thread (for dispatch, virtual entry is sufficient).

– A total of 40 outstanding stores can be issued (for issue, a real entry is required):
— The SRQ is dynamically shared among the available threads.
— The SRQ entry is allocated at the time of a store issue and deallocated when the store is written

in the cache (after the completion point).

– Store addresses and store data can be supplied on different cycles.

– Stores wait in this queue until they are completed; then, they write the cache.

– Supports store forwarding to inclusive subsequent loads (even if both are speculative). Store forward-
ing takes five additional cycles compared to a D-cache hit for a load.

– For each SRQ entry, there is a store data queue (SDQ) entry of 16 bytes.

– 16 bytes of store data can be sent to the L2 cache (and also to the D-cache, on a hit) in every proces-
sor cycle. Two distinct stores can be combined into one 16-byte store, under certain conditions).

• 44-entry load re-order queue (real address based; CAM structure):

– Sixty-four virtual entries (with no physical entity in LRQ) are available to allow a total of 64 outstand-
ing loads to be dispatched per thread in ST, SMT2, or SMT4 modes (for dispatch, virtual entry is suf-
ficient).

– A total of 44 outstanding loads can be issued. For instruction dispatch, virtual entry is sufficient; for
issue, a real entry is required.

– LRQ is dynamically shared among the available threads.

Content-addressable memory

Load reorder queue

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Processor Core

Page 37 of 450

– Keeps track of out-of-order loads and watches for hazards. For example:
— Previous store to the same address that gets executed after the load; system executes a flush.
— Previous load from the same address and a cross-invalidate has occurred; system executes a

flush.
— Atomic load-quad instruction and a cross invalidate has occurred; system executes a flush.

• 16-entry load miss queue (real address based):
– Keeps track of loads that have missed in the L1 D-caches.
– Dynamically shared among the threads in SMT2, SMT4, and SMT8 modes.
– Prefetches from L1 cache are also tracked using the LMQ.

• Two 16-byte loads and one 16-byte store operation are supported for VMX and VSX operations per cycle.
All architecturally-allowed alignments are supported in hardware.

• True little-endian (LE) mode is supported. All architecturally allowed alignments are supported in hard-
ware.

2.3.6 Branch and Condition Register Execution Pipelines

• One branch execution pipeline:
– Computes actual branch address and branch direction for comparison with prediction.
– Redirects instruction fetching if either direction or target prediction was incorrect.
– Assists in training and maintaining the branch history table predictors, the link stack, and the count

cache.

• One Condition Register logical pipeline:
– Executes CR logical instructions and the CR movement operations.
– Also executes some mfspr instructions .

• Out-of-order issue with bias towards oldest operations first.

2.3.7 Unified Second-Level Memory Management (Address Translation)

• 2048-entry, 4-way set associative TLB:
– 4 KB, 64 KB, 16 MB, and 16 GB pages are supported in TLB.
– The TLB also supports “Virtualized Page Class Key Protection” with 32 keys.
– Hardware-based reload (from the L2 cache interface, no L1 D-cache corruption).
– Hardware-based update of the R bit, C bit, and TS bit.
– Parity protected; precise machine check interrupt on parity error (software fix-up).
– ITLB entries are shared by the eight threads as long as the entry belongs to the logical partition run-

ning on the core.
– 12-bit LPAR ID per entry.

• Hit-under-miss is allowed in the TLB.

• Support for four concurrent table walks (without any restriction on thread of D-side or I-side requests).

• 32-entry fully-associative SLB, one per thread:
– An SLB miss results in an interrupt (software reloads the SLB).
– An SLB can also be loaded via the 32-bit PowerPC segment register instructions.
– An SLB supports 256 MB and 1 TB segment sizes.

• A segment with a 4 KB base page size is allowed to have mixed pages of sizes 4 KB, 64 KB, and 16 MB
pages.

• A segment with a 64 KB base page size is allowed to have mixed pages of sizes 64 KB and 16 MB
pages.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Processor Core

Page 38 of 450
Version 1.3

16 March 2016

• A read of an invalid SLB entry returns zeros for enhanced security.

• Supports 68-bit virtual address and 50-bit real address.

• Both software and hardware TLB management is allowed.

• True LRU replacement policy.

2.3.8 Data Prefetch

• Software initiated streams can use up to 16 entries. The 16 entries are shared in ST and SMT2 mode. In
SMT4 mode there are two groups of eight (two threads share a group) and in SMT8 mode there are four
groups of four entries (again two threads share a group) managed with effective addresses.

• Supports hardware- and software-initiated streams.

• Hardware-initiated streams are dynamically shared among the available theads.

• Sixteen independent data streams capable of striding up or down.

• Stride one cache line support.

• Stride N support

• The 4-entry table tracks 32-byte strides across the previous eight miss addresses [50:58] to detect 32-
byte strides

• The stream is installed in the main 16-entry queue when a stride is detected.

• Prefetches and allocates up to two cache lines ahead of a load into the L1 D-cache.

• The ramp and depth of prefetch is controled using the DSCR Register.

• Support for software-initiated stream startup (special variant of the dcbt instruction).

2.3.9 VSU Execution Pipeline

• The VSU unit contains a binary floating-point execution unit, SIMD double-precision floating-point (VSX)
execution unit, decimal floating-point unit (DFU), Crypto unit, and the VMX execution unit.

• Up to two instructions can be issued to the VSU in a given cycle to the two pipelines.
– The pipes are fully symmetrical except for the Crypto and DFU engines which are shared.
– In ST mode, instructions can be issued to both pipes.
– In SMT2, SMT4, and SMT8 mode, pipe0 executes instructions from thread set 0 and pipe 1 executes

instructions from thread set 1.
– Out-of-order issue with a bias towards oldest operations first.
– Two load result bus to the VRF; each supports up to 16-byte loads in a cycle.
– Store data bus from VRF to the SDQ supports two 16-byte stores in a cycle.

• Floating-point execution.
– Two symmetric floating-point execution pipelines, with 6-stage execution.

— Both are capable of the full set of floating-point instructions.
— All data formats supported in hardware (no floating-point assist interrupts).
— Back-to-back 6-cycle issue to both local and remote FPU (symmetric forwarding between the

floating-point pipelines, with no additional cycle of latency).

• VSX execution.
– Two symmetric SIMD floating-point execution pipelines, with 6-stage execution.

— Both are capable of the full set of VSX instructions (single-precision and double-precision).
— All data formats supported in hardware (no assist interrupts).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Processor Core

Page 39 of 450

— A test instruction facilitates execution of multiple concurrent divide or square-root operations.
— Back-to-back 6-cycle issue to both local and remote VSX pipe.

• VMX execution.
– Four execution pipelines within VMX: simple fixed-point, complex fixed-point, permute, and 4-way

SIMD single-precision floating-point unit.
— Simple fixed-point operations take two execution cycles.
— Complex fixed-point operations take seven execution cycles.
— Permute operations take two execution cycles.
— Vector floating-point operations take six execution cycles.

• Crypto execution.
– The Crypto unit executes symmetric AES instructions that include polynomial multiply to support the

Galios Counter Mode (GCM).
– Allows out-of-order issue with a bias towards the oldest instruction.
– Crypto operations can be issued from either issue queue.
– Pipelined execution allowed.
– Crypto operations take six execution cycles.

• See Table 10-16 Instruction Latencies and Throughputs on page 236 for additional information.

2.3.10 DFP Execution Pipeline

• The DFP unit can execute 64-bit or 128-bit decimal floating-point operations.
• Allows out-of-order issue with a bias towards the oldest instruction.
• Pipelined execution allowed.
• DFP operations can be issued from either issue queue.
• The 128-bit DFP instructions can be cracked into 2-way or 4-way internal operation.

Advanced Encryption Standard

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Processor Core

Page 40 of 450
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 41 of 450

3. Power Architecture Compliance

The following sections are intended to be read with their respective companion documents. Throughout these
sections, it is assumed that the reader is familiar with the following architecture documents:

• Power ISA User Instruction Set Architecture - Book I (version 2.07)

• Power ISA Virtual Instruction Set Architecture - Book II (version 2.07)

• Power ISA Operating Environment Architecture (Server Environment) - Book III-S (version 2.07)

3.1 Book I - User Instruction Set Architecture

This section of the document identifies architectural implications of the POWER8 design point as they relate
to the User Instruction Set Architecture. This is accomplished by walking through each of the relevant
sections of Book I and highlighting the POWER8 solution to the architectural flexibility provided by the Power
ISA.

In many cases, the architecture defines certain scenarios as invalid forms. In these cases, although this docu-
ment provides information on how the POWER8 core handles these scenarios, it is strongly recommended
that software avoid building any type of reliance on these behaviors because they are likely to be different in
future generation machines. This information is primarily provided as an aid to the design verification and
debug efforts

3.1.1 Defined Instructions

The POWER8 processor core implements all Book I instructions in the categories listed as being required for
the server platform in Appendix B. Platform Support Requirements of the Power ISA (Version 2.07).

3.1.1.1 Illegal Instructions

An attempt to execute an illegal instruction as defined in the Appendix D. Illegal Instructions of the Power ISA
(Version 2.07) results in a hypervisor emulation assistance interrupt.

3.1.1.2 Instructions Supported

The POWER8 core supports all of the instructions described in Book I: Power ISA User Instruction Set Archi-
tecture of the Power ISA, except those instructions with the designation of Embedded. Furthermore, it
supports the Service Processor “Attention” described in Appendix E. Reserved Instructions of the Power ISA
(Version 2.07). This instruction is conditionally enabled by HID0[31] = ‘1’. When enabled, this instruction is a
user-level instruction.

3.1.1.3 Invalid Forms

In general, the POWER8 core handles invalid forms of instructions in the manner that is most convenient for
the particular case (within the scope of meeting the boundedly-undefined definition described in the Power
ISA). This document specifies the cases where a system-level error handler is invoked, but does not always
describe actions for other cases of invalid forms. It is not recommended that software or other system facili-
ties make use of the POWER8 behavior in these cases, because it is not formally specified and might be
different in another processor that implements the Power ISA.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 42 of 450
Version 1.3

16 March 2016

The POWER8 core ignores the state of reserved bits in the instructions (denoted by “///” in the instruction defi-
nition) and executes the instruction normally. Software should set these bits to ‘0’ per the Power ISA.

3.1.2 Branch Processor

3.1.2.1 Instruction Fetching

In an effort to increase performance, the POWER8 processor does instruction prefetching before it deter-
mines whether or not particular instructions will actually execute. This prefetching follows all of the architec-
tural constraints relative to cache inhibited and guarded regions of storage. A set of software-accessible
mode bits is implemented to allow control over the various types of prefetch supported (for more information,
see Section 3.7 HID Registers (HID0, HID1, HID4, and HID5) on page 93.

3.1.2.2 Branch Prediction

The POWER8 processor core uses several dynamic branch prediction mechanisms to improve performance.
A set of three branch history tables (local, global, and selector) is used to predict the direction of branch
instructions early in the pipeline. To improve the efficiency of these predictors, the POWER8 core uses the
architected BO field hint bits associated with many of the branch instructions (the “a” and “t” bits).

In addition, for bclr instructions, a link stack (or call-return stack) is used to predict the target address of the
branch. Similarly, for bcctr instructions, local and global count caches are used to predict the target address
for this type of branch. To improve the efficiency of these address predictors, the POWER8 core uses the
architected BH-field hints associated with several of the branch instructions. These hints are used by the
hardware to improve the accuracy of the link stack and the count cache.

As the branch instructions progress through the pipeline, eventually they become fully executed. At that point,
the hardware determines whether the predicted target address and/or the direction of the branch matches the
actual outcome of the branch. If the prediction was incorrect, the hardware takes the appropriate actions with
respect to flushing undesired instructions and results, redirecting the pipeline, and updating the branch
prediction information in the branch history tables.

Although the overall performance of the machine is strongly dependent on these branch prediction mecha-
nisms, a set of firmware-accessible mode bits is available to disable these features via scan initialization.

3.1.2.3 Instruction Cache Block Touch Hint

The POWER8 core supports the instruction cache block touch instruction. Instead of bringing the data into
the level 1 (L1) cache, it prefetches the data into the level 2 (L2) cache, which works just like a data cache
block touch for store (dcbtst) hint instruction.

3.1.2.4 Out-of-Order Execution and Instruction Flushes

The POWER8 processor uses out-of-order instruction execution. Instructions can be speculative on a
predicted branch direction, or simply speculative beyond an instruction that might cause an interrupt condi-
tion. In the event of a misprediction or an interrupt, instructions from the mispredicted path and the results
produced by those instructions are discarded, presenting the effect of sequentially executed instructions
down the appropriate branch paths and precise exceptions as required.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 43 of 450

3.1.2.5 Branch Processor Instructions with Undefined Results

The results of executing an invalid form of a branch instruction or an instance of a branch instruction for which
the architecture specifies that some results are undefined are described as follows. Only results that differ
from those specified by the architecture are described in the following list.

• Instructions with reserved fields
Bits in reserved fields including the z-bits in the BO field are ignored; the results of executing an instruc-
tion in which one or more of these bits are ‘1’ is the same as if the bits were ‘0’.

• bcctr and bcctrl instructions
If BO[2] = ‘0’, the contents of CTR, before any update, are used as the target address and for the test of
the contents of CTR to resolve the branch. The contents of the CTR are then decremented and written
back to the CTR.

• System call instructions (opcode 17)

3.1.3 Fixed-Point Processor

3.1.3.1 Fixed-Point Exception Register (XER)

The Power ISA defines XER[0:31] and XER[35:56] as reserved. A mfxer returns the value as shown in
Table 3-1

In the POWER8 core, the XER is implemented in several parts:

• XER renamed fields F0:F3 (see Table 3-1) are stored in an architected register file (ARF). The ARF con-
sists of latches that store the F0:F3 fields for each of eight threads. The ARF contains eight (one per
thread) Transactional Memory (TM) copies of the F0:F3 fields.

• XER nonrenamed bits (for example, F3NR) other than SO are stored in latches. Access is scoreboard
managed. One copy for each of eight threads and eight TM copies are shared by FX0 and FX1.

• SO architected bits stored in latches with accompanying state machine. One copy for each of the eight
threads and eight TM copies are shared by FX0 and FX1.

Bits 30:31 Description
‘00’ sc instruction
‘01’ illegal instruction exception
‘10’ sc instruction
‘11’ sc instruction

Table 3-1. XER Bits and Fields (Sheet 1 of 2)

XER Bits Name Field Read/Write Behavior

0:31 Reserved Unimplemented Returns zeros on mfxer.

32 SO F3NR Set to ‘1’ whenever OV = ‘1’, except when mtxer sets SO = ‘0’ and
OV = ‘1’. This bit can be set to ‘0’ or ‘1’ by mtxer. A mfxer instruction
reads the bit contents.

33 OV F0 Set to ‘0’ or ‘1’ by various fixed-point instructions with OE = ‘1’ or by
mtxer. A mfxer instruction reads the bit contents.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 44 of 450
Version 1.3

16 March 2016

3.1.4 Storage Access Alignment Support Overview

Most storage accesses are performed without software intervention (such as, an alignment interrupt). The
relative performance of these accesses depends to some degree on their alignment. In many cases,
unaligned storage accesses are handled with performance equivalent to aligned accesses. However, in some
cases the POWER8 processor is forced to break unaligned accesses into multiple internal operations.
Further, because effective address alignment for storage references cannot be determined until execution
time, and the POWER8 processor has dataflow-oriented execution pipelines that do not support iteration,
some unaligned storage accesses actually cause a pipeline flush to allow a microcoded emulation of the
instruction.

3.1.4.1 Misaligned Flushes

The LSU initiates a misaligned flush for the following conditions (See Table 3-2 on page 46):

• Load crossing a 128-byte cache-line boundary and one of the cache-line misses.

• Load crossing a 32-byte sector boundary with either sector having an L1 D-cache miss and a 32-byte
reload occurs instead of a 64-byte reload.

• Load/store crossing a 4 KB small page boundary.

Additionally, a misaligned flush is initiated in Data Address Watchpoint Register (DAWR) mode when the
following conditions occur (see Table 3-3 on page 54):

– Load crossing doubleword boundary when DAWR[63] = ‘1’

— The following instructions are never considered to be crossing a doubleword boundary:
lq, lqarx, lfdp, lfdpx, lvebx, lvehx, lvewx, lvsl, lvsr, lvx, lvxl

– Store crossing doubleword boundary when DAWR[62] = ‘1’

— The following instructions are never considered to be crossing a doubleword boundary:
stq, stqcx., stfdp, stfdpx, stvebx, stvehx, stvewx, stvx, stvxl

Note: If both a misaligned flush condition and an alignment interrupt condition are present, the alignment
interrupt has precedence.

34 CA F1 Set to ‘0’ or ‘1’ by add-carrying, subtract-from carrying and shift-right
algebraic type instructions, and by mtxer. A mfxer instruction reads
the bit contents.

35:43 Reserved Returns zeros on mfxer

44:56 Reserved F3NR Written by mtxer. mfxer reads the bit contents.

57:63 String length F3NR String length field used lswx and stswx. Written by mtxer. A mfxer
instruction reads the bit contents.

Table 3-1. XER Bits and Fields (Sheet 2 of 2)

XER Bits Name Field Read/Write Behavior

load/store unit

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 45 of 450

3.1.4.2 Alignment Interrupts

The LSU reports an alignment interrupt for the following conditions:

• Instruction not on a natural alignment boundary

– Halfword boundary:
— lharx
— sthcx.

– Word boundary:
— lmw, lwarx,
— stmw, stwcx

– Doubleword boundary:
— ldarx, stdcx

– Quadword boundary:
— lfdp, lfdpx, lq, stfdp, stfdpx, stq, stqcx, lqarx

• Little-endian mode
– lmw, lswi, lswx
– stmw, stswi, stswx

• Caching-inhibited storage

– lfdp, lfdpx, lmw, lswi, lswx
– dcbz, stfdp, stfdpx, stmw, stswi, stswx

– Any load or store not on natural alignment boundary:

— Halfword boundary:
– lha, lhau, lhaux, lhax, lhbrx, lhz, lhzcix, lhzu, lhzux, lhzx
– sthbrx, sth, sthcix, sthu, sthux, sthx

— Word boundary:
– lfiwax, lfiwzx, lfs, lfsu, lfsux, lfsx, lwa, lwaux, lwax, lwbrx, lwz, lwzcix, lwzu, lwzux, lwzx,

lxswux, lxswx
– stfiwx, stfs, stfsu, stfsux, stfsx, stwbrx, stw, stwcix, stwu, stwux, stwx, stxswux, stx-

swx

— Doubleword boundary:
– ld, ldbrx, ldcix, ldu, ldux, ldx, lfd, lfdu, lfdux, lfdx, lxsdx
– std, stdbrx, stdcix, stdu, stdux, stdx,stfd, stfdu, stfdux, stfdx, stxsdx

— Quadword boundary:
– lxvdsx, lxvd2x, lxvw4x, stxvd2x, stxvw4x

Note: A data storage interrupt (DSI) is reported on the following instructions to caching-inhibited
storage regardless of the address alignment: lbarx, lharx, lwarx, ldarx, lqarx, stbcx., sthcx.,
stwcx., stdcx., stqcx., lq, stq

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 46 of 450
Version 1.3

16 March 2016

Table 3-2. Operand Alignment Effects on Performance (Non-Watchpoint Mode) (Sheet 1 of 8)

Power ISA
Instructions

EA
Alignment

Caching-
Inhibited

Alignment
Interrupt?

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW,
see other

tab

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
First Page

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
Second Page

All
loads/stores
caching
inhibited,
not-
naturally
aligned

DSI or
Alignment
(see above
for specific

instructions)

Yes No Yes No

stxvw4x,
stxvd2x

QW No No No No N/A EA N/A

DW No 4K crossing No 4K crossing N/A EA EA + 16
ucode

Even word
(same as

DW)

No 4K crossing No 4K crossing N/A EA EA + 16
ucode

Odd word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA EA + 16
ucode

Non-word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA EA + 16
ucode

stxswx QW No No No No N/A EA N/A

DW Not
naturally
aligned

No No No No N/A EA N/A

Even word
(same as

DW)

Not
naturally
aligned

No No No No N/A EA N/A

Odd word Not
naturally
aligned

No No No No N/A EA N/A

Non-word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA N/A

stxsdx QW No No No No N/A EA N/A

DW No No No No N/A EA N/A

Even word
(same as

DW)

No No No No N/A EA N/A

Odd word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA EA + 4

Non-word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA EA + 4

quadword

doubleword

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 47 of 450

stvebx,
stvehx,
stvewx

QW No No No No N/A EA as
defined by

ISA

N/A

DW No No No No N/A EA as
defined by

ISA

N/A

Even word
(same as

DW)

No No No No N/A EA as
defined by

ISA

N/A

Odd word Not
naturally
aligned

No No No No N/A EA as
defined by

ISA

N/A

Non-word Not
naturally
aligned

No No No No N/A EA as
defined by

ISA

N/A

stvx(l) QW No No No No N/A EA as
defined by

ISA

N/A

DW Not
naturally
aligned

No No No No N/A EA as
defined by

ISA

N/A

Even word
(same as

DW)

Not
naturally
aligned

No No No No N/A EA as
defined by

ISA

N/A

Odd word Not
naturally
aligned

No No No No N/A EA as
defined by

ISA

N/A

Non-word Not
naturally
aligned

No No No No N/A EA as
defined by

ISA

N/A

stq QW DSI No No No No N/A EA N/A

DW DSI Yes No Yes No N/A EA N/A

Even word
(same as

DW)

DSI Yes No Yes No N/A EA N/A

Odd word DSI Yes No Yes No N/A EA N/A

Non-word DSI Yes No Yes No N/A EA N/A

stfdp(x) QW Always No No No No N/A EA N/A

DW Always Yes No Yes No N/A EA N/A

Even word
(same as

DW)

Always Yes No Yes No N/A EA N/A

Odd word Always Yes No Yes No N/A EA N/A

Non-word Always Yes No Yes No N/A EA N/A

Table 3-2. Operand Alignment Effects on Performance (Non-Watchpoint Mode) (Sheet 2 of 8)

Power ISA
Instructions

EA
Alignment

Caching-
Inhibited

Alignment
Interrupt?

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW,
see other

tab

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
First Page

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
Second Page

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 48 of 450
Version 1.3

16 March 2016

stfd QW No No No No N/A EA N/A

DW No No No No N/A EA N/A

Even word
(same as

DW)

No No No No N/A EA N/A

Odd word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA E/A first byte
in second

page

Non-word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA E/A first byte
in second

page

stfs,
stfliawx

QW No No No No N/A EA N/A

DW No No No No N/A EA N/A

Even word
(same as

DW)

No No No No N/A EA N/A

Odd word No No No No N/A EA N/A

Non-word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA E/A first byte
in second

page

stxsspx,
stxsiwx

QW No No No No N/A EA N/A

DW No No No No N/A EA N/A

Even word
(same as

DW)

No No No No N/A EA N/A

Odd word No No No No N/A EA N/A

Non-word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA E/A first byte
in second

page

stswi,
stswx

QW Always No Yes Yes No N/A EA E/A first byte
in second

page

DW Always No Yes Yes No N/A EA E/A first byte
in second

page

Even word
(same as

DW)

Always No Yes Yes No N/A EA E/A first byte
in second

page

Odd word Always No Yes Yes No N/A EA E/A first byte
in second

page

Non-word Always No Yes Yes No N/A EA E/A first byte
in second

page

Table 3-2. Operand Alignment Effects on Performance (Non-Watchpoint Mode) (Sheet 3 of 8)

Power ISA
Instructions

EA
Alignment

Caching-
Inhibited

Alignment
Interrupt?

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW,
see other

tab

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
First Page

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
Second Page

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 49 of 450

stmw QW Always No Yes Yes No N/A EA E/A first byte
in second

page

DW Always No Yes Yes No N/A EA E/A first byte
in second

page

Even word
(same as

DW)

Always No Yes Yes No N/A EA E/A first byte
in second

page

Odd word Always No Yes Yes No N/A EA E/A first byte
in second

page

Non-word Always Yes No Yes No N/A EA N/A

lxvd2x,
lxvw4x

QW No No No No N/A EA N/A

DW No 4K crossing
OR

32-byte
crossing L1

miss

No 4K crossing
OR

32-byte
crossing L1

miss

N/A EA EA + 16

Even word
(same as

DW)

No 4K crossing
OR

32-byte
crossing L1

miss

No 4K crossing
OR

32-byte
crossing L1

miss

N/A EA EA + 16

Odd word Not
naturally
aligned

No 4K crossing
OR

32-byte
crossing L1

miss

No 4K crossing
OR

32-byte
crossing L1

miss

N/A EA EA + 16

Non-word Not
naturally
aligned

No 4K crossing
OR

32-byte
crossing L1

miss

No 4K crossing
OR

32-byte
crossing L1

miss

N/A EA EA + 16

lxswx QW No No No No N/A EA N/A

DW Not
naturally
aligned

No No No No N/A EA N/A

Even word
(same as

DW)

Not
naturally
aligned

No No No No N/A EA N/A

Odd word Not
naturally
aligned

No No No No N/A EA E/A first byte
in second

page

Non-word Not
naturally
aligned

No 4K crossing
OR

32-byte
crossing L1

miss

No 4K crossing
OR

32-byte
crossing L1

miss

N/A EA E/A first byte
in second

page

Table 3-2. Operand Alignment Effects on Performance (Non-Watchpoint Mode) (Sheet 4 of 8)

Power ISA
Instructions

EA
Alignment

Caching-
Inhibited

Alignment
Interrupt?

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW,
see other

tab

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
First Page

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
Second Page

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 50 of 450
Version 1.3

16 March 2016

lxvdsx
lxsdx

QW No No No No N/A EA N/A

DW Not
naturally
aligned

No No No No N/A EA N/A

Even word
(same as

DW)

Not
naturally
aligned

No No No No N/A EA N/A

Odd word Not
naturally
aligned

No 4K crossing
OR

32-byte
crossing L1

miss

No 4K crossing
OR

32-byte
crossing L1

miss

N/A EA EA + 4

Non-word Not
naturally
aligned

No 4K crossing
OR

32-byte
crossing L1

miss

No 4K crossing
OR

32-byte
crossing L1

miss

N/A EA EA + 4

lvebx,
lvehx,
lvewx

QW No No No No N/A EA as
defined by

ISA

N/A

DW No No No No N/A EA as
defined by

ISA

N/A

Even word
(same as

DW)

No No No No N/A EA as
defined by

ISA

N/A

Odd word No No No No N/A EA as
defined by

ISA

N/A

Non-word Not
naturally
aligned

No No No No N/A EA as
defined by

ISA

N/A

lvx(l) QW No No No No N/A EA as
defined by

ISA

N/A

DW Not
naturally
aligned

No No No No N/A EA as
defined by

ISA

N/A

Even word
(same as

DW)

Not
naturally
aligned

No No No No N/A EA as
defined by

ISA

N/A

Odd word Not
naturally
aligned

No No No No N/A EA as
defined by

ISA

N/A

Non-word Not
naturally
aligned

No No No No N/A EA as
defined by

ISA

N/A

Table 3-2. Operand Alignment Effects on Performance (Non-Watchpoint Mode) (Sheet 5 of 8)

Power ISA
Instructions

EA
Alignment

Caching-
Inhibited

Alignment
Interrupt?

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW,
see other

tab

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
First Page

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
Second Page

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 51 of 450

lq QW DSI No No No No N/A EA N/A

DW DSI Yes No Yes No N/A EA N/A

Even word
(same as

DW)

DSI Yes No Yes No N/A EA N/A

Odd word DSI Yes No Yes No N/A EA N/A

Non-word DSI Yes No Yes No N/A EA N/A

lfdp(x) QW Always No No No No N/A EA N/A

DW Always Yes No Yes No N/A EA N/A

Even word
(same as

DW)

Always Yes No Yes No N/A EA N/A

Odd word Always Yes No Yes No N/A EA N/A

Non-word Always Yes No Yes No N/A EA N/A

dcbz QW Always No No No No N/A EA N/A

DW Always No No No No N/A EA N/A

Even word
(same as

DW)

Always No No No No N/A EA N/A

Odd word Always No No No No N/A EA N/A

Non-word Always No No No No N/A EA N/A

lqarx QW DSI No No No No N/A EA N/A

DW DSI Yes No Yes No N/A EA N/A

Even word
(same as

DW)

DSI Yes No Yes No N/A EA N/A

Odd word DSI Yes No Yes No N/A EA N/A

Non-word DSI Yes No Yes No N/A EA N/A

ldarx QW DSI No No No No N/A EA N/A

DW DSI No No No No N/A EA N/A

Even word
(same as

DW)

DSI No No No No N/A EA N/A

Odd word DSI Yes No Yes No N/A EA N/A

Non-word DSI Yes No Yes No N/A EA N/A

Table 3-2. Operand Alignment Effects on Performance (Non-Watchpoint Mode) (Sheet 6 of 8)

Power ISA
Instructions

EA
Alignment

Caching-
Inhibited

Alignment
Interrupt?

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW,
see other

tab

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
First Page

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
Second Page

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 52 of 450
Version 1.3

16 March 2016

lwarx QW DSI No No No No N/A EA N/A

DW DSI No No No No N/A EA N/A

Even word
(same as

DW)

DSI No No No No N/A EA N/A

Odd word DSI No No No No N/A EA N/A

Non-word DSI Yes No Yes No N/A EA N/A

lharx QW DSI No No No No N/A EA N/A

DW DSI No No No No N/A EA N/A

Even word
(same as

DW)

DSI No No No No N/A EA N/A

Odd word DSI No No No No N/A EA N/A

halfword DSI No No No No N/A EA N/A

non half-
word

DSI Yes No Yes No N/A EA N/A

lxsspx,
lxsiwax,
lxsiwzx

QW No No No No N/A EA N/A

DW No No No No N/A EA N/A

Even word
(same as

DW)

No No No No N/A EA N/A

Odd word No No No No N/A EA N/A

Non-word Not
naturally
aligned

No 4K crossing
OR

32-byte
crossing L1

miss

No 4K crossing
OR

32-byte
crossing L1

miss

N/A EA N/A

lswi,
lswx

QW Always No Yes Yes No N/A EA N/A

DW Always No Yes Yes No N/A EA N/A

Even word
(same as

DW)

Always No Yes Yes No N/A EA N/A

Odd word Always No Yes Yes No N/A EA N/A

Non-word Always No Yes Yes No N/A EA N/A

Table 3-2. Operand Alignment Effects on Performance (Non-Watchpoint Mode) (Sheet 7 of 8)

Power ISA
Instructions

EA
Alignment

Caching-
Inhibited

Alignment
Interrupt?

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW,
see other

tab

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
First Page

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
Second Page

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 53 of 450

lmw QW Always No Yes Yes No N/A EA N/A

DW Always No Yes Yes No N/A EA N/A

Even word
(same as

DW)

Always No Yes Yes No N/A EA N/A

Odd word Always No Yes Yes No N/A EA N/A

Non-word Always Yes No Yes No N/A EA N/A

Table 3-2. Operand Alignment Effects on Performance (Non-Watchpoint Mode) (Sheet 8 of 8)

Power ISA
Instructions

EA
Alignment

Caching-
Inhibited

Alignment
Interrupt?

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW,
see other

tab

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
First Page

DAR Value if
DSI (non-
DAWR) or
Alignment

Interrupt on
Second Page

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 54 of 450
Version 1.3

16 March 2016

Table 3-3. Operand Alignment Effects on Performance (Watchpoint Mode) (Sheet 1 of 9)

Power ISA
Instructions

EA
Alignment

Caching
Inhibited

Alignment
Interrupt

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on
First Page

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on

Second Page

All
loads/stores
Caching
Inhibited
not-
naturally
aligned

Always Yes No Yes No

All DW
operations
or less
(word, hw)

crossing a
DW

boundary

Always No yes No yes

All QW
operations

crossing a
QW

boundary

DSI or
Alignment
(see above
for specific

instructions)

No yes No yes

stxvw4x,
stxvd2x

QW No No No Yes DW EA N/A

DW No Yes No Yes N/A EA EA + 16
ucode

Even word
(same as

DW)

No Yes No Yes N/A EA EA + 16
ucode

Odd word Not
naturally
aligned

No Yes No Yes N/A EA EA + 16
ucode

Non-word Not
naturally
aligned

No Yes No Yes N/A EA EA + 16
ucode

stxswx DW

QW No No No No N/A EA N/A

DW Not
naturally
aligned

No No No No N/A EA N/A

Even word
(same as

DW)

Not
naturally
aligned

No No No No N/A EA N/A

Odd word Not
naturally
aligned

No No No No N/A EA N/A

Non-word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA E/A first byte
in second

page

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 55 of 450

stxsdx DW

QW No No No No N/A EA N/A

DW No No No No N/A EA N/A

Even word
(same as

DW)

No No No No N/A EA N/A

Odd word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA E/A first byte
in second

page

Non-word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA E/A first byte
in second

page

stvebx,
stvehx,
stvewx

 DW

QW No No No No N/A EA as
defined by

arch

N/A

DW No No No No N/A EA as
defined by

arch

N/A

Even word
(same as

DW)

No No No No N/A EA as
defined by

arch

N/A

Odd word Not
naturally
aligned

No No No No N/A EA as
defined by

arch

N/A

Non-word Not
naturally
aligned

No No No No N/A EA as
defined by

arch

N/A

stvx(l) QW

QW No No No No N/A EA as
defined by

arch

N/A

DW Not
naturally
aligned

No No No No N/A EA as
defined by

arch

N/A

Even word
(same as

DW)

Not
naturally
aligned

No No No No N/A EA as
defined by

arch

N/A

Odd word Not
naturally
aligned

No No No No N/A EA as
defined by

arch

N/A

Non-word Not
naturally
aligned

No No No No N/A EA as
defined by

arch

N/A

Table 3-3. Operand Alignment Effects on Performance (Watchpoint Mode) (Sheet 2 of 9)

Power ISA
Instructions

EA
Alignment

Caching
Inhibited

Alignment
Interrupt

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on
First Page

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on

Second Page

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 56 of 450
Version 1.3

16 March 2016

stq QW

QW DSI No No No No N/A EA N/A

DW DSI Yes No Yes No N/A EA N/A

Even word
(same as

DW)

DSI Yes No Yes No N/A EA N/A

Odd word DSI Yes No Yes No N/A EA N/A

Non-word DSI Yes No Yes No N/A EA N/A

stfdp(x) QW

QW Always No No No No N/A EA N/A

DW Always Yes No Yes No N/A EA N/A

Even word
(same as

DW)

Always Yes No Yes No N/A EA N/A

Odd word Always Yes No Yes No N/A EA N/A

Non-word Always Yes No Yes No N/A EA N/A

stfd DW

QW No No No No N/A EA N/A

DW No No No No N/A EA N/A

Even word
(same as

DW)

No No No No N/A EA N/A

Odd word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA E/A first byte
in second

page

Non-word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA E/A first byte
in second

page

stfs,
stfliawx

 DW

QW No No No No N/A EA N/A

DW No No No No N/A EA N/A

Even word
(same as

DW)

No No No No N/A EA N/A

Odd word No No No No N/A EA N/A

Non-word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA E/A first byte
in second

page

Table 3-3. Operand Alignment Effects on Performance (Watchpoint Mode) (Sheet 3 of 9)

Power ISA
Instructions

EA
Alignment

Caching
Inhibited

Alignment
Interrupt

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on
First Page

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on

Second Page

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 57 of 450

stxsspx,
stxsiwx

 DW

QW No No No No N/A EA N/A

DW No No No No N/A EA N/A

Even word
(same as

DW)

No No No No N/A EA N/A

Odd word No No No No N/A EA N/A

Non-word Not
naturally
aligned

No 4K crossing No 4K crossing N/A EA E/A first byte
in second

page

stswi,
stswx

 DW

QW Always No Yes Yes No N/A EA E/A first byte
in second

page

DW Always No Yes Yes No N/A EA E/A first byte
in second

page

Even word
(same as

DW)

Always No Yes Yes No N/A EA E/A first byte
in second

page

Odd word Always No Yes Yes No N/A EA E/A first byte
in second

page

Non-word Always No Yes Yes No N/A EA E/A first byte
in second

page

stmw DW

QW Always No Yes Yes No N/A EA E/A first byte
in second

page

DW Always No Yes Yes No N/A EA E/A first byte
in second

page

Even word
(same as

DW)

Always No Yes Yes No N/A EA E/A first byte
in second

page

Odd word Always No Yes Yes No N/A EA E/A first byte
in second

page

Non-word Always Yes No Yes No N/A EA N/A

Table 3-3. Operand Alignment Effects on Performance (Watchpoint Mode) (Sheet 4 of 9)

Power ISA
Instructions

EA
Alignment

Caching
Inhibited

Alignment
Interrupt

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on
First Page

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on

Second Page

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 58 of 450
Version 1.3

16 March 2016

lxvd2x,
lxvw4x

 DW

QW No No No No N/A EA N/A

DW No 4K cross-
ing OR
32-byte

crossing L1
miss

No 4K cross-
ing OR
32-byte

crossing L1
miss

N/A EA EA + 16

Even word
(same as

DW)

No 4K cross-
ing OR
32-byte

crossing L1
miss

No 4K cross-
ing OR
32-byte

crossing L1
miss

N/A EA EA + 16

Odd word Not
naturally
aligned

No 4K cross-
ing OR
32-byte

crossing L1
miss

No 4K cross-
ing OR
32-byte

crossing L1
miss

N/A EA EA + 16

Non-word Not
naturally
aligned

No 4K cross-
ing OR
32-byte

crossing L1
miss

No 4K cross-
ing OR
32-byte

crossing L1
miss

N/A EA EA + 16

lxswx DW

QW No No No No N/A EA N/A

DW Not
naturally
aligned

No No No No N/A EA N/A

Even word
(same as

DW)

Not
naturally
aligned

No No No No N/A EA N/A

Odd word Not
naturally
aligned

No No No No N/A EA E/A first byte
in second

page

Non-word Not
naturally
aligned

No 4K cross-
ing OR
32-byte

crossing L1
miss

No 4K cross-
ing OR
32-byte

crossing L1
miss

N/A EA E/A first byte
in second

page

Table 3-3. Operand Alignment Effects on Performance (Watchpoint Mode) (Sheet 5 of 9)

Power ISA
Instructions

EA
Alignment

Caching
Inhibited

Alignment
Interrupt

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on
First Page

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on

Second Page

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 59 of 450

lxvdsx,
lxsdx

 DW

QW No No No No N/A EA N/A

DW Not
naturally
aligned

No No No No N/A EA N/A

Even word
(same as

DW)

Not
naturally
aligned

No No No No N/A EA N/A

Odd word Not
naturally
aligned

No 4K cross-
ing OR
32-byte

crossing L1
miss

No 4K cross-
ing OR
32-byte

crossing L1
miss

N/A EA EA + 4

Non-word Not
naturally
aligned

No 4K cross-
ing OR
32-byte

crossing L1
miss

No 4K cross-
ing OR
32-byte

crossing L1
miss

N/A EA EA of first
byte in sec-

ond dw

lvebx,
lvehx,
lvewx

 DW

QW No No No No N/A EA as
defined by

arch

N/A

DW No No No No N/A EA as
defined by

arch

N/A

Even word
(same as

DW)

No No No No N/A EA as
defined by

arch

N/A

Odd word No No No No N/A EA as
defined by

arch

N/A

Non-word Not
naturally
aligned

No No No No N/A EA as
defined by

arch

N/A

Table 3-3. Operand Alignment Effects on Performance (Watchpoint Mode) (Sheet 6 of 9)

Power ISA
Instructions

EA
Alignment

Caching
Inhibited

Alignment
Interrupt

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on
First Page

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on

Second Page

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 60 of 450
Version 1.3

16 March 2016

lvx(l) QW

QW No No No No N/A EA as
defined by

arch

N/A

DW Not
naturally
aligned

No No No No N/A EA as
defined by

arch

N/A

Even word
(same as

DW)

Not
naturally
aligned

No No No No N/A EA as
defined by

arch

N/A

Odd word Not
naturally
aligned

No No No No N/A EA as
defined by

arch

N/A

Non-word Not
naturally
aligned

No No No No N/A EA as
defined by

arch

N/A

lq QW

QW DSI No No No No N/A EA N/A

DW DSI Yes No Yes No N/A EA N/A

Even word
(same as

DW)

DSI Yes No Yes No N/A EA N/A

Odd word DSI Yes No Yes No N/A EA N/A

Non-word DSI Yes No Yes No N/A EA N/A

lfdp(x) DW

QW Always No No No No N/A EA N/A

DW Always Yes No Yes No N/A EA N/A

Even word
(same as

DW)

Always Yes No Yes No N/A EA N/A

Odd word Always Yes No Yes No N/A EA N/A

Non-word Always Yes No Yes No N/A EA N/A

dcbz DW

QW Always No No No No N/A EA N/A

DW Always No No No No N/A EA N/A

Even word
(same as

DW)

Always No No No No N/A EA N/A

Odd word Always No No No No N/A EA N/A

Non-word Always No No No No N/A EA N/A

Table 3-3. Operand Alignment Effects on Performance (Watchpoint Mode) (Sheet 7 of 9)

Power ISA
Instructions

EA
Alignment

Caching
Inhibited

Alignment
Interrupt

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on
First Page

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on

Second Page

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 61 of 450

lqarx QW

QW DSI No No No No N/A EA N/A

DW DSI Yes No Yes No N/A EA N/A

Even word
(same as

DW)

DSI Yes No Yes No N/A EA N/A

Odd word DSI Yes No Yes No N/A EA N/A

Non-word DSI Yes No Yes No N/A EA N/A

ldarx DW

QW DSI No No No No N/A EA N/A

DW DSI No No No No N/A EA N/A

Even word
(same as

DW)

DSI No No No No N/A EA N/A

Odd word DSI Yes No Yes No N/A EA N/A

Non-word DSI Yes No Yes No N/A EA N/A

lwarx DW

QW DSI No No No No N/A EA N/A

DW DSI No No No No N/A EA N/A

Even word
(same as

DW)

DSI No No No No N/A EA N/A

Odd word DSI No No No No N/A EA N/A

Non-word DSI Yes No Yes No N/A EA N/A

lharx DW

QW DSI No No No No N/A EA N/A

DW DSI No No No No N/A EA N/A

Even word
(same as

DW)

DSI No No No No N/A EA N/A

Odd word DSI No No No No N/A EA N/A

halfword DSI No No No No N/A EA N/A

non half-
word

DSI Yes No Yes No N/A EA N/A

Table 3-3. Operand Alignment Effects on Performance (Watchpoint Mode) (Sheet 8 of 9)

Power ISA
Instructions

EA
Alignment

Caching
Inhibited

Alignment
Interrupt

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on
First Page

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on

Second Page

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 62 of 450
Version 1.3

16 March 2016

lxsspx, lxsi-
wax, lxsi-
wzx

 DW

QW No No No No N/A EA N/A

DW No No No No N/A EA N/A

Even word
(same as

DW)

No No No No N/A EA N/A

Odd word No No No No N/A EA N/A

Non-word Not
naturally
aligned

No 4K cross-
ing OR
32-byte

crossing L1
miss

No 4K cross-
ing OR
32-byte

crossing L1
miss

N/A EA E/A first byte
in second

page

lswi, lswx DW

QW Always No Yes Yes No N/A EA N/A

DW Always No Yes Yes No N/A EA N/A

Even word
(same as

DW)

Always No Yes Yes No N/A EA N/A

Odd word Always No Yes Yes No N/A EA N/A

Non-word Always No Yes Yes No N/A EA N/A

lmw DW

QW Always No Yes Yes No N/A EA N/A

DW Always No Yes Yes No N/A EA N/A

Even word
(same as

DW)

Always No Yes Yes No N/A EA N/A

Odd word Always No Yes Yes No N/A EA N/A

Non-word Always Yes Yes Yes No N/A EA N/A

Table 3-3. Operand Alignment Effects on Performance (Watchpoint Mode) (Sheet 9 of 9)

Power ISA
Instructions

EA
Alignment

Caching
Inhibited

Alignment
Interrupt

BE:
Takes

Alignment
Interrupt?

BE:
Handled

by
Microcode?

LE:
Takes

Alignment
Interrupt?

LE:
Handled

by
Microcode?

DAWR
Match on

QW or DW

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on
First Page

DAR Value
if DSI

(non-DAWR)
or Alignment
Interrupt on

Second Page

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 63 of 450

3.1.4.3 Fixed-Point Load Instructions

Most forms of unaligned load operations are executed entirely in hardware. If a basic load operation crosses
a page boundary, and either page translation signals an exception condition, then when the interrupt occurs,
it appears as though none of the load instruction has executed. This is not always the case for load multiple or
load string instructions.

The “Load Algebraic”, “Load with Byte Reversal,” and “Load with Update” instructions might have greater
latency than other load instructions. These instructions are implemented as a sequence of internal opera-
tions. Due to the dynamic scheduling and out-of-order execution capability of the processor, these effects are
somewhat minimized. Also note that although these instructions are broken up in this manner, the effects are
never visible from a programming model perspective.

With the exception of the “Load and Reserve” and “Load Quadword” instructions, any load from storage
marked caching inhibited that is not aligned causes an alignment interrupt. The “Load and Reserve” and
“Load Quadword” instructions instead cause a data storage interrupt when they attempt to access a caching
inhibited page regardless of their alignment.

An attempt to execute a non-quadword-aligned lq or lqarx instruction to a cacheable address causes an
alignment interrupt.

See Section 3.1.4 Storage Access Alignment Support Overview on page 44 for details.

3.1.4.4 Fixed-Point Store Instructions

Most forms of unaligned store operations are executed entirely in hardware. If a store operation crosses a
page boundary and the second page translation signals an exception condition, then after the interrupt is
taken, it appears as though none of the storage updates have occurred to either page. This is not always the
case for store multiple or store string instructions.

With the exception of the “Store Conditional” and “Store Quadword” instructions, any store to storage marked
caching inhibited that is not aligned causes an alignment interrupt. The “Store Conditional” and “Store Quad-
word” instructions instead cause a data storage interrupt when they attempt to store to a caching inhibited
page regardless of their alignment.

An attempt to execute a non-quadword-aligned stq or stqcx. instruction to a cacheable address causes an
alignment interrupt.

See Section 3.1.4 Storage Access Alignment Support Overview on page 44 for details.

3.1.4.5 Fixed-Point Load and Store Multiple Instructions

Note: These instructions are provided for compatibility with legacy software. Software should use a
sequence of load or store instructions for optimal performance.

The lmw instruction is executed in a manner such that up to two registers are loaded each cycle. Similarly,
the stmw instruction is executed in a manner such that up to two registers are stored each cycle. The 40-
entry store queue can accept up to two 8-byte stores per cycle; the cache can accept one 8-byte store per
cycle. Because these instructions are emulated through the use of microcoded templates, after a small start-
up penalty, they are processed at a rate of up to two registers per cycle.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 64 of 450
Version 1.3

16 March 2016

Most forms of lmw and stmw instructions, even those that cross page and segment boundaries, are
executed entirely in hardware. These instructions and the individual storage accesses associated with the
instructions are not atomic. If a stmw crosses a page boundary, and the second page translation signals an
exception condition, then after the interrupt is taken, it appears as though none, some, or all of the accesses
to the first page have occurred, and none of the accesses to the second page have occurred. On the other
hand, for the lmw instruction that cross a page boundary where the second page translation signals an
exception condition, some of the target registers may not be updated.

An attempt to execute a non-word-aligned lmw or stmw causes an alignment interrupt.

An attempt to execute an lmw or stmw to storage marked cache inhibited causes an alignment interrupt.

See Section 3.1.4 Storage Access Alignment Support Overview on page 44 for details.

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts).
However, the POWER8 core will not process an asynchronous interrupt in the middle of one of these instruc-
tions.

3.1.4.6 Fixed-Point Move Assist Instructions

Note: These instructions are provided for compatibility with legacy software. Software should use a
sequence of load or store instructions for optimal performance.

The load string word instructions are executed in a manner such that up to two registers are loaded each
cycle. Similarly, store string word instructions are executed in a manner such that up to two registers are
stored each cycle. The 40-entry store queue can accept up to two 8-byte stores per cycle; the cache itself can
only accept one 8-byte store per cycle.

Because the immediate forms of these instructions are implemented using microcoded templates, they incur
a small start-up penalty. The X-form of the instructions contains a dependency on bits in the fixed-point XER
register. If the dependent move assist x-form instruction is dispatched too soon after the instruction updating
the XER, it will be flushed and re-executed.

Most “load string” and “store string” instructions that cross page or segment boundaries are executed entirely
in hardware. If a “store string” crosses a page boundary and the second page translation signals an exception
condition, then after the interrupt is taken, it appears as though none, some, or all of the accesses to the first
page completed, and none of the accesses to the second page have occurred. On the other hand, for “load
string” instructions that cross a page boundary where the second page translation signals an exception condi-
tion, all of the target registers have an undefined value.

If the storage operand of an lswi is word aligned, the accesses are performed in an optimal manner. If the
operands are so aligned, the accesses are performed in an optimal manner if the operand resides entirely
within a 64-byte aligned block that is resident in the L1 D-cache or resides entirely within a 32-byte aligned
block (which either hits or misses in the L1 D-cache). Although other “unaligned” string operations are
supported in hardware, they can cause machine flushes and require long sequences of microcode. As a
result, these types of “unaligned” string instructions might have significantly longer latencies. For additional
information, see Table 10-16 Instruction Latencies and Throughputs on page 236.

An attempt to execute an lswi, lswx, stswi, or stswx instruction to storage marked cache inhibited causes
an alignment interrupt.

See Section 3.1.4 Storage Access Alignment Support Overview on page 44 for details.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 65 of 450

The architecture allows these instructions to be interrupted by certain types of asynchronous interrupts
(external interrupts, decrementer interrupts, machine check interrupts, and system reset interrupts).
However, the POWER8 core will not process an asynchronous interrupt in the middle of one of these instruc-
tions.

The architecture describes some preferred forms for the use of load and store string instructions. These
preferred forms have no effect on the performance of the instructions in the POWER8 processor.

3.1.4.7 Integer Select (ISEL)

The POWER8 core implements the integer select instruction as defined in the Power ISA.

3.1.4.8 Fixed-Point Logical Instructions

The architecture defines the preferred NOP to be ‘ori 0,0,0’. In the POWER8 processor, this NOP form is
recognized by the hardware and allowed to complete without taking any execution resources. This makes the
instruction valuable for padding other instructions to achieve better alignment or better separation

3.1.4.9 Move To/From Special Purpose Register (SPR) Instructions

The POWER8 core supports problem state read access from the following optional special purpose registers
(SPRs):

• PMC1 - Performance Monitor Counter 1
• PMC2 - Performance Monitor Counter 2
• PMC3 - Performance Monitor Counter 3
• PMC4 - Performance Monitor Counter 4
• PMC5 - Performance Monitor Counter 5
• PMC6 - Performance Monitor Counter 6
• MMCR0 - Monitor Mode Control Register 0
• MMCR1 - Monitor Mode Control Register 1
• SIAR - Sampled Instruction Address Register
• SDAR - Sampled Data Address Register

3.1.4.10 Move to Condition Register Fields Instruction

The architecture warns that updating a subset of the CR fields on an mtcrf instruction might have worse
performance than updating all of the fields. In the POWER8 processor, both the mtcrf instruction and the
mfcr instruction are emulated through the use of microcode templates. For best performance, software must
use the single-field variants (mtocrf and mfocrf) of these instructions as described in the Power ISA.

Content-addressable memory

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 66 of 450
Version 1.3

16 March 2016

3.1.4.11 Fixed-Point Invalid Forms and Undefined Conditions

The results of executing an invalid form of a fixed-point instruction or an instance of a fixed-point instruction
for which the architecture specifies that some results are undefined are described below, for the cases in
which executing an instruction does not cause an exception. The list below describes the results of executing
invalid instruction forms on the POWER8 processor core.

• Instruction with Reserved Fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved
bits are ‘1’ is the same as if the bits were ‘0’.

• Load with Update Instructions (RA = 0)
EA is placed into R0.

• Load with Update Instructions (RA = RT)
The storage operand addressed by EA is accessed. The displacement field is added to the data returned
by the load and placed into RT.

• Load Quadword Instruction (RTp is odd and RTp = RA)
The POWER8 processor always takes a hypervisor emulation assistance interrupt anytime anytime RTp
is an odd register, RTp = RA (including when RA = 0) or RTp = RB for lq.

• Load Quadword And Reserve Indexed Instruction (RTp is odd, RTp = RA, RTp = RB)
The POWER8 processor always takes a hypervisor emulation assistance interrupt anytime RTp is an odd
register, RTp = RA (including when RA = 0) or RTp = RB for lqarx.

• Load Multiple Instructions (RA in the range of registers to be loaded)
If an exception (for example, data storage or external) causes the execution of the instruction to be inter-
rupted, the instruction is restarted, RA has been altered by the previous partial execution of the instruc-
tion, and RA is less than or greater than ‘0’, the new contents of RA are used to compute EA.

• Load Multiple Instructions (causing a misaligned access)
For a load multiple word instruction, if the storage operand specified by EA is not a multiple of 4, an align-
ment interrupt is taken.

• Load String Instructions (zero length string)
RT is not altered.

• Load String Instructions (RA and/or RB in the range of registers to be loaded)
If RA and/or RB is in the range of registers to be loaded, the results are as follows.
Indexed Form: If RA = 0, let Rx be RB; otherwise let Rx be the register specified by the smaller of the
two values in instruction fields RA and RB. If RT = Rx, no registers are loaded; otherwise, registers RT
through RX - 1 are loaded as specified in the architecture (that is, only part of the storage operand is
loaded).
Immediate Form: If RA = 0, the instruction is executed as if it were a valid form. If RA = RT, no registers
are loaded; otherwise registers RT through RA - 1 are loaded as if the instruction were a valid form but
specifying a shorter operand length.

• Store with Update Instructions (RA = 0)
EA is placed into R0.

• Store Quadword and Store Quadword Conditional Instructions (RSp is odd)
For the stq and stqcx. instructions, the contents of RSp are stored into the words of storage addressed
by EA and EA + 4 respectively. If RSp is odd, the low-order bit of the register number is considered to be
‘0’ such that RSp - 1 and RSp are stored into the words in storage addressed by EA and EA + 4
respectively.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 67 of 450

• subfic, subfc, and subfco Instructions and their Rc = 1 forms
If RA[0:15] = x‘0000’, XER[CA] reflects the carry-out of bit 16; otherwise, it reflects the carry-out of bit 40.

• divw, divwo, divwu, and divwuo Instructions
RT[0:31] is set to x‘00000000’.

• mulhw and mulhwu Instructions
RT[0:31] contains the same result as RT[32:63].

• Divide Instructions (divide by zero)
If the divisor is 0, RT is set to zero. If Rc = ‘1’ also, CR0 is set to ‘0010’.

• Trap Word Immediate and Trap Word Instructions (TO = (0b11110 | 0b11100))

• Move To/From Special Purpose Register Instructions
Table 3-8 on page 87 describes the read/write mtspr behavior for an SPR value that is not defined for the
implementation.

• Move From Time Base Instruction
The mftb instruction is treated as an alias for the “mfspr Rx, 268” instruction. The results are the same as
when executing an “mfspr Rx, 268” instruction.

• Move From Condition Register Instruction
The entire CR is copied into RT[32:63]. RT[0:31] is set to zero.

• Move From One Condition Register Field Instruction (only 1 bit of FXM set to ‘1’)
Let n be the bit set to ‘1’ in the FXM field. The CR field n is copied to RT[(4 × n + 32):(4 × n + 35)] and
RT[(4 × n + 36):(4 × n + 39)]. The remaining bits are set to zero.

• Move From One Condition Register Field Instruction (multiple bits of FXM set to ‘1’)
Let n be the first bit (from left to right) set to ‘1’ in the FXM field. The CR field n is copied to
RT[(4 × n + 32):(4 × n + 35)] and RT[(4 × n + 36):(4 × n + 39)]. The remaining bits are set to zero.

3.2 Floating-Point Processor (FP, VMX, and VSX)

The POWER8 VSU contains four double-precision floating-point units. Each of these units is optimized for
fully pipelined double-precision multiply-add functionality. In addition, each unit is capable of performing the
floating-point divide and square root instructions. The complex integer instructions from the VMX architecture
are also executed on the VSU datapath.

The POWER8 VSU implements the VSX architecture, specifying 2-way DP or 4-way SP operations. Depen-
dent floating-point instructions have a minimum issue-to-issue interval of six cycles. The vector SP
throughput has improved because it is possible to execute two 4-way SIMD SP instructions per cycle.

Legacy BFU and VMX architectures are also fully supported in the POWER8 VSU.

3.2.1 Vector Single-Precision Bandwidth

In the POWER8 core, the double-precision FPU supports simultaneous execution of two vector single-preci-
sion operations. This increases the single-precision bandwidth of the POWER8 core to 16 FLOPs per cycle.

In the POWER8 core, the convert and estimate instructions are executed in a fully pipelined manner, as well
as the increased bandwidth of the multiply-add and move instructions. From the floating-point instructions,
only the divide and square-root instructions cannot be started every cycle.

Vector and scalar unit

floating-point unit

double-precision

single-precision

single-instruction, multiple-data

Binary floating-point unit

floating-point operations per second

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 68 of 450
Version 1.3

16 March 2016

The compares, min/max, and test-for-software divide/square-root instructions are now executed on the vector
integer (XS) pipeline to take advantage of the shorter latency. Also, the move-from-FPSCR and move-to-
FPSCR instructions are separated from the floating-point datapath.

3.2.2 IEEE Compliance

The POWER8 implementation of binary floating-point (BFP), decimal floating-point (DFP) and vector-scalar
floating-point (VSX) architecture complies with the IEEE P754-2008 standard.

In the POWER8 processor core, the setting of the non-IEEE (FPSCR[NI]) bit has no effect on the instruction
execution performance nor the results of the instruction.

3.2.3 Divide and Square-Root Latencies

All divide and square-root instructions can be executed independently on both pipes. The latencies of the
instructions are listed in Table 3-4.

If the result of a double-precision divide instruction (fdiv, xsdivdp, xvdivdp) is tiny, an additional iteration is
necessary to denormalize the result. This increases the instruction latency by six cycles. For all other instruc-
tions, the latency does not depend on the input operands. For additional information, see Table 10-16 Instruc-
tion Latencies and Throughputs on page 236.

Table 3-4. Latencies of Floating-Point Divide/Square-Root Instructions

Instruction Issue-to-Finish Dependent Operations
(issue-to-issue)

Next Independent
Multicycle Operation on

Same Pipe
(issue-to-issue)

Number of Free Floating-
Point Slots until Next
Multicycle Can Start

fdiv
xsdivdp
xvdivdp

35 32 26 18/26

fdivs
xsdivsp

29 26 20 14/20

xvdivsp 31 28 22 12/22

fsqrt
xssqrtdp
xvsqrtdp

46 43 37 26/37

fsqrts
xssqrtsp

34 31 25 19/25

xvsqrtsp 35 32 26 14/26

3.2.4 Early Forwarding Conditions

The back-to-back latency for all single-cycle floating-point instructions is six cycles. The 6-cycle result
forwards the correct result only if both the result and the input operand are compatible floating-point values.
For the following cases, the consumer instruction would misunderstand the data; instead it finishes with a
flush request, triggering the ISU to eventually repeat the dependent instruction with operands from the
register file:

• The forwarded result is the result of a convert-float-to-integer instruction.

• The forwarded result is used as an input operand for a convert-integer-to-float instruction.

Instruction sequencing unit

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 69 of 450

• The forwarded result is a 32-bit floating-point value, but the input operand is a 64-bit floating-point value
(for example, xscvdpsp to fadd).

• The forwarded result is a 64-bit floating-point value, but the input operand is a 32-bit floating-point value
(for example, xvadddp to xvcvspuxds).

The previous scenarios are rare in real programs, because they require mixing of incompatible data types.
Hence, the performance loss is acceptable.

Note: It might make sense to execute a convert-float-to-integer instruction followed by a dependent convert-
integer-to-float instruction. Because this also causes a flush request if the issue-to-issue-interval is six cycles,
this scenario must be avoided by the compiler. (If the purpose is to round a floating-point number to an inte-
gral value, one of the atomic round-to-integral-value instructions must be used.)

There are out-of-range scenarios where the result of the instruction is not defined by the ISA. Because expo-
nent MSBs might be dropped while packing the result into the target format, the value on the 6-cycle result
(before packing) can be inconsistent with the value written to the target register (after packing). To guarantee
that program results are independent of the issue behavior, the 6-cycle result is invalidated if there is such an
inconsistency risk. Instructions that consume a result below via the 6-cycle result bus will finish with a flush
request:

• The result of xscvdpsp with FPSCR[UE] = 1 and 0 < |XB| < 2-255 (an underflow will occur).

• The result of xscvdpsp with FPSCR[OE] = 1 and |XB| >= 2257 (an overflow will occur).

Instructions that consume the data below via the 6-cycle result might finish with a flush request. Whether or
not it actually happens depends on the exponent value of the unnormalized result.

• The result of a single-precision arithmetic instruction with at least one out-of-range input operand,
FPSCR[UE] = 1, and an underflow exception occurs.

• The result of a single-precision arithmetic instruction with at least one out-of-range input operand,
FPSCR[OE] = 1, and an overflow exception occurs.

3.2.5 Floating-Point Exceptions

Precise floating-point exceptions are provided whenever either of the floating-point enabled exception mode
bits (MSR[FE0], MSR[FE1]) are set. In all cases, the floating-point instructions are executed out-of-order (as
required), and any resulting exceptions are sorted out at completion time. In some cases, due to the group-
oriented instruction tracking scheme used, when an exception is detected, the hardware flushes the pipeline
and re-dispatches the instructions individually to provide the precise exception. Because this only happens if
an interrupt is to be taken, it does not represent a measurable slowdown in performance.

3.2.6 Floating-Point Load and Store Instructions

Most forms of unaligned floating-point storage accesses are executed entirely in hardware. In the POWER8
core, the load/store operations have been improved such that byte-aligned, 16-byte VSX load/store opera-
tions are executed efficiently in hardware. However, care must be taken that the unaligned VSX 16-byte
storage accesses do not cross a 4K-page boundary, because doing so results in a micro-coded implementa-
tion with slower execution time. See Section 3.1.4 Storage Access Alignment Support Overview on page 44
for details.

most-significant byte

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 70 of 450
Version 1.3

16 March 2016

3.2.7 Heterogeneous Precision Arithmetic

The following instructions are referred to as scalar single-precision arithmetic instructions:

• fadds[.], xsaddsp, fsubs[.], xssubsp, fmuls[.], xsmulsp

• fmadds[.], xsmadd[am]sp, fmsubs[.], xsmsub[am]sp

• fnmadds[.], xsnmadd[am]sp, fnmsubs[.], xsnmsub[am]sp

• fsqrts[.], xssqrtsp, fdivs[.], xsdivsp

• fres[.], xsresp, frsqrtes[.], xsrsqrtesp

3.2.7.1 NaN Propagation

If a single-precision arithmetic instruction propagates a NaN where any of the fraction bits [24:52] is nonzero,
the resulting QNaN has all of the fraction bits [24:52] cleared to zero.

3.2.7.2 Square Root Overflow and Underflow

Due to the compacting nature of the square-root operation, the instructions fsqrts, xssqrtsp, frsqrtes, and
xsrsqrtesp cannot underflow or overflow if their operands are representable in single-precision format.
However, if the operand is not representable in single-precision format, an underflow or overflow can occur.
This will be recorded in the FPSCR.

3.2.7.3 Hardware Behavior on Enabled Underflow and Enabled Overflow Exception

If FPSCR[UE] is enabled and an underflow occurs, the contents of the result register and FPSCR status are
not defined for scalar SP instructions. The hardware takes the following actions:

1. Underflow exception is set, FPSCR[UX] = ‘1’.

2. The exponent of the normalized intermediate result is adjusted by adding 192.

3. The double-precision bias of 1023 is added to the exponent.

4. The biased exponent is reduced to 11 bits by ANDing with x‘7FF’.

5. The adjusted rounded result is placed into the target FPR.

6. FPSCR[FPRF] is set to indicate Normalized Number.

If FPSCR[OE] is enabled and an overflow occurs, the contents of the result register and FPSCR status are
not defined for scalar SP instructions. The hardware takes the following actions:

1. Overflow exception is set, FPSCR[OX] = ‘1’.

2. The exponent of the normalized intermediate result is adjusted by subtracting 192.

3. The double-precision bias of 1023 is added to the exponent.

4. The biased exponent is reduced to 11 bits by ANDing with x‘7FF’.

5. The adjusted rounded result is placed into the target FPR.

6. FPSCR[FPRF] is set to indicate Normalized Number.

Not a Number

quiet Not a Number

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 71 of 450

3.2.8 Handling of Denormal Single-Precision Values in Double-Precision Format

3.2.8.1 Producing Single-Precision Denorms

If a scalar single-precision instruction produces a denormal result, the FPU is not able to normalize the data
after rounding, which is needed to compute the architected register file format. Instead the FPU sets the
exponent bits to 897 = x‘381’, corresponding to an implied bit magnitude of 2-126, and returns a denormal
fraction. Additionally, a flag in the result register is set, which marks the 64-bit result single-precision
denormal. This flag is called “dirty”. Dirty results can be produced by any of the following instructions:

• All scalar SP arithmetic instructions as listed above.

• The round-to-single-precision instructions frsp[.] and xsrsp.

• The load single-precision instructions lfs and lxsspx.

• The floating-point select instruction fsel[.].

Note: If an enabled underflow exception occurs, the arithmetic instructions, as well as the rounding instruc-
tions, return a normalized fraction. Hence, if FPSCR[UE] is set, an arithmetic or rounding instruction never
sets the ‘dirty’ flag.

The fsel[.] instruction only produces a dirty result if the selected operand was dirty. Execution of fsel[.] does
not depend on FPSCR[UE].

A single-precision load instruction always sets the dirty flag if single-precision denormal data are loaded into
the register file regardless of FPSCR[UE].

Any instruction not listed previously cannot produce dirty results.

3.2.8.2 Consuming Single-Precision Denorms

The majority of the BFU and VSX double-precision format operations, including all stores, can handle dirty
input operands and perform the required normalizing on-the-fly. Thus, inputting dirty data to one of these
instructions has no side effect.

To ensure that a register does not contain dirty data, it is recommended to move the content of the register to
itself using the VSX DP copy sign instruction

xvcpsgndp xi, xi, xi

This instruction normalizes a potentially dirty input and writes it back to the register file in 64-bit double-preci-
sion format.

If an instruction that cannot handle dirty input operands sees a dirty input operand, it generates a denormal
input exception that results in a soft patch interrupt to the hypervisor with HSRR1[43] = ‘1’. The hypervisor
can use the contents of the HEIR to examine the instruction that caused the interrupt and perform the previ-
ously mentioned xvcpsgndp for each of the source registers for that instruction. Alternatively, the hypervisor
can simply perform the previous xvcpsgndp for all 64 VSR Registers. In either case, after the dirty data has
been reformatted by the hypervisor software, the instruction can then be re-executed to produce the result.
The VSX Scalar SP instructions, introduced in the POWER8 processor, can also write SP denorms into VSR
Registers 0 - 31.

single precision

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 72 of 450
Version 1.3

16 March 2016

Instructions without Support of Dirty Inputs

The following instructions do not support dirty inputs and generate denormal input exceptions whenever any
of the operands is marked dirty.

• Any instruction operating on 32-bit operands

• Any convert from integer

• The move to FPSCR instruction mtfsf[.]

• Any compare, test-for-software, or min/max instructions

• Any extract instructions: fmrg[oe]w, mfvsrd, mfvsrwz

• Any DFU instructions

• Any VSX fixed-point arithmetic, logical, or permute instruction

If it is expected that a scalar single-precision workload produces denormal results quite often and also does
single-precision compares frequently, it is recommended to precede the compare instructions with a normal-
izing instruction that does nothing, for example by using fmr or xscpsgndp. Alternatively, consider using
scalar DP or vector SP code, where result precision and result format always match.

Table 10-17 Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm on
page 258provides a complete list of VSU instructions that trigger an exception on consumption of a dirty
operand.

3.2.9 Floating-Point Invalid Forms and Undefined Conditions

The results of executing an invalid form of a floating-point instruction or an instance of a floating-point instruc-
tion for which the architecture specifies that some results are undefined are described below for the cases
when executing an instruction does not cause an exception.

• Scalar single-precision instructions with operands not representable in single-precision format
See Section 3.2.7 Heterogeneous Precision Arithmetic on page 70.

• Instruction with reserved fields
Bits in reserved fields are ignored. The results of executing an instruction in which one or more reserved
bits are ‘1’ is the same as if the bits were ‘0’.

• Load or Store Floating-Point with Update instructions (RA = 0)
EA is placed into R0.

• Floating-Point Store Single instructions (exponent < 874 and FRS[9:31] <> 0)
The value placed in storage is a 0 with the same sign as the value in the register.

• Scalar Floating-Point instructions
VSR64:127 is set to x‘0000_0000_0000_0000’.

• Scalar Convert to Integer Word instructions (xscvdpuxws, xscvdpsxws, fctiwuz, fctiwz, ctiwu, fctiw)
VSR[0:31] is set to VSR[32:63].

• VSX Scalar Convert From Double-Precision to Single-Precision (xscvdpsp, xscvdpspn)
VSR[32:63] is set to VSR[0:31].

• Scalar Convert to Integer instructions
FPSCR[FPRF] is set to ‘00000’.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 73 of 450

• VSX Vector Convert From Double-Precision to Single-Precision (xvcvdpsp),
VSX Vector Convert Double-Precision to Integer Word (xvcvdpsxws, xvcvdpuxws),
VSX Vector Convert From Integer Doubleword to Single-Precision (xvcvsxdsp, xvcvuxdsp)

VSR[32:63] is set to VSR[0:31].
VSR[96:127] is set to VSR[64:95].

• Move from FPSCR instruction
FRT[0:63] is set to FPSCR[0:63] with the first 29 bits set to zero.

• Scalar Reciprocal Estimate instructions:
(fre, fres, xsredp, xsresp, frsqrte, frsqrtes, xsrsqrtep, xsrsqrtesp)
FPSCR[FR] and FPSCR[FI] are set to ‘0’ and FPSCR[XX] is unchanged, even if an overflow exception
occurs.

• VSX Vector Floating-Point Reciprocal Estimate instructions: xvredp, xvresp, xvrsqrtedp, xvrsqrtesp
FPSCR[XX] is unchanged, even if an overflow exception occurs.

• Disabled Overflow Exception (OX = ‘1’, OE = ‘0’)
For divide and square root instructions, FPSCR[FR] is set to ‘1’ if the result is rounded to ±∞, and set to ‘0’
if the result is rounded to the largest representable number. For Scalar Reciprocal Estimate instructions,
FPSCR[FR] is set to ‘0’. For all other instructions, FPSCR[FR] is set to ‘1’ if a disabled overflow exception
occurs.

3.3 Optional Facilities and Instructions

None.

3.4 Little Endian

The POWER8 core supports true little endian. Byte swapping is performed before data is written to the
I-cache and before data is fetched into the execution units; that is, between the D-cache and the execution
units (for example, GPR, FPR/VR/VSR).

The load and store multiple instructions and the move assist instructions are not supported in little-endian
mode. Attempting to execute any of these instructions in little-endian mode causes the system alignment
error handler to be invoked.

3.5 Book II - Virtual Environment Architecture

3.5.1 Classes of Instructions

3.5.1.1 Optional Instructions

None.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 74 of 450
Version 1.3

16 March 2016

3.5.2 Cache

The POWER8 chip contains three levels of cache hierarchy. All the caches (L1 I-cache, L1 D-cache, and the
L2 and L3 caches) are dynamically shared among the eight threads. A cache block might be installed by one
thread and used by the other threads. The basic coherence block size for the POWER8 core is 128 bytes.

The POWER8 chip automatically maintains the coherency of all data cached in these caches. The L1 cache
employs Harvard cache organization, with separate L1 I-cache and L1 D-cache. L2 and L3 caches are
unified. Because some levels of the cache hierarchy contain both instructions and data, when an instruction
cache reload request is serviced by the L2 and/or the L3 caches, it is done so in a coherent manner.

The processor keeps the instruction storage consistent with the data storage. All cache lines in the L1 I-cache
and L1 D-cache are also present in the L2 cache (inclusive property maintained).

The L1 I-cache is 8-way set associative and is indexed with five effective address bits (EA[51:55]). A partic-
ular physical block of memory with a given real address can be found in one of two positions in the L1
I-cache. The tag comparison associated with lookups in this cache (as well as all other caches in the system)
are done using physical addresses, so that there are no synonym or alias hazards that must be explicitly
handled by the system software.

The L1 D-cache is 8-way set associative and is indexed with six effective address bits (EA[51:56]). A partic-
ular physical block of memory with a given real address can only be found at a particular location in the L1
D-cache. On each access, the tag comparison is done with the physical address. On a cache miss, the cache
reload mechanism searches the other seven related sets to determine if the required real address block is
located elsewhere in the cache, and if so, it appropriately eliminates these copies.

In addition to maintaining caches, the POWER8 chip also includes several types of queues that act as logical
predecessors and extensions to the caches. In particular, the machine contains store queues for holding
store data above the caches, cast-out queues for holding modified data that has been pushed out of the
caches (by the replacement algorithm, cache control instructions, or snoop requests), and others. All of these
queues are maintained coherent by the hardware. In general, their presence should not be observable by
either software or system hardware.

3.5.3 Data Prefetch

The POWER8 core provides an aggressive hardware-based data prefetching engine that is designed to work
well for stride-one technical workloads with up to 16 streams. The 16 streams can be dynamically shared
among the eight threads, with a sharing policy described elsewhere in more details. The POWER8 core
implements enhanced data prefetching (edcbt instruction). For enhanced data prefetching, each thread can
employ up to sixteen software initiated streams in ST mode. In SMT2 mode, the sixteen entries are shared
between the two threads. In SMT4 mode, there are two groups of eight entries, and each group is shared
between two threads. In SMT8 mode, there are four groups of four entries, and each group is shared between
two threads

The POWER8 core also supports instruction cache block touch (icbt) by mapping it to dcbtst to prefetch into
the L2 cache.

Another feature of the POWER8 core is the DSCR[58] bit that turns off hardware load-stream prefetching that
can be accessed in problem state.

Central Electronics Complex

single thread

simultaneous multithreading

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 75 of 450

3.5.4 Effect of Operand Placement on Performance

In general, the POWER8 core provides excellent performance for storage accesses to naturally aligned
boundaries (that is, to the boundaries defined by the operand size). In addition, the POWER8 core provides
excellent hardware support for most unaligned storage accesses cases. In particular, cacheable load opera-
tions within 128-byte aligned sections of memory that hit in the L1 D-cache are performed at full speed inde-
pendent of address alignment. Note that many storage accesses that cross page boundaries and segment
boundaries are performed by the hardware. See Section 3.1.4 Storage Access Alignment Support Overview
on page 44 for details.

3.5.5 Storage Model

The POWER8 core supports:

• Coherence block size of 128 bytes

• Weakly consistent access ordering of stores and loads per the Power ISA Book II, unless the special
WIMG encoding designating all accesses to specific pages as being strongly ordered (SAO) is used to
translate the access.

• Transactional memory accesses are performed and ordered as described in the Power ISA.

3.5.5.1 Atomicity

The POWER8 core is fully compliant with the architectural requirement for single-copy atomicity on naturally
aligned storage accesses. This includes the quadword data atomicity associated with the lq, lqarx, stq, and
stqcx. instructions. Furthermore, transactional mode accesses executed by a given thread appear to execute
atomically to all other threads in the system (assuming the transaction succeeds).

3.5.5.2 Vector Element Atomicity

The Power ISA does not require vector accesses (VMX or VSX) be treated as atomic. However, the
POWER8 processor does treat each element (word or doubleword) of VSX vector load and store instructions
as an atomic access provided each element is naturally aligned.

3.5.5.3 Transactional Memory

The POWER8 processor supports Transactional Memory as described in the Power ISA.

The Transaction Exception and Status Register (TEXASR) is used to record various failure conditions that
are described in the Power ISA. In addition, TEXASR[15] is used to specify various implementation-specific
transaction failure causes that are not architected. The POWER8 processor sets TEXASR[15]=’1’ for the
following reasons (implementation-specific transactional failure causes):

• Instruction fetch to caching-inhibited page in transactional mode.

• Recovery in transactional or suspend mode.

• Quiesce request in transaction or suspend mode.

The persistent bit is set to ‘0’ for all of the above cases.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 76 of 450
Version 1.3

16 March 2016

3.5.5.4 Storage Access Ordering

The architecture defines a weakly ordered storage model for most types of storage access scenarios. For
these cases, the POWER8 core takes advantage of this relaxed requirement to achieve better performance
through out-of-order instruction execution and out-of-order bus transactions. As a result, if strongly-ordered
storage accesses are required, software must use the appropriate synchronizing instruction (sync, ptesync,
eieio, or lwsync) to enforce order explicitly, or perform these accesses to regions marked with attributes that
require the hardware to enforce strong ordering.

The POWER8 core employs the Real Mode Storage Control (RMSC) facility. Therefore, stores to storage
marked as non-guarded, can be performed out-of-order, if the access is to well-behaved memory, as speci-
fied in the Real Mode Storage Control facility. Otherwise, stores to storage marked as guarded, cannot be
performed out-of-order.

3.5.6 Atomic Updates and Reservations

The reservation granule size in the POWER8 core is 128 bytes.

There is at most one reservation per thread at any point in time.

3.5.7 Storage Control Instructions

3.5.7.1 Overview of Key Aspects of Storage Control Instructions

In the POWER8 core, all cache control instructions operate on aligned 128-byte sections of storage. Table 3-5
summarizes many of the key aspects of the storage control instructions.

Table 3-5. Storage Control Instructions (Sheet 1 of 2)

Aspect
Book II Cache Instructions

icbi dcbt dcbtst dcbz dcbst dcbf/dcbfl

Granularity 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes 128 bytes

Semantic checking load
(DSI on storage

exception)

load
(NOP on storage

exception)

load
(NOP on storage

exception)

store
(DSI on storage

exception)

load
(DSI on storage

exception)

load
(DSI on storage

exception)

“r” bit update yes yes yes yes yes yes

“c” bit update no no no yes no no

L1 I-cache
effect

see
Section 3.5.7.2

on page 77

none none none none none

L1 D-cache effect none see
Section 3.5.7.4

on page 77

see
Section 3.5.7.4

on page 77

as define in
architecture

NOP as define in
architecture

L2 cache
effect

none see
Section 3.5.7.4

on page 77

see
Section 3.5.7.4

on page 77

see
Section 3.5.7.7

on page 78

see
Section 3.5.7.8

on page 78

see
Section 3.5.7.9

on page 79

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 77 of 450

3.5.7.2 Instruction Cache Block Invalidate (icbi)

The POWER8 core implements a split instruction/data (I/D) L1 cache where both caches are kept coherent
with the L2 cache. Whenever any modification is made to the cache lines contained in the L2 cache, the L2
invalidates the copies in the L1 I-caches. Because of this, after an icbi instruction is translated, the processor
core converts it to a NOP and does not broadcast the cache line targeted by the icbi instruction as the archi-
tecture stipulates. As a result of this and other implementation-specific design optimizations, instead of
requiring the instruction sequence specified by the Power ISA to be executed on a per cache-line basis, soft-
ware must only execute a single sequence of three instructions to make any previous code modifications
become visible: sync, icbi (to any address), isync.

3.5.7.3 Instruction Cache Synchronize (isync)

As a performance optimization, the POWER8 core internally tracks and scoreboards icbi instructions that are
required to be synchronized by the isync instruction. When the isync instruction is executed, this scoreboard
bit is checked to see whether or not the machine must flush and refetch the instructions following the isync.

3.5.7.4 Data Cache Block Touch (dcbt and dcbtst)

The data cache block size for dcbt and dcbtst on the POWER8 core is 128 bytes.

The dcbtst instruction operates exactly the same way as the dcbt instruction.

These instructions act as a touch for the D-cache hierarchy and the TLB. If data translation is enabled
(MSR[DR] = 1), and an SLB miss results, the instruction will be treated as a NOP. If a TLB miss results, the
instruction reloads the TLB (and sets the reference bit). Once past translation, if the page protection attributes
prohibit access, the page is marked cache inhibited, the page is marked guarded, or the processors’ D-cache
is disabled (via the bits in the HID4 Register), the instruction is finished as a NOP and does not reload the
cache. Otherwise, the instruction checks the state of the L1 D-cache, and if it is not present, it initiates a
reload. Note that this might also reload the L2 cache and/or the L3 cache with the addressed block if it is not
already present in these caches. If the cache block is already present in the L1 D-cache, the cache content is
not altered. Note that if the dcbt or dcbtst instruction does reload cache blocks, it affects the state of the
cache replacement algorithm bits.

The POWER8 core does implement the optional extension to the dcbt instruction that allows software to
directly engage a data stream prefetch from a particular address.

L3 cache
effect

none see
Section 3.5.7.4

on page 77

see
Section 3.5.7.4

on page 77

see
Section 3.5.7.7

on page 78

see
Section 3.5.7.8

on page 78

see
Section 3.5.7.9

on page 79

TLB effect reload as required reload as required reload as required reload as required reload as required reload as required

SLB effect reload as required None
(NOP if miss)

None
(NOP if miss)

reload as required reload as required reload as required

Table 3-5. Storage Control Instructions (Sheet 2 of 2)

Aspect
Book II Cache Instructions

icbi dcbt dcbtst dcbz dcbst dcbf/dcbfl

translation lookaside buffer

segment lookaside buffer

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 78 of 450
Version 1.3

16 March 2016

3.5.7.5 Data Cache Block Touch - No Access Needed Anymore (TH = ‘10001’)

The POWER8 core supports this as specified in the Power ISA.

3.5.7.6 Data Cache Block Touch - Transient (TH = ‘10000’)

The POWER8 core implements the load and store version of these transient touch instructions (dcbtct,
dcbtds, dcbtt, dcbtstct, and dcbtstt). The transient property of a cache line is retained in the L3 cache for
both the load and store version of the transient touch instructions. The transient property of a cache line is
retained in the L2 cache for the load version of the transient touch instruction for the case that the line is
loaded but not stored into. In this transient state, the transient line becomes the most likely cache line in its
congruence class to be replaced next, thus preserving the other cache lines in that congruence class. This
behavior is useful if it is known that a set of lines will be loaded or stored with a low probability for temporal
cache reuse and it is desirable that they be as minimally intrusive to the cache as possible (for example,
displacing as few lines in the cache as possible). Reading or writing a large array with the help of transient
touch instructions only impacts one of the eight sets in the L3 cache, and reading a large array with the help
of transient touch instructions only impacts one of the eight sets of the L2 cache.

3.5.7.7 Data Cache Block Zero (dcbz)

The data cache block size for dcbz on the POWER8 core is 128 bytes.

The function of dcbz is performed in the L2 cache. As a result, if the block addressed by the dcbz is present
in the L1 D-cache, the block is invalidated before the operation is sent to the L2 cache logic for execution. The
L2 cache gains exclusive access to the block (without actually reading the old data) and performs the zeroing
function in a broadside manner.

If the cache block specified by the dcbz instruction contains an error (even one that is not correctable with
ECC), the contents of all locations within the block are set to zeros in the L2 cache. If the specified block in
the L2 cache does not contain a hard fault, a subsequent load from any location within the cache block
returns zeros and does not cause a machine check interrupt.

If the block addressed by the dcbz instruction is in a memory region marked cache inhibited, or if the L1
D-cache or L2 cache is disabled (using the bits in the HID registers), then the instruction causes an alignment
interrupt to occur.

3.5.7.8 Data Cache Block Store (dcbst)

The data cache block size for dcbst on the POWER8 core is 128 bytes.

The dcbst instruction has no direct effect on the L1 D-cache (because it is store-through, it never contains
modified data). It also has no direct effect on the L2 cache or L3 cache (both of these are kept coherent with
memory and I/O, so that nothing special needs to be done). As a result, the instruction simply goes through
address translation, reports any errors, and is completed. The instruction is not sent to the storage
subsystem, and consequently it does not broadcast any transactions onto the inter-processor SMP intercon-
nect.

Error correcting code

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 79 of 450

3.5.7.9 Data Cache Block Flush (dcbf, dcbfl and dcbflp)

The data cache block size for dcbf, dcbfl and dcbflp on the POWER8 core is 128 bytes.

The POWER8 core supports dcbf (L = 0), dcbfl (dcbf with L = 1) and dcbflp (dcbf with L = 3) as specified in
the Power ISA.

3.5.7.10 Load and Reserve and Store Conditional Instructions

The reservation granule size for the POWER8 core is 128 bytes.

An attempt to execute a non-halfword aligned lharx or sthcx., or a non-word aligned lwarx or stwcx., or a
non-doubleword aligned ldarx or stdcx., or a non-quadword aligned lqarx or stqcx. to a cacheable address
causes an alignment interrupt.

An attempt to execute a lbarx, lharx, lwarx, ldarx, lqarx, stbcx., sthcx., stwcx., stdcx., or a stqcx. instruc-
tion to storage marked cache inhibited causes a data storage interrupt independent of the address alignment.

There are separate reservations per thread.

3.5.7.11 sync Instruction

The POWER8 design achieves high performance by exploiting speculative out-of-order instruction execution.
The heavyweight sync (hwsync) instruction, as defined in the architecture, acts as a serious barrier to this
type of aggressive execution and therefore, can have a dramatic effect on performance. Although the
POWER8 core has optimized the performance of hwsync to some degree, care should be exercised in the
indiscriminate use of this instruction. As a performance consideration, software should attempt to use the
lightweight version of sync (often referred to as lwsync in this document) whenever possible. Unless other-
wise stated, sync refers to hwsync.

The POWER8 core implements the ptesync for use in synchronizing page table updates.

See the Power ISA Books II and III-S for a complete description of the different forms of the sync instruction.

The POWER8 core does not support the optional elemental memory barriers described in the Power ISA.
Instead, the Power8 design ignores the EB field of the sync instruction and the L-field solely determines
which version of the sync instruction (sync/lwsync/ptesync) is performed by the hardware.

3.5.7.12 eieio Instruction

The POWER8 core implements eieio as described in the Power ISA.

In the POWER8 nest logic, the store queues above the L2 cache attempt to gather sequential both cacheable
and cache-inhibited store operations to improve bandwidth. If this behavior is not desired, software must
insert either an eieio (preferable for performance) or a sync to prevent it.

3.5.7.13 miso Instruction

The POWER8 core implements the miso instruction as a NOP. It has no effect on the stores.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 80 of 450
Version 1.3

16 March 2016

3.5.7.14 Transactional Memory Instructions

The POWER8 core implements the transactional memory instructions as described in the Power ISA.

Table 3-6 lists how certain cache and TLB management instructions affect transactions.

Table 3-6. Cache and TLB Management Instruction Effects on Transactional Accesses

Mode

Instruction TM State Fails Transaction TEXASR bit set

tlbie T Always 8 - disallowed

tlbie S When the virtual address it is attempting to invalidate
hits in the bloom filter for the current transaction

14 - translation invalidation conflict

tlbiel T Always 8 - disallowed

tlbiel S Never N/A

dcbt (any TH) T Never (unless it causes a castout of the TM footprint) 10 - footprint overflow

dcbt (any TH) S Never (unless it causes a castout of the TM footprint) 10 - footprint overflow

dcbst T Always 8 - disallowed

dcbst S Never (dcbst is treated as a NOP in this case) 11 - self-induced conflict

dcbf (L=0,1) T Always 8 - disallowed

dcbf (L=0,1) S When the block (line) being pushed out of the cache is
part of the TM footprint

11 - self-induced conflict

dcbf (L=3) T Always 8 - disallowed

dcbf (L=3) S Never N/A

dcbz T Never (unless dcbz causes a castout of the TM foot-
print)

N/A

dcbz S Case 1: When the block (line) being zero’ed is part of
the TM footprint
Case 2: When the dcbz causes a castout of the TM
load or store footprint

Case 1: 11 - self-induced conflict
Case 2: 11 - footprint overflow

dcbtst T Never (unless dcbtst causes a castout of the TM foot-
print)

10 - footprint overflow

dcbtst S Never (unless dcbtst causes a castout of the TM foot-
print)

10 - footprint overflow

icbi T Always 8 - disallowed

icbi S Never (icbi is treated as NOP with regards to transac-
tion failure in suspend mode)

N/A

icbt T Never (unless icbt causes a castout of the TM foot-
print)

10 - footprint overflow

icbt S Never (unless icbt causes a castout of the TM foot-
print)

10 - footprint overflow

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 81 of 450

3.5.8 Timer Facilities

3.5.8.1 Time Base

The Time-Base (TB) is designed to tick at the rate of time-of-day (TOD). In other words, bit 59 of the Time-
Base Register increments at the 32 MHz clock. There is one Time-Base per processor core that is shared by
all the threads running on a core. There is one decrementer per thread.

The POWER8 core implements two time-base modes: POWER8 time-base mode and non-POWER8 time-
base mode. They are selectable by setting a mode bit in the Time Facility Management Register (TFMR).

Time Facility Management Register

The Time Facility Management Register (TFMR) is an SPR that is accessible only in the hypervisor state.
Executing a move to or move from TFMR in a nonhypervisor state causes a privileged interrupt. There is one
TFMR per processor core that is shared among the threads. The TFMR is used as both a status and control
register.

POWER8 Time-Base Mode

The time-base function uses an external time-of-day (TOD) clock, which is independent of the processor
frequency. This is required to support dynamic frequency variation for power management. The external TOD
oscillator can be 16 MHz or 32 MHz. The external TOD oscillator is sampled to provide a 32 MHz step signal,
which is distributed to all processors in the system.

Bits 0:59 of the TB are incremented at the 32 MHz frequency as provided by the distributed step signal. Bits
60:63 of the TB are incremented at a fixed frequency of 500 MHz. If the value of bits 60:63 is ‘1111’ (satu-
rated), it is held until the 32 MHz step signal causes bit 59 to change. At that time, bits 60:63 are allowed to
change to ‘0000’.

To support multi-node configurations across multiple oscillator domains, error detection and recovery, and
concurrent maintenance, the POWER8 core uses the following means of synchronizing the time bases
across all processors. Each multicore processor chip contains a Time-of-Day (TOD) Register. The chip TOD
registers are first synchronized across all the processor chips. Then, the time-base registers in each
processor core are synchronized to the chip TOD. Also encoded on the step signal is a synchronization pulse
which is used for synchronization and error checking. The synchronization mechanism requires system oper-
ations to complete within a sync interval. The sync interval can be set via the TFMR bits to be, for example,
1μs, 2 μs (default, corresponds to TB bit 53), 4 μs, or 8 μs.

Error checking includes parity checks on all registers, and functional checking such as missing step signal
detection and synchronization errors. The step signal rate is defined in the POWER8 mode to be 32 MHz,
and the logic checks for the correct number of steps for each synchronization signal (which is selected by
TFMR). After the TB is operational, the hardware also detects a missing step signal, which requires speci-
fying in the TFMR the maximum number of processor cycles allowed without seeing a 32 MHz step signal, for
the fastest allowable operating frequency. The TFMR maximum cycle step time-out should be specified as
(2 × 31.25 ns) / (minimum processor cycle time in ns × 4).

The initial synchronization requires some software sequencing, which is performed by writing values to the
TFMR (via mtspr). The TFMR also indicates the status of the various time facilities. The status bits in the
TFMR are read-only, not modified by mtspr to the TFMR. The time facility logic implements error detection

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 82 of 450
Version 1.3

16 March 2016

for hardware and also for invalid software sequencing. Because synchronized time is critical to a system,
writes to the time base or the TFMR that would break synchronization cause the logic to enter an error state
and trigger a hypervisor maintenance interrupt.

To initially set the time and synchronize the time base values, software must synchronize all processors in the
system and choose one processor to perform updates to the TFMR via a read-modify-write operation to
preserve the other bits. This sequence assumes the external TOD oscillator distribution is already running.

After the chip TOD is running on all chips and the TB is running on the processor that drove this sequence,
software must then release the remaining processors to synchronize their TB registers to their corresponding
chip TOD.

3.5.9 Hypervisor Decrementer (HDEC)

There is one hypervisor decrementer register per thread. HDEC decrements every time TB bit 63 is incre-
mented.

3.5.10 Decrementer (DEC)

There is one decrementer register per thread. DEC decrements every time TB bit 63 is incremented.

3.5.11 Book II Invalid Forms

The results of executing an invalid form of an instruction in Book II or an instance of such an instruction for
which the architecture specifies that some results are undefined, are described here for the cases in which
executing an instruction does not cause an exception. Only results that differ from those specified by the
architecture are described in the following list.

• Instruction with reserved fields
Bits in reserved fields are ignored; the results of executing an instruction in which one or more reserved
bits are ‘1’ is the same as if the bits were ‘0’.

• Transactional memory instructions and store conditional instructions (bit 31 is ignored)
Bit 31 of tbegin., tend., tabort., tabortwc., tabortdc., tabortwci., tabortdci., treclaim., stbcx., sthcx.,
stwcx., stdcx. and stqcx. is ignored. Bit 31 = ‘1’ or bit 31 = ‘0’ is treated the same given that other x-form
instructions implicitly set CR and have no “non-record” from variant. Ignoring bit 31 is an acceptable way
to handle this invalid form.

• mftb instructions
This instruction produces the same result as the mfspr instruction. For a complete description on the
associated invalid forms, see Section 3.1.4.9 Move To/From Special Purpose Register (SPR) Instructions
on page 65.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 83 of 450

3.6 Book III - Operating Environment Architecture

3.6.1 Classes of Instructions

3.6.1.1 Storage Control Instructions

The POWER8 core does provides support for the following instructions:

• tlbie - TLB invalidate entry (large and small page)

• tlbiel - Processor local form of TLB invalidate entry (large and small page, and the IS field)

• tlbsync - TLB synchronize

• slbmte- Segment Lookaside Buffer Move To Entry

• slbmfev- Segment Lookaside Buffer Move From Entry VSID

• slbmfee- Segment Lookaside Buffer Move From Entry ESID

• slbfee.- Segment Lookaside Buffer Find Entry ESID

• slbie - SLB invalidate entry

• slbia - SLB invalidate all

• mtsr - Move to segment register (Bridge Facility)

• mtsrin - Move to segment register indirect (Bridge Facility)

• mfsr - Move from segment register (Bridge Facility)

• mfsrin - Move from segment register indirect (Bridge Facility)

• mtmsr - Move to Machine State Register (32-bit)

• mtmsrd - Move to Machine State Register (64-bit)

• sc - System Call

• rfid - Return From Interrupt Doubleword

• hrfid - Hypervisor Return From Interrupt Doubleword

The POWER8 core does not provide support for the following optional or obsolete instructions (attempted use
of these results in a hypervisor emulation assistance interrupt):

• tlbia - TLB invalidate all

• tlbiex - TLB invalidate entry by index (obsolete)

• slbiex - SLB invalidate entry by index (obsolete)

• dcba - Data cache block allocate (Book II; obsolete)

• dcbi - Data cache block invalidate (obsolete)

• rfi - Return from interrupt (32-bit; obsolete)

The following instruction variants are implemented:

• ptesync - Page table synchronize

• hwsync - Heavyweight synchronize

• lwsync- Lightweight synchronize

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 84 of 450
Version 1.3

16 March 2016

3.6.1.2 Reserved Instructions

The architecture breaks the reserved instruction class down into several categories as described in the
Reserved Instructions appendix of the Power ISA. The POWER8 processor core behaves in the following
manner with respect to these categories:

• Primary opcode equals zero.

• POWER Architecture instructions not in the Power ISA. The POWER8 core takes a hypervisor emulation
assistance interrupt. See the complete list in the Power ISA appendices.

• Service processor “Attention” instruction.

• In addition, there are several implementation-specific registers available for access through the mtspr
and mfspr instructions. These are described in Section 3.6.3.4 Move To/From Special Purpose Register
Instructions on page 87.

3.6.2 Branch Processor

3.6.2.1 SRR1 Register

In the POWER8 processor core, the SRR1 is implemented per the Power ISA.

3.6.2.2 MSR Register

In the POWER8 processor core, the MSR is implemented per the Power ISA.

3.6.2.3 Branch Processor Instructions

Branch Processor Instruction with Undefined Results

The results of executing an invalid form of a branch instruction or an instance of a branch instruction for which
the architecture specifies that some results are undefined are described as follows.

System Call SC-Form

In the POWER8 processor core, the system call (sc) instruction is implemented per the Power ISA.

Support Processor Attention Instruction

The POWER8 processor core supports a special, implementation-dependent instruction for signaling an
attention to the support processor.

00 Immediate 256 /

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

The immediate field (I) has no effect on the operation of this instruction in the POWER8 processor core.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 85 of 450

If HID0[31] = ‘1’ (the support-processor attention enable bit is set), this instruction causes all preceding
instructions to run to completion, the machine to quiesce, and the assertion of the support processor attention
signal. Instruction execution does not resume until the support processor signals it to do so.

If HID0[31] = ‘0’ (the support processor attention enable bit is not set), this instruction causes a hypervisor
emulation assistance interrupt.

3.6.2.4 Current Instruction Address Breakpoint (CIABR)

The POWER8 processor core supports the CIAB Register as implemented per the Power ISA.

3.6.2.5 Instruction Effective to Real Address Translation Cache (I-ERAT)

The POWER8 processor core includes a 64-entry, 64-way set associative instruction effective-to-real
address translation (I-ERAT) for fast translation of instruction effective addresses into physical (real)
addresses. The ERAT is dynamically shared between all eight threads. The ERAT is implemented as a CAM
that supports page sizes of 4 KB, 64 KB, and 16 MB. Instruction fetches to 16 GB pages are installed in the
I-ERAT as multiple 16 MB page entries as needed. Likewise, instruction fetches to 1 MB pages are installed
as multiple 64 KB pages as needed. Entries for hypervisor relocate off can be shared between all eight
threads (regardless of LPAR mode), further increasing the capacity of the ERAT.

Because addresses associated with non-hypervisor real mode accesses are translated differently than those
associated with virtual-mode accesses, the IERAT must keep the MSR[IR] and MSR[HV] bits (along with
various bits of translation information) in each entry. This allows the I-ERAT to distinguish between transla-
tions that are valid for the various modes of operation. Because the content of each I-ERAT entry is the result
of a page table search based on the contents of an SLB entry, to maintain consistency with the SLB (or
segment registers), the following instructions cause all entries in the I-ERAT that belong to the thread
executing the instruction to be invalidated. The ERAT compares as many effective address bits as are avail-
able in the various invalidate operations.

• mtsr or mtsrin instructions - used for segment register changes in 32-bit operating systems

• slbia

• mtiamr

The slbie instruction causes invalidation of a D-ERAT entry belonging to the thread (no impact to the other
thread) only if there is a perfect address match (that is, for invalidation effective address bits, EA[0:35] are
matched for slbie small 256 MB segment, EA[0:23] are matched for slbie 1 TB segment).

The tlbie instruction (or the detection of snooped-tlbie operations) invalidates all D-ERAT entries (irrespective
of the thread) in the D-ERAT that have a perfect match. In other words, the entry is invalidated only if:

• EA[36:51] are matched for tlbie small page
• EA[36:47] are matched for tlbie 64 KB page
• EA[36:43] are matched for tlbie 1 MB page
• EA[36:39] are matched for tlbie 16 MB page

EA[24:29] are matched for tlbie 16 GB page

Upon power-on, each I-ERAT entry is set to the invalid state.

Logical partition

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 86 of 450
Version 1.3

16 March 2016

I and G bit setting in the I-ERAT is done based on Table 3-7.

Table 3-7. I-ERAT I and G Bit Setting

Condition

Resulting ActionMSR
[IR]

MSR
[HV] LPCR[0] HID4[33]

First
access

I = 1 Fetch

HID4[0:4]
RMSC
(above

line)

I G

1 x x x x x PTE(I) PTE(G) If G = ‘0’, the page is written into the I-ERAT using
the I-bit value and page size determined from the
PTE and described above.
If G = ‘1’, an ISI is taken.

0 0 1 x x x PTE(I) PTE(G) Virtual real mode:
If G = ‘0’, the page is written into the I-ERAT using
the I-bit value and page size determined from the
PTE and described above.
If G = ‘1’, an ISI is taken.

0 0 0 x x x 0 0 RMOR mode: set IG = ‘00’

0 1 x 0 yes no 1 0 Legacy RMSC mode:
If access is below the guarded line established by
HID4[0:4], access is allowed and a 4K page is
installed in I-ERAT as I = ‘1’, G = ‘0’.

0 1 x 0 no no 0 0 Legacy RMSC mode.
If access is below the guarded line established by
HID4[0:4], access is allowed and a 4 KB page is
installed in I-ERAT as I = ‘0’,G = ‘0’.

0 1 x 0 x yes N/A N/A Legacy RMSC mode.
If access is above the guarded line established by
HID4[0:4], access is not allowed resulting in an ISI
due to an instruction fetch to guarded storage.

0 1 x 1 yes x 1 N/A Page-based RMSC mode.
16 M page is installed in I-ERAT with I = ‘1’, G = ‘1’.

0 1 x 1 no x 0 N/A Page-based RMSC mode.
16 M page is installed in I-ERAT with I = ‘0’, G = ‘0’.

3.6.3 Fixed-Point Processor

3.6.3.1 Processor Version Register (PVR)

The processor version number (PVR[0:15]) for the POWER8 processor in the SCM is x‘004D’.In future
versions of the POWER8 core, this section of the version number will only change if there are significant soft-
ware-visible changes in the design.

The processor revision level (PVR[16:31]) starts at x‘0100’, indicating revision ‘1.0’. As revisions are made,
bits [29:31] will indicate minor revisions. Similarly, bits [20:23] indicate major changes.

Example: The PVR value for POWER8 processor in the SCM for design level 1 is: x‘004D0100’.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 87 of 450

3.6.3.2 Processor ID Register (PIR)

The processor identification register (PIR) is a 32-bit register that holds a processor identification tag in the
9 least-significant bits [23:31]. This tag is used for tagging bus transactions and for processor differentiation in
multiprocessor systems.

Bits Field Name Description

0:21 Reserved Read as zeros

22:24 ChID Chip ID

25:28 CoID Core number

29:31 TID Thread ID

The PIR is a read-only register. During power-on reset, PIR is set to a unique value for each processor in a
multiprocessor system.

3.6.3.3 Chip Information Register (CIR)

The POWER8 processor implements the CIR per the Power ISA.

3.6.3.4 Move To/From Special Purpose Register Instructions

The POWER8 core supports special purpose registers listed in Table 3-8. Many of these SPRs are only
accessible in hypervisor or privileged modes. A handful of these registers (for example, DSCR) are also user-
mode accessible through a second SPR number.

To support multithreading, some of the SPRs are replicated in the POWER8 core, while the others are
shared, as shown in the SMT column in Table 3-8. In the table column headers, Prob indicates problem state
(HV = x, PR = 1), Priv indicates privileged state (HV = 0, PR = 0), and Hyp indicates Hypervisor state
(HV = 1, PR = 0). In the SPR specific rows, Priv indicates that a privileged instruction type program interrupt
will occur in that state for the attempted read or write of the SPR. FAC indicates the Facility Unavailable inter-
rupt. HFAC indicates the Hypervisor Facility Unavailable interrupt. Illegal indicates a hypervisor emulation
assistance interrupt will occur. NOP indicates the instruction will be treated as a NOP. A blank under each
column indicates the access will be performed normally.

Table 3-8. SPR Table (Sheet 1 of 6)

SPR Name
SPR

Decimal SMT Length
Read (mfspr) Write (mtspr)

spr[5:9] spr[0:4] Prob Priv Hyp Prob Priv Hyp

XER 00000 00001 1 Replicated 64

DSCR
(FSCR [61] = 0)

00000 00011 3 Replicated 25 FAC FAC

DSCR
(FSCR [61] = 1)

00000 00011 3 Replicated 25

LR 00000 01000 8 Replicated 64

CTR 00000 01001 9 Replicated 64

AMR 00000 01101 13 Replicated 64

DSCR
(HFSCR[61] = 0)

00000 10001 17 Replicated 25 Priv HFAC Priv HFAC

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 88 of 450
Version 1.3

16 March 2016

DSCR
(HFSCR[61] = 1)

00000 10001 17 Replicated 25 Priv Priv

DSISR 00000 10010 18 Replicated 32 Priv Priv

DAR 00000 10011 19 Replicated 64 Priv Priv

DEC 00000 10110 22 Replicated 32 Priv Priv

SDR1 00000 11001 25 Per LPAR 64 Priv Priv Priv Priv

SRR0 00000 11010 26 Replicated 64

SRR1 00000 11011 27 Replicated 64

CFAR 00000 11100 28 Replicated 64

AMR 00000 11101 29 Replicated 64

Reserved 00000 11111 31 Replicated 64

PID 00001 10000 48 Replicated 32 Priv Priv

IAMR 00001 11101 61 Replicated 32 Priv Priv

TFHAR 00100 00000 128 Replicated 64

TFIAR 00100 00001 129 Replicated 64

TEXASR 00100 00010 130 Replicated 64

TEXASRU 00100 00011 131 Replicated 32

CTRL 00100 01000 136 Shared 32 bit 63 -
Priv

bit 63 -
Priv

Illegal NOP NOP

CTRL 00100 11000 152 Shared 32 Priv bit 63 -
Priv

Illegal NOP NOP

FSCR 00100 11001 153 Replicated 64 Priv Priv

UAMOR 00100 11101 157 Replicated 64 Priv Priv

PSPB 00100 11111 159 Replicated 32 Priv Priv

DPDES 00101 10000 176 Per LPAR 8 Priv Priv Priv Priv

DHDES 00101 10001 177 Shared 8 Priv Priv Priv Priv

DAWR0 00101 10100 180 Replicated 64 Priv Priv Priv Priv

RPR 00101 11010 186 Per LPAR 64 Priv Priv Priv Priv

CIABR 00101 11011 187 Replicated 64 Priv Priv Priv Priv

DAWRX0 00101 11100 188 Replicated 32 Priv Priv Priv Priv

HFSCR 00101 11110 190 Replicated 64 Priv Priv Priv Priv

VRSAVE 01000 00000 256 Replicated 32

SPRG3 01000 00011 259 Replicated 64 Illegal NOP NOP

TB 01000 01100 268 Per LPAR 64 Illegal NOP NOP

TBU 01000 01101 269 Per LPAR 64 Illegal NOP NOP

SPRG0 01000 10000 272 Replicated 64 Priv Priv

SPRG1 01000 10001 273 Replicated 64 Priv Priv

Table 3-8. SPR Table (Sheet 2 of 6)

SPR Name
SPR

Decimal SMT Length
Read (mfspr) Write (mtspr)

spr[5:9] spr[0:4] Prob Priv Hyp Prob Priv Hyp

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 89 of 450

SPRG3 01000 10011 275 Replicated 64 Priv Priv

SPRC 01000 10100 276 Replicated 64 Priv Priv Priv Priv

SPRD 01000 10101 277 N/A 64 Priv Priv Priv Priv

TBL 01000 11100 284 Per LPAR 32 Illegal NOP NOP Priv Priv

TBU 01000 11101 285 Per LPAR 32 Illegal NOP NOP Priv Priv

TBU40 01000 11110 286 Per LPAR 64 Illegal NOP NOP Priv Priv

PVR 01000 11111 287 Shared 32 Illegal NOP NOP Priv

HSPRG0 01001 10000 304 Replicated 64 Priv Priv Priv Priv

HSPRG1 01001 10001 305 Replicated 64 Priv Priv Priv Priv

HDSISR 01001 10010 306 Replicated 32 Priv Priv Priv Priv

HDAR 01001 10011 307 Replicated 64 Priv Priv Priv Priv

SPURR 01001 10100 308 Replicated 64 Priv Priv Priv

PURR 01001 10101 309 Replicated 64 Priv Priv Priv

HDEC 01001 10110 310 Per LPAR 32 Priv Priv Priv Priv

RMOR 01001 11000 312 Per LPAR 64 Priv Priv Priv Priv

HRMOR 01001 11001 313 Shared 64 Priv Priv Priv Priv

HSRR0 01001 11010 314 Replicated 64 Priv Priv Priv Priv

HSRR1 01001 11011 315 Replicated 64 Priv Priv Priv Priv

MMCRH 01001 11100 316 Shared 64 Priv Priv Priv Priv

TFMR 01001 11101 317 Shared/
LPAR bit 26 and

45
replicated

64 Priv Priv Priv Priv

LPCR 01001 11101 318 Replicated 64 Priv Priv Priv Priv

LPIDR 01001 11111 319 Per LPAR 64 Priv Priv Priv Priv

HMER 01010 10000 336 Replicated 64 Priv Priv Priv Priv

HMEER 01010 10001 337 Shared 64 Priv Priv Priv Priv

PCR 01010 10010 338 Per LPAR 64 Priv Priv Priv Priv

HEIR 01010 10011 339 Replicated 32 Priv Priv Priv Priv

HPMC1 01010 11000 344 Shared 64 Priv Priv Priv Priv

HPMC2 01010 11001 345 Shared 64 Priv Priv Priv Priv

HPMC3 01010 11010 346 Shared 64 Priv Priv Priv Priv

HPMC4 01010 11011 347 Shared 64 Priv Priv Priv Priv

AMOR 01010 11101 349 Per LPAR 64 Priv Priv Priv Priv

TIR 01101 11110 446 Replicated 8 Priv Illegal NOP NOP

SIER 11000 00000 768 Replicated 64 Illegal NOP NOP

MMCR2 11000 00001 769 Replicated 64 Illegal NOP NOP

Table 3-8. SPR Table (Sheet 3 of 6)

SPR Name
SPR

Decimal SMT Length
Read (mfspr) Write (mtspr)

spr[5:9] spr[0:4] Prob Priv Hyp Prob Priv Hyp

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 90 of 450
Version 1.3

16 March 2016

MMCRA 11000 00010 770 Replicated 32 Illegal NOP NOP

PMC1 11000 00011 771 Replicated 32 Illegal NOP NOP

PMC2 11000 00100 772 Replicated 32 Illegal NOP NOP

PMC3 11000 00101 773 Replicated 32 Illegal NOP NOP

PMC4 11000 00110 774 Replicated 32 Illegal NOP NOP

PMC5 11000 00111 775 Replicated 32 Illegal NOP NOP

PMC6 11000 01000 776 Replicated 32 Illegal NOP NOP

MMCR0 11000 01011 779 Replicated 32 Illegal NOP NOP

SIAR 11000 01100 780 Replicated 64 Illegal NOP NOP

SDAR 11000 01101 781 Replicated 64 Illegal NOP NOP

MMCR1 11000 01110 782 Replicated 32 Illegal NOP NOP

SIER 11000 10000 784 Replicated 64 Priv Priv

MMCR2 11000 10001 785 Replicated 64 Priv Priv

MMCRA 11000 10010 786 Replicated 64 Priv Priv

PMC1 11000 10011 787 Replicated 32 Priv Priv

PMC2 11000 10100 788 Replicated 32 Priv Priv

PMC3 11000 10101 789 Replicated 32 Priv Priv

PMC4 11000 10110 790 Replicated 32 Priv Priv

PMC5 11000 10111 791 Replicated 32 Priv Priv

PMC6 11000 11000 792 Replicated 32 Priv Priv

MMCR0 11000 11011 795 Replicated 32 Priv Priv

SIAR 11000 11100 796 Replicated 64 Priv Priv

SDAR 11000 11101 797 Replicated 64 Priv Priv

MMCR1 11000 11110 798 Replicated 32 Priv Priv

IMC 11000 11111 799 Shared 64 Priv Priv Return
zeros

Priv Priv Condi-
tional
based

on HID1

BESCRS 11001 00000 800 Replicated 64

BESCRSU 11001 00001 801 Replicated 32

BESCRR 11001 00010 802 Replicated 64

BESCRRU 11001 00011 803 Replicated 32

EBBHR 11001 00100 804 Replicated 64

EBBRR 11001 00101 805 Replicated 64

BESCR 11001 00110 806 Replicated 64

Reserved 11001 01000 808 N/A NOP NOP NOP NOP NOP NOP

Reserved 11001 01001 809 N/A NOP NOP NOP NOP NOP NOP

Table 3-8. SPR Table (Sheet 4 of 6)

SPR Name
SPR

Decimal SMT Length
Read (mfspr) Write (mtspr)

spr[5:9] spr[0:4] Prob Priv Hyp Prob Priv Hyp

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 91 of 450

Reserved 11001 01010 810 N/A NOP NOP NOP NOP NOP NOP

Reserved 11001 01011 811 N/A NOP NOP NOP NOP NOP NOP

TAR 11001 01111 815 Replicated 64

IC 11010 10000 848 Replicated 64 Priv Priv Priv Priv

VTB 11010 10001 849 Per LPAR 64 Priv Priv Priv Priv

MMCRC 11010 10011 851 Per LPAR 32 Priv Priv Priv Priv

PMICR 11010 10100 852 Shared 64 Priv Priv Priv Priv

PMSR 11010 10101 853 Shared 32 Priv Priv Priv Priv NOP

PMMAR 11010 10110 854 Per LPAR 64 Priv Priv Priv Priv

Reserved 11010 11011 859 Per Core 64 Priv Priv Priv Priv

Reserved 11010 11100 860 Per Core 64 Priv Priv Priv Priv

Reserved 11010 11101 861 Per Core 64 Priv Priv NOP Priv Priv

Reserved 11010 11110 862 N/A Priv Priv Priv Priv

Reserved 11010 11111 863 Shared 32 Priv Priv Priv Priv

TRIG0 11011 10000 880 Replicated 64 Priv Iillegal NOP NOP

TRIG1 11011 10001 881 Replicated 64 Priv Iillegal NOP NOP

TRIG2 11011 10010 882 Replicated 64 Priv Iillegal NOP NOP

PMCR 11011 10100 884 Per LPAR 64 Priv Priv Priv

Reserved 11011 11000 888 Shared 64 Priv Priv

Reserved 11011 11001 889 Shared 64 Priv Priv

SPMC1 11011 11100 892 Replicated 32 Priv Priv

SPMC2 11011 11101 893 Replicated 32 Priv Priv

MMCRS 11011 11110 894 Replicated 32 Priv Priv

Reserved 11011 11111 895 Replicated 32 Priv Priv

PPR 11100 00000 896 Replicated 64

PPR32 11100 00010 898 Replicated 32

TSCR 11100 11001 921 Shared 32 Priv Priv Priv Priv

TTR 11100 11010 922 Shared 64 Priv Priv Priv Priv

TRACE 11111 01110 1006 Shared 64 Illegal NOP NOP

HID0 11111 10000 1008 Shared 64 Priv Priv Priv Priv

HID1 11111 10001 1009 Shared
(1 bit replicated

for lpar)

64 Priv Priv Priv Priv

HID4 11111 10100 1012 Shared
(some replicated

for lpar)

64 Priv Priv Priv Priv

Table 3-8. SPR Table (Sheet 5 of 6)

SPR Name
SPR

Decimal SMT Length
Read (mfspr) Write (mtspr)

spr[5:9] spr[0:4] Prob Priv Hyp Prob Priv Hyp

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 92 of 450
Version 1.3

16 March 2016

HID5 11111 10110 1014 Shared (HID4
spill over repli-
cated per lpar)

64 Priv Priv Priv Priv

CIR 11111 11110 1022 Shared 32 Priv Illegal NOP NOP

PIR 11111 11111 1023 Replicated 32 Priv Priv NOP NOP

Unsupported
POWER MQ

00000 00000 0 N/A N/A Illegal Illegal Illegal Illegal Illegal Illegal

Unsupported
Power Real Time

Upper SPR

00000 00100 4 N/A N/A Illegal Illegal Illegal Illegal Illegal Illegal

Unsupported
Power Real Time

Lower SPR

00000 00101 5 N/A N/A Illegal Illegal Illegal Illegal Illegal Illegal

Unsupported
Power

Decrementer
SPR

00000 00110 6 N/A N/A Illegal Illegal Illegal Illegal Illegal Illegal

Unsupported
non-privileged,

non-Power SPR

xxxxx 0xxxx N/A N/A Illegal Illegal Illegal Illegal Illegal Illegal

Unsupported-
privileged SPR

xxxxx 1xxxx N/A N/A Illegal Illegal Illegal Illegal Illegal Illegal

Table 3-8. SPR Table (Sheet 6 of 6)

SPR Name
SPR

Decimal SMT Length
Read (mfspr) Write (mtspr)

spr[5:9] spr[0:4] Prob Priv Hyp Prob Priv Hyp

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 93 of 450

3.7 HID Registers (HID0, HID1, HID4, and HID5)

The POWER8 processor core includes many implementation-dependent mode bits that allow various
features of the chip to be enabled and disabled. These bits are included in the Hardware Implementation
Dependent registers (HID0, HID1, HID4, and HID5). In general, the HID0 Register controls high-level func-
tions of the POWER8 core. The HID1 Register contains additional mode bits that are related to the instruction
fetch and instruction decode functions in the POWER8 core. The HID4 and HID5 Registers contain bits
related to the load-store function in the POWER8 processor. All of these registers are only accessible in
hypervisor mode. Reserved bits in the HID registers should not be set by software and may return either a
zero or one value depending on the bit if set. Attempts to set some of these bits may enable functions that are
no longer supported and thus could cause unpredictable behavior. Two values of the contents of each
register are shown in the descriptions.

Initial state:
This is the state of the register after a normal scan-based POR. The actual and full POR sequence can
set bits beyond the scan-based POR.

Preferred state:
This is the preferred state of the register for optimal performance and function.

1. The following sequence must be used when modifying HID0:
sync
mtspr HID0,Rx
mfspr Rx,HID0
mfspr Rx,HID0
mfspr Rx,HID0
mfspr Rx,HID0
mfspr Rx,HID0
mfspr Rx,HID0
isync

After modifying HID0, executing six mfspr instructions specifying HID0 as the source and specifying
the same target GPR (Rx) in all six instructions is necessary to ensure that the modification is effec-
tive and the processor is in a valid state to continue executing subsequent instructions

2. The following sequence must be used when modifying HID1:
mtspr HID1,Rx
mtspr HID1,Rx
isync

Executing two mtspr instructions is necessary to ensure that updates to all portions of HID1 are com-
pleted before the isync instruction is completed.

3. The following sequence must be used when modifying HID4:
sync
mtspr HID4,Rx
isync

Because the ERATs contain entries for nonhypervisor real mode translations, when changing the
RMOR value, the hypervisor must flush the ERATs (that is, by executing slbia) before passing con-
trol to the operating system. The en_rmsc (HID4[33]) bit must not be changed by the hypervisor, and
its initial value must be included in the init file.

power-on reset

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 94 of 450
Version 1.3

16 March 2016

3.7.1 HID0 Register

Initial state: x‘0005_0000_0000_0000’
Preferred state: x‘0005_0000_0000_0000’

The HID0 Register is defined as follows.

Bits Field Name Description

0:1 reserved Reserved.

2 4_lpar_mode Core runs in the 4 LPAR mode where the core is partitioned into four logical partitions (sub-processors).
Has precedence over 2_lpar_mode (bit 6). This is a read-only bit.

3:5 reserved Reserved.

6 2_lpar_mode Core runs in the 2 LPAR mode where core is partitioned into two logical partitions (sub-processors). This
is a read-only bit.

7:10 reserved Reserved.

11 1LPARto2LPAR A write to this bit initiates a 1 LPAR to 2 LPAR dynamic mode switch. Cannot read this bit.

12 1LPARto4LPAR A write to this bit initiates a 1 LPAR to 4 LPAR dynamic mode switch. Cannot read this bit.

13 dis_recovery Disable processor recovery mechanism.

14 reserved Reserved.

15 dyn_lpar_dis Dynamic LPAR switching mode disabled.

16:18 reserved Reserved.

19 HILE Hypervisor Interrupt Little Endian. The HILE bit is set to ‘0’ during system initialization and can be modi-
fied by hypervisor software as needed. The contents of the HILE bit are copied into the MSR[LE] by inter-
rupts that set MSR[HV] to ‘1’ to establish the endian mode for the hypervisor interrupt handlers.

20:30 reserved Reserved.

31 en_attn Enable support processor attn instruction.

32:63 reserved Reserved.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 95 of 450

3.7.2 HID1 Register

The HID1 Register contains additional mode bits that are related to the instruction fetch and instruction
decode functions in the POWER8 processor core.

Initial state: x‘0000_0000_0000_0000’
Preferred state: x‘0000_0000_0000_0000’

The HID1 Register is defined as follows.

Bits Field Name Description

0 flush_ic Flush the I-cache directory and the IEADIR on a transition from ‘0’ to ‘1’.

1:4 reserved Reserved.

5 dis_sp_itw Disable speculative table walks. If this bit is set to a ‘1’, ERAT miss handling is only carried out when
the instruction with the ERAT miss is next-to-complete.

6:7 ierat_lru_mode(0:1) I-ERAT size restrictor.
These HID1 bits can be used to limit the number of I-ERAT entries to use.
00 Full I-ERAT (64 entries) - normal settings
01 Half I-ERAT (32 entries)
10 Quarter I-ERAT (16 entries)
11 Eighth I-ERAT (8 entries)

8 reserved Reserved.

9 dis_dfp Disable DFP.
If this bit is set to ‘1,’ the DFP instructions are treated as illegals.

10 reserved Should always be set to ‘0’.

11 dis_user_priority_
verylow_lpar0

Disable user priority change to very low - LPAR0.
0 Allow user mode to set thread priority to very-low.
1 Do not allow user mode to set thread priority to very low.

12 dis_user_priority_
verylow_lpar1

Disable user priority change to very low - LPAR1
0 Allow user mode to set thread priority to very-low.
1 Do not allow user mode to set thread priority to very low.

13 dis_user_priority_
verylow_lpar2

Disable user priority change to very low - LPAR2
0 Allow user mode to set thread priority to very-low.
1 Do not allow user mode to set thread priority to very low

14 dis_user_priority_
verylow_lpar3

Disable user priority change to very low - LPAR3
0 Allow user mode to set thread priority to very-low.
1 Do not allow user mode to set thread priority to very low.

15 en_reduce_spec Enable the reduce speculation mode in the IFU.
This mode is used to reduce bandwidth beyond the L3 cache.

16:20 reserved Reserved.

21:31 spare Spare. These bits are implemented and thus a move-from returns the value of the last move-to.

32:63 Unimplemented spare Unimplemented spares. These bits always return zeros.

instruction fetch and decode unit

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 96 of 450
Version 1.3

16 March 2016

3.7.3 HID4 Register

The HID4 Register controls the load-store functions in the POWER8 core.

Initial state: x‘0000_0000_0000_0000’
Preferred state: x‘0000_0004_4000_0000’

Bits Field Name Description

0:4 rmsc Real mode storage control field used exclusively for “Legacy RMSC” mode (HID4[33]=’0’).
If this field is set to a value N, the first 256 × 2 (N-1) MB, for 0 < N < 18, of real memory is considered
well-behaved, and real memory accesses in this range are treated as nonguarded in MSR[IR,
DR] = '0' mode.
Beyond this range, accesses are treated as guarded for MSR[IR, DR] = '0' mode.
‘00000’ = all MSR[IR, DR] = ‘0’ accesses are treated as guarded.
‘00001’ = MSR[IR, DR] = ‘0’ accesses in the first 256 MB are nonguarded and beyond that guarded.
‘00010’ = MSR[IR, DR] = ‘0’ accesses in the first 512 MB are nonguarded and beyond that guarded.
......
‘10000’ = MSR[IR, DR] = ‘0’ accesses in the first 8 TB are nonguarded and beyond that guarded.
‘10001’ = MSR[IR, DR] = ‘0’ accesses in the first 16 TB are nonguarded and beyond that guarded.
>‘10001’ = all MSR[IR, DR] = ‘0’ accesses are treated as guarded.

An slbia instruction is needed after changing this bit.

5:6 reserved Reserved.

7 dis_lpage Disable large page support (only support 4 KB page).

8 dis_mpss Disable mixed page segment support (4 KB and 64 KB, 4 KB and 16 MB, 64 KB and 16 MB).

9 dis_mpssx Disable mixed page segment support extensions (4 KB and 16 MB, 64 KB and 16 MB).

10 dis_tspec Disable speculative load tablewalks (stores are always nonspeculative).

11 dis_vpck Disable virtual-page class keys exception.

12 en_hash2 Enable secondary hash tablewalks for speculative store instructions (if LPCR[TC] = ‘0’).

13 tlbie_cc Congruence class invalidation of TLB due to tlbie instruction.
‘0’ Use the IS field of the tlbie instruction.
‘1’ Override the IS field, and always invalidate the entire congruence class.

14 force_geq1 Force all load instructions to be treated as if they were to guarded (G = 1) storage.

15 nop_dcbt dcbt is treated as a NOP (go through address translation, suppressed from going to Nest).

16 nop_dcbtst dcbtst is treated as a NOP (go through address translation, suppressed from going to Nest).

17 reserved Reserved.

18 rst_prf Reset the data prefetch mechanism.
Suppress subsequent prefetch requests and clear the stream detection logic, such that stream
detection will not be affected by accesses performed before setting the bit back to ‘0’

19 sus_prf Suspend the data prefetch mechanism
Preserve the current state, but disable allocations, updates, and requests until the bit is set back to
‘0’.

20 dis_prf1 Disable L1 data prefetching.

21 dis_prf2a Disable L1 data prefetching two lines ahead (only prefetch one line ahead, pertains to all streams).

22 dis_prf3l Disable L3 load data prefetching.

23 dis_prf3s Disable L3 store data prefetching.

24 dis_prfh Disable data prefetching initiated by hardware (allow software streams).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 97 of 450

25 dis_prfnh Disable stride-n data prefetching initiated by hardware.

26 dis_prfns Disable stride-n data prefetching initiated by software.

27 dis_shad Disable data prefetch shadow register.
0 Prefetch stream direction always assumed ‘up’, but the PRQ can detect a confirmation in

the ‘down’ direction.
1 Prefetch stream direction assumed ‘up’ if the address is in upper 3/4 of cache line,

otherwise, down.

28 lmt_prf Limit the number of available streams to four.

29 ex_dcbz Exclude dcbz from initiating L3 store prefetches.

30:32 reserved Reserved.

33 en_rmsc Enable “Page-based RMSC mode” described in Power ISA Book III-S as “history blocks” implemen-
tation.
Note: Setting this bit to ‘0’ disables the page-based RMSC mode and enables the legacy RMSC
mode, which divides real memory into a lower unguarded regions and an upper guarded region. The
Legacy mode may not be supported in future POWER processors.

34 reserved Reserved.

35 reserved Reserved.

36 dis_rep_lp0 Control bit to disable the PTE time base and reference bit array updates for LPAR 0
0 Reference bit array update disabled.
1 Reference bit array update enabled.

37:39 sel_tb_lp0 Encode bits to select TB bit that provides low-order 12-bit TB value for LPAR 0
000 Reserved.
001 Select 0.5 second.
010 Select 1 second.
011 Select 2 seconds.
100 Select 4 seconds.
101 Select 8 seconds.
110 Select 16 seconds.
111 Select 32 seconds.

40 sel_pte_lp0 1 HCA (Hot / Cold Page Affinity) PTE format in use for LPAR 0.
0 Power ISA PTE format.

41 dis_rep_lp1 Control bit to disable PTE time base and ref-bit array updates for LPAR 1
0 Reference bit array update disabled.
1 Reference bit array update enabled.

42:44 sel_tb_lp1 Encode bits to select TB bit that provides low-order 12-bit TB value for LPAR 1
000 Reserved.
001 Select 0.5 second.
010 Select 1 second.
011 Select 2 seconds.
100 Select 4 seconds.
101 Select 8 seconds.
110 Select 16 seconds.
111 Select 32 seconds.

45 sel_pte_lp1 1 HCA (Hot / Cold Page Affinity) PTE format in use for LPAR 1.
0 Power ISA PTE format.

46 dis_rep_lp2 Control bit to disable PTE time base and reference bit array updates LPAR 2.
0 Reference bit array update disabled.
1 Reference bit array update enabled.

Bits Field Name Description

prefetch request queue

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 98 of 450
Version 1.3

16 March 2016

47:49 sel_tb_lp2 Encode bits to select TB bit that provides low-order 12-bit TB value LPAR 2.
000 Reserved.
001 Select 0.5 second.
010 Select 1 second.
011 Select 2 seconds.
100 Select 4 seconds.
101 Select 8 seconds.
110 Select 16 seconds.
111 Select 32 seconds.

50 sel_pte_lp2 1 HCA (Hot / Cold Page Affinity) PTE format in use for LPAR 2.
0 Power ISA PTE format.

51 dis_rep_lp3 Control bit to disable PTE time base and ref-bit array updates LPAR 3
0 Reference bit array update disabled.
1 Reference bit array update enabled.

Note: In single LPAR mode, all four partitions (en_rep_lpx and sel_tb_lpx and sle_pte_lpx) must be
set to the same value.

In 2 LPAR mode: en_rep_lp[0,1] and sel_tb_lp[0,1] and sel_pte_lp[0,1] must be set to the same
value; and en_rep_lp[2,3] and sel_tb_lp[2,3] and sel_pte_lp[2,3] must be et to the same value.

52:54 sel_tb_lp3 Encode bits to select TB bit that provides low-order 12-bit TB value LPAR 3.
000 Reserved.
001 Select 0.5 second.
010 Select 1 second.
011 Select 2 seconds.
100 Select 4 seconds.
101 Select 8 seconds.
110 Select 16 seconds.
111 Select 32 seconds.

55 sel_pte_lp3 1 HCA (Hot / Cold Page Affinity) PTE format in use for LPAR 0.
0 Power ISA PTE format.

56:63 reserved Reserved.

Bits Field Name Description

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 99 of 450

3.7.4 HID5 Register

Initial state: x‘0000_0000_0000_0000’
Preferred state: x‘4000_0001_0000_0000’

The HID5 Register is defined as follows.

Bits Field Name Description

0:12 reserved Reserved.

13:14 Throt_Dpf Hypervisor memory bandwidth control for data prefetch.
00 Medium
01 Low
10 High
11 Reserved

15 reserved Reserved.

16:29 reserved Reserved.

30:31 pte_plus_n PTE Plus n prefetching where n = 1 or 3.
00 Disable
10 PTE + 1
01 PTE + 3
11 Undefined

32:63 reserved Reserved.

3.7.5 Real Mode Offset (RMO) Region Sizes

The following RMO sizes are available for the POWER8 processor. The RMLS[34:37] field in the LPCR
defines the RMO sizes, as described below.

1000 - 32 MB
0011 - 64 MB
0111 - 128 MB
0100 - 256 MB
0010 - 1 GB
0001 - 16 GB
0000 - 256 GB

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 100 of 450
Version 1.3

16 March 2016

3.7.6 Hypervisor Real Mode Offset (HRMO) Register Update Sequence

Table 3-9. HRMOR Update Sequence

Master Slave

Thread sync up point 1 Thread sync up point 1

Change HID4[0:4] = 0000 (default in the POWER8 processor)

EA[0] = 1 EA[0] = 1

Thread sync up point 2 Thread sync up point 2

Change HRMOR

Thread sync up point 3 Thread sync up point 3

isync isync

slbia0 slbia0

isync isync

Thread sync up point 4 Thread sync up point 4

3.7.7 Core-to-Core Trace SPR

The Trace SPR is used to access enhanced instruction trace information from the processor core trace logic.
This 64-bit register is read only and has a privileged read access. There is a protocol associated with the use
of this register to coordinate gathering instruction trace images from the other processor core.

3.7.8 Trigger Registers

Writes to the trigger registers, named TRIG0, TRIG1, and TRIG2, can be inserted in the instruction stream to
cause triggers to the on-chip trace array debug logic. These are intended to be used for lab debug and
bringup only and architecturally behave as a NOP.

3.7.9 IMC Array Access Register

The Instruction Match CAM (IMC) array facility is used for performance monitoring instrumentation and for the
soft patch of instructions (this latter use is restricted for the support processor and is not available through the
SPR access to this register array). The array has privileged write access and user-level read access via this
SPR. Writes to the register array are used to configure the IMC, and reads return information about the
availability of registers within the facility.

3.7.10 Performance Monitor Registers

The performance monitor counter registers (PMC1 - PMC6), the performance monitor control registers
(MMCR0, MMCR1, MMCRA), and the sampled address registers (SIAR, SDAR) are supported in the
POWER8 processor core. The performance monitor counter registers PMC7 and PMC8 are not implemented
in the POWER8 processor core (an operation for these two performance counter registers will be treated as
NOP).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 101 of 450

3.7.11 Other Fixed-Point Instructions

The POWER8 processor core supports both the 32-bit mtmsr instruction and the 64-bit mtmsrd instruction.

The POWER8 processor core works to optimize the mtmsr instruction to help speed up the cases where little
or no synchronization is required (such as, updates to the EE bit).

Software must avoid placing mtmsr and mtmsrd instructions that change the SF bit at address
x‘00000000FFFFFFFC’ or x‘FFFFFFFFFFFFFFFC’.

3.8 Storage Control

3.8.1 Virtual and Physical Address Ranges Supported

The POWER8 processor core supports a 68-bit virtual address and a 50-bit physical (real) address.

3.8.2 Data Effective-to-Real-Address Translation (D-ERAT)

The POWER8 processor core includes a primary ERAT and secondary ERAT. The primary ERAT has four
copies of 48 entries. It is a fully-associative D-ERAT, each with binary LRU replacement policy (separate LRU
for each half in SMT2/4/8 mode), data effective-to-real address translation (D-ERAT) cache for fast transla-
tion of data effective addresses into physical (real) addresses.

In the POWER8 core, each entry of the D-ERAT contains translation information for a 4 KB, 64 KB, or 16 MB
block of effective storage, depending on the page size being used. Reference to a 1 MB or 16 GB page uses
64 KB or 16 MB entries in the D-ERAT, respectively.

In ST mode, 48 entries are available, and all four copies have the same content. In SMT2, SMT4, and SMT8
mode, 48 entries are available for threads on LS half 0, and 48 entries for LS half 1. The two ERATs on a half
have the same contents.

D-ERAT entries are created for real mode (MSR[DR] = ‘0’) and are shared by all threads in the same parti-
tion. Hypervisor real-mode entries are shared by all threads. Entries are invalidated via a CAM to clear the
function in support of slbia, slbie, tlbie, and mtsr instructions. It is parity and multi-hit protected, reports to
the FIR and completion on an error detect, hardware recovery via ABIST, and multi-hit is reported as a
machine check interrupt.

The secondary D-ERAT is the second-level translation cache for data addresses. It has 256 entries managed
in two 128-entry halves. It is a fully associative with FIFO replacement policy. In ST mode, 256 entries are
available. In SMT2, SMT4, and SMT8 mode, 128 entries are available for threads on LS half 0, and 128
entries for LS half 1.

According to the Power ISA, aliasing the I-bit storage attribute is prohibited. In the POWER8 core, due to the
caching of pages in the ERATs, software should avoid accessing the same real page with different values for
the I-bit storage attribute. Failure to follow this restriction may result in a cache paradox or other boundedly
undefined behavior.

least-recently used

Array built-in self test

First-in, first-out

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 102 of 450
Version 1.3

16 March 2016

D-ERAT I and G Bit Setting

The G and I bits are set based on Table 3-10.

Table 3-10. D-ERAT I and G Bit Setting

Condition

Resulting ActionMSR
[DR]

MSR
[HV] LPCR[0] HID4[33]

First
access
HV CI

Instruction

HID4[0:4]
RMSC
(above

line)

I G

1 x x x x x PTE(I) PTE(G) An entry is created with the I and G values set from
the PTE.

0 0 1 x x x PTE(I) PTE(G) Virtual real mode.
An entry is created with the I and G values set from
the PTE.

0 0 0 x x x 0 0 RMOR mode.
Set IG = ‘00’

0 1 x 0 yes no 1 0 Legacy RMSC mode.
If the first access is caused by a hypervisor CI load or
store (for example, ldcix, stdcix, and so on) is below
the guarded line established by HID4[0:4], storage is
G = ‘0’ and CI load/store access causes a DSI and
set DSISR(62) = ‘1’.

0 1 x 0 no no 0 0 Legacy RMSC mode.
If the first access is caused by any instruction other
than a hypervisor CI load or store is below the
guarded line established by HID4[0:4], storage is
G = ‘0’ and an entry is established as I = ’0’ and
G = ‘0’.

0 1 x 0 no yes 0 1 Legacy RMSC mode.
If the first access is caused by any instruction other
than a hypervisor CI load or store is above the
guarded line established by HID4[0:4], storage is
G = ‘1’ and an entry is established as I = ‘0’ and
G = ‘1’.

0 1 x 0 yes yes 0 1 Legacy RMSC mode.
If the first access is caused by a hypervisor CI load or
store (for example, ldcix, stdcix, and so on) is above
the guarded line established by HID4[0:4], storage is
G = ’1’ and an entry is established as I = ‘1’ and
G = ‘1’.

0 1 x 1 yes x 1 1 Page-based RMSC mode.
If the first access is caused by a hypervisor CI load or
store (for example, ldcix, stdcix, and so on), an
entry is established as I = ‘1’ and G = ‘1’.

0 1 x 1 no x 0 0 Page-based RMSC mode.
If the first access is caused by any instruction other
than a hypervisor CI load or store, storage is G = ‘0’
and an entry is established as I = ‘0’ and G = ‘0’.

In addition to the conditions shown in Table 3-10, the G bit is forced to a ‘1’ for the following cases:

• HID4[33] = 0, HV = 1, and the referenced address is greater that 16 TB.
• HID4[33] = 0, HV = 1, and the RMSC value is ‘00000’ or greater than ‘10001’ (Illegal value).
• HV = 1, PR = 0, EA(0) = 1, and EA(14 to 33) = ‘111111111111111111’.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 103 of 450

The I bit is forced to a ‘1’ for the following case:

• HV = 1, PR = 0, EA(0) = 1, and EA(14 to 33) = ‘111111111111111111’.

Caching-Inhibited Paradox Cases

If a caching-inhibited load instruction hits in the L1 data cache, the load data is serviced from the L1 data
cache and no request is sent to the NCU.

If a caching-inhibited store instruction hits in the L1 data cache, the store data is written to the L1 data cache
and sent to the NCU. Note that the L1 data cache and L2 cache are no longer coherent.

These scenarios are true both for instructions marked as caching-inhibited by the PTE I-bit and for the hyper-
visor caching-inhibited load and store instructions.

The POWER8 core supports the page-based real-mode storage control (RMSC) mechanism that allows
speculative access to DR = 0 space, if there is real memory there.

Because the content of each D-ERAT entry is the result of a page table search based on the contents of an
SLB entry, to maintain consistency with the SLB (or segment registers), the following instructions will cause
all entries that belong to the thread in the D-ERAT to be invalidated (these instruction do not invalidate D-
ERAT entries of the other thread).

• mtsr or mtsrin instructions - used for segment register changes in 32-bit operating systems

• slbia

The slbie instruction causes invalidation of a D-ERAT entry belonging to the thread (no impact to the other
thread) only if there is a perfect address match: EA[0:35] are matched for slbie for a small (256 MB) segment
and EA[0:23] are matched for slbie for a big (1 TB) segment.

The tlbie instruction (or the detection of snooped-tlbie operations) invalidates all D-ERAT entries (irrespective
of the thread) in the D-ERAT that have a perfect match. In other words, the entry is invalidated only if:

• EA[36:51] are matched for tlbie small page
• EA[36:47] are matched for tlbie 64 KB page
• EA[36:43] are matched for tlbie 1 MB page
• EA[36:39] are matched for tlbie 16 MB page
• EA[24:29] are matched for tlbie 16 GB page

Upon power-on, each D-ERAT entry is set to the invalid state.

3.8.3 Translation Lookaside Buffer (TLB)

The POWER8 core contains a unified (combined for both instruction and data), 2048-entry, 4-way set-asso-
ciative TLB (LRU-based replacement algorithm). In addition, the POWER8 core contains one 64-entry, fully-
associative I-ERAT (single-level effective-to-real translation) and four 48-entry, fully-associative D-ERATs.
The TLB is a cache of recently-used page table entries, and the ERATs are caches that contain translations
derived from information in the page table and SLB. The TLB and ERATs are loaded and managed by hard-
ware.

In the POWER8 core, the TLB entry stores the logic partition ID (LPID) in each TLB entry to indicate which
partition loaded that TLB entry. Because the virtual and real address space are the same for all software
threads within a logical partition, the TLB, which keeps the mapping from virtual-to-real address space, are
completely shared by the threads within a partition and there is no thread-ID bit needed in the TLB to identify

Noncacheable unit

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 104 of 450
Version 1.3

16 March 2016

which entry belongs to which thread. Different partitions have different mappings from virtual-to-real address
space, and, because of this, TLB entries cannot be shared between partitions. A given entry in the TLB can
be used by all the threads within a partition at the same time (however, a given entry in I-ERAT or D-ERAT,
cannot be shared by the two threads at the same time because the ERATs also contains information from the
effective to virtual address mapping), unless the entry is created by bypassing the SLB (that is, IR = 0 or
DR = 0 addresses). Threads in different partitions are not able to access TLB entries from another partition.

In the POWER8 core, TLB is indexed with the following hashed address (this includes reads from the TLB,
writes to the TLB, tlbie instructions, and snooped tlbie transactions).

Table 3-11. 256 MB Segments

Page Size Index

4 KB [VSID(45:49) XOR EA(43:47)] || EA(48:51)

64 KB [VSID(45:49) XOR EA(39:43)] || EA(44:47)

1 MB [VSID(45:49) XOR EA(36:40)] || EA(40:43)

16 MB VSID(45:49) || EA(36:39)

16 GB Does not exist

Table 3-12. 1 TB Segments

Page Size Index

4 KB [VSID(33:37) XOR EA(43:47)] || EA(48:51)

64 KB [VSID(33:37) XOR EA(39:43)] || EA(44:47)

1 MB [VSID(33:37) XOR EA(35:39)] || EA(40:43)

16 MB [VSID(33:37) XOR EA(31:35)] || EA(36:39)

16 GB [VSID(33:37) XOR EA(24:28)] || EA(26:29)

The POWER8 core supports hardware update of the storage access recording bits (reference and change)
into the memory-based page table.

The Power ISA has been enhanced to add an L bit, to indicate large page in the page table entry (PTE). This
bit is compared with the L bit of the SLB in translation mode for a hit during a table walk to reload the TLB on
a TLB miss.

The POWER8 core supports TLB hit under miss and four table concurrent table walks. The POWER8 core
also supports two outstanding I-ERAT misses (from the eight threads) and four outstanding D-ERAT misses
at the same time.

The POWER8 core supports lockless TLBIE operations.The architectural requirement that only one thread at
a time can execute tlbie/tlbsync instructions during a page table modification (section Page Table Updates
of Power ISA Book III) need not be followed. This was traditionally implemented with a single global lock for
the entire page table modification sequences. The term “lock-less” TLBIEs refers to the POWER8 core’s
ability to manage concurrent tlbie/tlbsync sequences from multiple threads without this global lock.

However, software must still ensure that concurrent, conflicting, racing PTE updates from more than one
thread do not occur (the hardware performs the updates in some fashion, but the end results is undefined
due to the racing of the updates to the same PTE entry) and therefore, software locks or some other synchro-
nization discipline are still required to prevent these collisions as necessary.”

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 105 of 450

The execution of tlbie instructions or the detection of snooped-tlbie operations off the bus cause an index-
based invalidate to occur in the TLB, if there is a match. In other words, an entry is invalidated only if there is
a perfect match of the effective address supplied by the tlbie operation and the content of the TLB entry.

The POWER8 core does not support the tlbia instruction.

Upon power-on, the POWER8 core initializes each TLB entry to the invalid state.

3.8.4 Large-Page Support

In addition to the normal 4 KB page size, the POWER8 core provides support for 64 KB, 1 MB, 16 MB, and
16 GB pages. Translation information for all these page sizes is kept in the TLB. Irrespective of the page size,
a given page takes up only one entry in the TLB.

If a virtual address is mapped into a small (large) page and then later on mapped into a large (small) page
without invalidating TLB entries between changing page size, a machine check interrupt can result with an
indication that a parity error occurred when the TLB was accessed to translate an effective address. The error
condition can be corrected by invalidating the entire TLB and SLB.

POWER8 also supports Multiple Page Sizes Per Segment (MPSS) as described in the Power ISA. Specifi-
cally, POWER8 supports mixing page size in a single segment with the following combinations only:

4K base / 64K actual
4K base / 16M actual
64K base / 16M actual

Table 3-13 shows the correspondence between PTE[L LP] values and SLBE[L LP] values.

Table 3-13. PTE and SLBE Correspondence

Entry
Number

PTE SLBE Base Page
Size

Actual Virtual
Page Size Notes

L LP L LP

1 0 rrrr rrrr 0 00 4 KB 4 KB 1

2 1 0000 0000 1 00 16 MB 16 MB

3 1 rrrr 0001 1 01 64 KB 64 KB 2

4 1 0000 0010 1 11 1 MB 1 MB

5 1 0000 0011 1 10 16 GB 16 GB

6 1 rrrr 0111 0 00 4 KB 64 KB 1

7 1 0000 1000 1 01 64 KB 16 MB 2

8 1 0011 1000 0 00 4 KB 16 MB 1

1. Entries 1, 6, and 8 all use SLB[L LP] = 000 encoding for base page size 4 KB but have unique PTE[L LP] encodings for actual page
size.

2. Entries 3 and 7 both use SLB[L LP] = 101 encoding for base page size of 64 KB but have unique PTE[L LP] encodings for actual
page size.

3. Unimplemented SLB page size encodings are treated the same as the ‘000’ case.
4. If the SLB page size is ‘110’ (16 GB) and the segment size is small (256 MB), hardware treats the SLB page size the same as the

‘000’ case.
5. The ‘r’ bits are part of the real page number for actual pages sizes less than 1 MB. They can be any value.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 106 of 450
Version 1.3

16 March 2016

3.8.5 PTE Prefetching

The POWER8 core supports the prefetching of PTE entries. This feature is enabled by setting the values in
HID5[30:31] as follows:

00 PTE prefetching is disabled.

01 PTE prefetching prefetches three additional PTE entries.

10 PTE prefetching prefetches one additional PTE.

11 Undefined.

This PTE prefetch feature works as follows. When a tablewalk is initiated to bring in a new PTE entry, the
VPN of that tablewalk request is incremented by one and a request is sent to bring the PTE group associated
with the incremented VPN into the L3 cache. Only the PTE groups associated with primary table walks are
requested. The VPN is only incremented in the lower 2 bits. If the incremented VPN would have crossed this
boundary, the lower two bits are set to ‘0’. If PTE prefetching is configured for prefetching three additional
PTE groups and the boundary is crossed, the prefetching logic continues to increment the lower 2 bits until all
three prefetches are sent.

3.8.6 Segment Lookaside Buffer (SLB)

The POWER8 core contains a unified (combined for both instruction and data), 32-entry, fully associative
SLB per thread (eight per processor core). Information derived from the SLB can also be cached in the
I-ERAT or the D-ERAT along with information from the TLB. As a result, many of the SLB management
instructions have effects on the ERATs as well as on the SLB itself. The POWER8 core supports the 1 TB
segment size, in addition to the usual 256 MB segments. Bit 0 of the SLB[B] field is ignored by POWER8 and
should be always set to ‘0’b per the Power ISA for unimplemented segment size encodings.

Because the SLB is managed by software (the operating system), it is possible that multiple entries can be
incorrectly set up to provide translations for the same effective address. If an effective address is translated
by more than one SLB entry (that is, the ESID fields of the entries are identical), a machine check interrupt
results with an indication that a parity error occurred when the SLB was accessed. When this happens the
hardware logically OR’s the data in the conflicting entries. The machine check handler can look at the SLB
contents to try to determine if conflicting entries have been provided. When a parity error occurs not due to
multiple entries, the entire SLB must be reloaded because the DAR does not contain an address indicating
which entry caused the parity error. If the source of the error was due to multiple entries, the conflicting
entries must be corrected for the translation to proceed, which might also be accomplished by reloading the
entire SLB with good entries.

3.8.7 Address Space Register

The Address Space Register (ASR) has been removed from the Power ISA.

virtual page number

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 107 of 450

3.8.8 Support for 32-Bit Operating Systems

The POWER8 core supports the optional bridge facilities and instructions for 64-bit implementations
described in the Bridge-to-SLB Architecture section of the Power ISA Book III-S version 2.07.

Associated with this support, the following optional instructions are supported:

• mtsr - Move to segment register

• mtsrin - Move to segment register indirect

• mfsr - Move from segment register

• mfsrin - Move from segment register indirect

• mtmsr - Move to machine state register (32-bit)

3.8.9 Reference and Change Bits

The POWER8 hardware performs reference and change bit updates to the page table.

The W and M bits in the PTE are assumed to be ‘01’ respectively. If the Change bit is updated, the W and M
bit in the PTE are set to ‘01’ respectively.

The POWER8 core provides a mode bit for determining whether or not speculative load instructions should
reload the TLB in the event of a miss (HID4[10]). If this mode bit is set to allow this behavior, the reference bit
can be set on behalf of speculative loads (that is, ones that never actually complete from the programs
perspective). Under no circumstances will the POWER8 processor core speculatively set the page table
change bit.

In the POWER8 core, load instructions that have a TLB miss but are denied access by storage protection,
cause a DSI, cause a DAWR DSI, cause an I = 1 DSI, or cause an alignment interrupt that still causes the
reference bit for the subject page to be set. Similarly, store type instructions that cause a DSI, cause a DAWR
DSI, cause an I = 1 DSI, or cause an alignment interrupt, set the change bit. On the other hand, the change
bit is not set, if a store instruction is denied access by page protection exception.

3.8.10 Storage Protection

The architecture defines whether the instruction fetch is permitted from a page marked “no access” as imple-
mentation dependent. In the POWER8 processor core, these instruction fetches are permitted to continue
without signaling an exception. The POWER8 core supports storage protection modes in the Power ISA, with
32 virtual-page class keys. AMOR and UAMOR are implemented as 32-bit SPRs.

3.8.11 Block Address Translation

Although this facility existed in earlier versions of the architecture, it is no longer part of the Power ISA. As a
result, the POWER8 core does not support block address translation.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 108 of 450
Version 1.3

16 March 2016

3.8.12 Real Mode Storage Control

The POWER8 core supports the ability to control cacheability of data and instruction accesses while in real
mode.

For the D-side and I-side, in HV = 1, the translation is loaded with G = 0 and 16 MB page size.

The POWER8 core supports RMSC for data storage and instruction storage. The legacy RMSC behavior is
also available under a HID4 bit control. The real memory in a system is often noncontiguous and the hyper-
visor data and instruction storage accesses can be scattered across the address space. The page-based
RMSC architecture and implementation allows speculative access safely in system memory. The first time
the access is made in DR = 0 and IR = 0 mode, it is done nonspeculatively. After the first access, a proper
D-ERAT entry and I-ERAT entry is established. Subsequent accesses to such a D-ERAT and I-ERAT entry
ensure that the access is made to system memory and therefore, can be done speculatively, providing higher
performance.

To change to or from the legacy RMSC behavior, an slbia is needed after the HID4 Register update.

3.8.13 Storage Access Modes - WIMG Bits

The POWER8 core always assumes W = 0 and M = 1 independent of the value of these bits in the page
table. Furthermore, when the hardware is performing a change bit update, it writes the W and M bits as W = 0
and M = 1. Per the Power ISA, accessing a page as both I = 0 and I = 1 is boundedly undefined. Software
should avoid aliasing the I-bit on a page basis.

Table 3-14 summarizes the treatment of the WIMG bits in the POWER8 core.

Table 3-14. WIMG Bits

WIMG Description

x1xx (except 1110) Treated as WIMG = 0111

x0x1 Treated as WIMG = 0011

x0x0 Treated as WIMG = 0010

1110 Treated as WIMG = 0010 and accesses are strongly ordered

For the noncacheable unit (NCU), the IG combination has the following meaning in the POWER8 core to
control the store ordering and store gathering.

Table 3-15. IG Bits

IG Description

11 No gather, no reorder in NCU is allowed

10 Gather, reorder in NCU is allowed

In IG = ‘11’ mode, cache-inhibited loads cannot be reordered relative to loads, and cache-inhibited stores
cannot be reordered relative to cache-inhibited stores. Cache-inhibited loads can be reordered relative to
cache-inhibited stores and vice-versa (if it is necessary to maintain ordering between loads and stores,
barrier instructions must be used). There is no defined ordering between cache-inhibited load or store opera-
tions from different threads.

In IG = ‘11’ mode, gathering is not permitted for either load or store operations within or between threads.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 109 of 450

In IG = ‘10’ mode, cache-inhibited loads or stores from a given thread can be gathered and can be reordered.
This mode allows for higher performance with a certain loss of control of the order in which the operations are
completed or whether operations are gathered (barriers can be used where necessary to re-establish order).
There is no defined ordering between cache-inhibited load or store operations from different threads.

3.8.14 Speculative Storage Accesses

The POWER8 processor core can execute load instructions to nonguarded storage speculatively. This can
occur when a load instruction is encountered on a predicted branch path, or when a logically preceding
instruction causes an interrupt. As a result, it is possible for a speculative load that misses in the on-chip
cache hierarchy to initiate an external storage request even if that load instruction is not actually executed as
part of the true instruction stream.

3.8.15 mtsr, mtsrin, mfsr, and mfsrin Instructions

Most of the optional Power ISA bridge support for 32-bit operating systems is supported by the POWER8
core. As part of that support, the mtsr, mtsrin, mfsr, and mfsrin instructions are supported.

3.8.16 TLB Invalidate Entry (tlbie and tlbiel) Instructions

The POWER8 processor core implements the tlbie and tlbiel instruction described in the architecture. Both
of these instructions support small and large pages. The tlbiel instruction is never sent outside the processor
core.

The tlbie (large or small page) instruction performs an index-based (congruence class) invalidate of the TLB
(if there is a perfect match of the effective address of the tlbie operation and the content of the TLB entry).
Both I-ERAT and D-ERAT entries are invalidated when there is a perfect match.

The tlbsync instruction is used to synchronize the completion of the tlbie instruction. Only one tlbsync
instruction is required to synchronize the completion of a group of tlbie instructions.

The POWER8 core also uses the appropriate address bits from the TLBIE transaction to index into both
ERATs and then invalidates an entry (if any), that matches the effective address.

The POWER8 core also supports two groups of pages TLBIE instructions: one for eight consecutive 4 KB
pages TLBIE with AP encode RB[56:58] = ‘110’ and another one for eight consecutive 64 KB pages TLBIE
with LP encode RB[46:51] = ‘001010’.

The tlbie is a hypervisor-only instruction. An attempt to execute it while not in hypervisor mode causes a priv-
ileged type of program interrupt. In the POWER8 core, the tlbiel is a privileged instruction. Any attempt to
execute it while in the problem state causes a privileged type of program interrupt.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 110 of 450
Version 1.3

16 March 2016

Table 3-16 shows the legal segment size and page size specifications for tlbie and tlbiel for the POWER8
core when L = ‘0’.

Table 3-16. Segment Size and Page Size Specifications for tlbie and tlbiel (L = 0)

RB[49:51] RB{54:55]
Segment Size

RB[63]
L

RB[56:58]
AP

(Same as SLB[L||LP]
Encoding)

Actual Page
Size to be Invalided

vvv 00 0 000 4 KB

vvv 00 0 101 64 KB

vvv 00 0 100 16 MB

000 00 0 110 8 consecutive 4 KB pages aligned on
32 KB boundary

vvv 01 0 000 4 KB

vvv 01 0 101 64 KB

vvv 01 0 100 16 MB

000 01 0 110 8 consecutive 4 KB pages aligned on
32 KB boundary

1. All other values must not be used when L = ‘0’.
2. RB[54:55] = ‘00’ corresponds to a 256 MB segment size and RB[54:55] = ‘01’ corresponds to 1 TB segment size.
3. 16 GB page with a small segment (RB(54:55]= ‘00’) is not a permitted combination.

Table 3-17 shows the legal segment size and page size specifications for tlbie and tlbiel for the POWER8
core when L = ‘1’.

Table 3-17. Segment Size and Page Size Specifications for tlbie and tlbiel (L = 1)

RB[54:55]
Segment Size

RB[63]
L

RB[56:58]
AP

(same as SLB[L||LP] encoding)
Base Page Size Actual Page Size

to be Invalided

00 1 0000 0000 16 MB 16 MB

00 1 VVVV 0001 64 KB 64 KB

00 1 0000 0010 1 MB 1 MB

00 1 0000 1000 64 KB 16 MB

00 1 v000 1010 64 KB 8 consecutive 64 KB pages on
512 KB boundary

01 0 0000 0000 16 MB 16 MB

01 1 VVVV 0001 64 KB 64 KB

01 1 0000 0010 1 MB 1 MB

01 1 0000 0011 16 GB 16 GB

01 1 0000 1000 64 KB 16 MB

01 1 v000 1010 64 KB 8 consecutive 64 KB pages on
512 KB boundary

1. All other values must not be used when L = ‘1’.
2. ‘v’ corresponds to AVA (AVPN) bits (and thus can be any value).
3. RB[54:55] = ‘00’ corresponds to 256 MB segment size and RB[54:55] = ‘01’ corresponds to 1 TB segment size.
4. 16 GB page with a small segment (RB[54:55] = ‘00’) is not a permitted combination.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 111 of 450

3.8.17 TLB Invalidate All (tlbia) Instruction

The tlbia instruction is not implemented in the POWER8 core and if detected causes a hypervisor emulation
assistance interrupt. The effects of the instruction can easily be emulated by executing a series of tlbiel
instructions (512 in the POWER8 core, for the 512 congruence classes) by incrementing the effective
address bits [43:51] through their full range, and by setting the IS field of the tlbiel instruction to the appro-
priate values as described in the Power ISA. To invalidate all entries irrespective of the LPAR ID, MSR[HV]
must equal ‘1’. A special HID4 bit can be used to force the core to ignore the IS field and always invalidate the
entire congruence class.

3.8.18 TLB Synchronize (tlbsync) Instruction

On a given thread, the tlbsync instruction forces any previous tlbie instructions to complete before the
tlbsync is allowed to complete. The instruction is implemented as described in the Power ISA.

3.8.19 Page Replacement Policy

The POWER8 core supports an optional PTE format, which must be used when the optional page replace-
ment policy (hot/cold page affinity) feature is enabled by setting HID4 bits: 40 (LPAR0), 45 (LPAR1), 50
(LPAR2), and 55 (LPAR3). A reference-history array in memory contains Reference-bit values for recent
sampling periods. On the first TLB miss for a page in the sampling period, the reference-bit array is right
shifted (with zero fill) by the number of sample periods since the last TLB miss, and then the high-order bit is
set to a one.

The PTE entry has been reorganized to support this function.

• B bits in PTE DW0 bits [0:1] move to PTE DW1 bits [4:5]
• REF_ARRAY enable bit in PTE DW1 bit 6
• 12 bits PTE_UPD_TIME in PTE DW0 bits [0:11]

The LSU examines PTE_UPD_TIME stamp during tablewalk TLB reload. A 12-bit CPU_UPD_TIME is gener-
ated from time base + real address bits to compare against the PTE_UPD_TIME.

HID4[37:39] define sample periods from 0.5 second to 32 second.

• 000 - Reserved
• 001 - 0.5 second
• 010 - 1 second
• 011 - 2 seconds
• 100 - 4 seconds
• 101 - 8 seconds
• 110 - 16 seconds
• 111 - 32 seconds

HID4[36] controls the PTE time base and reference-bit array updates; ‘1’ enables a reference-bit array update
and ‘0’ disables a reference-bit array update. The HID4[40] selects new or old PTE format; ‘1’ for new PTE
format and ‘0’ for old PTE format.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 112 of 450
Version 1.3

16 March 2016

Time-base bits, TB[18:43], are shadowed in the LSU. TB[35] is the 0.5 second bit and TB[29] is the 32
second bit. The high-order 12-bit CPU_UPD_TIME is generated from the 20-bit adder as follows.

• 0.5 second - TB[24:43] + [000000000000||Real Addr(40:47)]
• 1 second - TB[23:42] + [000000000000||Real Addr(40:47)]
• 2 second - TB[22:41] + [000000000000||Real Addr(40:47)]
• 4 second - TB[21:40] + [000000000000||Real Addr(40:47)]
• 8 second - TB[20:39] + [000000000000||Real Addr(40:47)]
• 16 second - TB[19:38] + [000000000000||Real Addr(40:47)]
• 32 second - TB[18:37] + [000000000000||Real Addr(40:47)]

If CPU_UPD_TIME does not equal PTE_UPT_TIME, the LSU sends the 12-bit CPU_UPD_TIME with PTE
address to the nest through the store port to update both the PTE and Reference-bit arrays. The
TTYPE = ‘100000’ is for PTE update and TTYPE = ‘100011’ is for Reference-bit array update.

Table 3-18 defines how the Reference-bit array is updated.

Table 3-18. Reference-Bit Array Update

HID4[40]
Page Based PTE Format

HID4[36]
Enable Reference-Bit

Array Function

PTE DW1[6]
Enable Reference-Bit

Array Update

CPU_UPD_TIME =
PTE_UPT_TIME

Reference-Bit Array
Update

0 0 X X Not Updated

0 1 X X Not Updated

1 0 X X Not Updated

1 1 0 X Not Updated

1 1 1 1 Not Updated

1 1 1 0 Updated

3.8.20 Support for Store Gathering

The POWER8 core performs gathering of cacheable stores to reduce the store traffic into the L2 cache. For
cacheable stores, the gathering occurs in L2 store queues that sit above the L2 cache. The store queue is
shared by the threads. The store queue is comprised of two banks of sixteen 64-byte wide, fully-associative
entries or gather stations. Stores can be gathered while architecturally permitted (that is, there is no inter-
vening barrier operation) and the matching address is valid in the store queue. The conditions for pushing the
store queue data into the L2 cache are not visible to the programmer.

Gathering of cache-inhibited stores is also supported and can be disabled with a mode bit in the
noncacheable unit (NCU) configuration register. There are sixteen 64-byte gather stations in the NCU.

3.8.21 Cache Coherency Paradoxes

Accesses to a given cache line as both cacheable and caching inhibited are not supported in either the Power
ISA nor the POWER8 chip. Because the value of the I-bit is cached by the ERATs inside the processor core,
cacheable accesses may be performed speculatively and thus, software should avoid alias the I-bit (that is,
caching-inhibited bit) on a per page basis. Failure for software to adhere to this restriction can lead to cache
corruption.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 113 of 450

3.8.22 Handling Parity Error, Multi-Hit, and Uncorrectable Errors

3.8.22.1 Parity Error

If there is a parity error in the D-cache, I-cache, D-ERAT, I-ERAT, TLB or several other register files, SRAM
dataflow or control structures (but not the SLB), the POWER8 core sets the relevant FIR bit and initiates the
instruction retry and recovery (IRR) process to “clean up” all the architected states and flush the caches,
ERATs, and TLB, but keep the SLB as is. Software restores the SLB. After the recovery process, a hypervisor
maintenance interrupt (HMI) is generated. On a successful recovery, the HMER indicates a successful
recovery.

If the same parity error occurs several times and reaches a threshold, the hypervisor can decide that the core
is nonfunctional. The threshold counter is maintained by the hypervisor in software.

HID0[13] must be set to ‘0’, otherwise processor recovery will not work.

Note: The instruction IRR process is engaged for detection of any recoverable parity error in the core or due
to the firing of a control checker.

There is a separate FIR bit and FIR extension bits for a parity error in the I-cache, D-cache, SLB, D-ERAT,
I-ERAT, TLB, and a few other structures. For all the other register files, there is one shared FIR bit to indicate
parity error.

3.8.22.2 Multi-Hit

If there is a multi-hit in the D-ERAT, TLB, or SLB, the core finishes the operation with a machine check inter-
rupt and sets the proper DSISR bit to indicate where the multi-hit was detected.

A multi-hit in the D-ERAT and SLB can occur due to a hardware failure. Multi-hit means more than one entry
matched the EA in the D-ERAT (ESID in the case of an SLB). Due to their CAM structure, the result is a
“bitters logical or” of the RA of the multiple entries (VSID in case of SLB). Because of this “bit-wise logical or”,
multi-hit is very likely to generate a parity error as well.

Because the SLB is managed by software with the Power ISA, a software bug can result in a multi-hit in SLB
structures. There is no known case of multi-hit in I-ERAT that can produce a wrong result.

There are separate FIR bits for a multi-hit in the D-ERAT, TLB and SLB.

3.8.22.3 Both Multi-Hit and Parity Error

If both multi-hit and parity errors happen in the D-ERAT or TLB, the processor core initiates an instruction
retry and recovery (IRR) process. No machine check is presented, but, as usual, after the recovery operation
the processor core provides an HMI interrupt.

For SLB, any error causes the processor to take a machine check interrupt. The FIR bit setting indicates both
multi-hit and parity error.

static random-access memory

Hypervisor Maintenance Exception Register

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 114 of 450
Version 1.3

16 March 2016

3.8.22.4 Uncorrectable Error Handling

If there is an uncorrectable error (UE) for a translate or a load operation, the instruction will finish with a
machine check indication to the ISU. The instruction is flushed and re-executed without generating any
machine check, and a counter is maintained to see how many UEs occurred. If the UE occurs more than a
threshold, a MC interrupt is taken. For caching-inhibited load operation, a MC interrupt is taken on the first
occurrence of the UE.

For the instruction side (I-side), if an instruction is executed and in the nonspeculative path, only then is it
treated as a UE. Otherwise, the I-side UE handling mechanism is similar to the D-side.

The core provides the EA of the LSU operation that caused the UE in the DAR register. For a UE detected by
the IFU for instruction fetches, SRR0 is set to the EA.

Table 3-19 summarizes how the POWER8 processor handles parity, multi-hit, and unrecoverable errors.

Table 3-19. Summary of POWER8 Behavior on Parity Error, Multi-Hit, and Uncorrectable Error

Parity Error Multi-Hit Both Parity Error and
Multi-Hit

Uncorrectable Error
(UE)

SLB: I-side translation MC, SRR1, SRR0 MC, SRR1, SRR0 MC, SRR1, SRR0 N/A

SLB: D-side translation, SLBFEE, MFSLB MC, DSISR, DAR MC, DSISR, DAR MC, DSISR, DAR N/A

TLB: I-side translation IRR, HMI MC, SRR1, SRR0 IRR, HMI N/A

TLB: D-side translation, MFTLB IRR, HMI MC, DSISR, DAR IRR, HMI N/A

D-ERAT IRR, HMI MC, DSISR, DAR IRR, HMI N/A

Tablewalk: I-side initiated IRR, HMI N/A N/A MC, SRR1, SRR0

Tablewalk: D-side initiated IRR, HMI N/A N/A MC, DSISR, DAR

Load IRR, HMI N/A N/A MC, DSISR

CI Load MC, DSISR N/A N/A MC, DSISR

Store IRR, HMI N/A N/A MC, DSISR

Instruction fetch IRR, HMI N/A N/A MC, SRR1, SRR0

Any other structure (I-ERAT, other Regfile,
I-cache, D-cache and other SRAMs, data-
flow hardware control checker)

IRR, HMI N/A N/A N/A

1. MC is a machine check interrupt, IRR is an instruction retry and recovery, HMI is a hypervisor maintenance interrupt, and SRR0,
SRR1, DSISR, DAR are various SPRs set on a machine check interrupt. In the TLB, a multi-hit cannot generate a parity error, but
a parity error can generate a multi-hit. In the SLB and D-ERAT, multi-hit probably generates a parity error.

3.8.22.5 TLB Parity Error and Multi-Hit Action

Parity = 0 and Multi-hit = 0: No action.

Parity = 1 and Multi-hit = 0: Parity error detected, IRR, followed by HMI (no machine check).

Parity = 0 and Multi-hit = 1: This case is probably caused by software setting up two TLB entries pointing to
the same VSID.

Parity = 1 and Multi-hit = 1: Probably multiple bits flipped due to a soft-error that caused the parity error, but
also made two VSIDs look the same. The POWER8 core does IRR and then
HMI.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 115 of 450

3.8.23 Interrupts

3.8.23.1 Interrupt Vectors

Exceptions implemented in the POWER8 core are listed in Table 3-20.

Table 3-20. Interrupt Vector

Exception Type Exception Value

System Reset 0X00100

Machine Check 0X00200

Data Storage Interrupt 0X00300

Data Segment Interrupt 0X00380

Instruction Storage Interrupt 0X00400

Instruction Segment Interrupt 0X00480

External Interrupt 0X00500

Alignment Interrupt 0X00600

Program Interrupt 0X00700

Floating-Point Unavailable 0X00800

Decrementer Interrupt 0X00900

Hypervisor Decrementer Interrupt 0X00980

Directed Privileged Doorbell Interrupt 0X00A00

Reserved 0X00B00

System Call 0X00C00

Trace Interrupt 0X00D00

Hypervisor Data Storage Interrupt 0X00E00

Hypervisor Instruction Storage Interrupt 0X00E20

Hypervisor Emulation Assistance Interrupt 0X00E40

Hypervisor Maintenance Interrupt 0X00E60

Directed Hypervisor Doorbell Interrupt 0X00E80

Performance SPMC Interrupt 0x00EE0

Performance Interrupt 0X00F00

VMX Unavailable Interrupt 0X00F20

VSX Unavailable Interrupt 0X00F40

Facility Unavailable Interrupt 0X00F60

Hypervisor Facility Unavailable Interrupt 0X00F80

Soft Patch Interrupt 0X01500

Debug Interrupt 0X01600

Supervisor-level performance monitor counter

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 116 of 450
Version 1.3

16 March 2016

3.8.23.2 Interrupt Definitions

Table 3-21 describes the interrupts that have been added to the POWER8 processor core.

Table 3-21. Interrupt Vectors for the POWER8 Core

Exception Type Exception Value

Directed Privileged Doorbell Interrupt x‘00A00’

Directed Hypervisor Doorbell Interrupt x‘00E80’

Facility Unavailable Interrupt x‘00F60’

Hypervisor Facility Unavailable Interrupt x‘00F80’

In addition to the interrupt types defined in the Power ISA, the POWER8 core supports several implementa-
tion-specific interrupt types. These are summarized in Table 3-22 and described in more detail in the subse-
quent sections

Table 3-22. Implementation-Specific Interrupt Types

Exception Type Exception Value

Performance SPMC Interrupt x‘00EE0’

Implemented MSR and SRR1/HSRR1 Bits

Table 3-23. Implementation MSR and SRR1/HSRR1 Bits (Sheet 1 of 2)

Bits MSR SRR1/HSRR1

0 SF SF

1 Reserved Reserved

2 Not Implemented Not Implemented

3 HV HV

4 Not Implemented Not Implemented

5 Reserved Reserved

6:28 Not Implemented Not Implemented

29:30 TS (Transactional State) TS (Transactional State)

31 TM (Transactional Memory Available) TM (Transactional Memory)

32 Not Implemented Not Implemented

33 Not Implemented Specific Interrupt Information

34 Not Implemented Not Implemented

35:36 Not Implemented Specific Interrupt Information

37 Not Implemented Not Implemented

38 VMX VMX

39 Not Implemented Not Implemented

40 VSX VSX

41 Not Implemented Not Implemented

42:47 Not Implemented Specific Interrupt Information

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 117 of 450

48 EE EE

49 PR PR

50 FP FP

51 ME ME

52 FE0 FE0

53 SE SE

54 BE BE

55 FE1 FE1

56 US US

57 Not Implemented Not Implemented

58 IR IR

59 DR DR

60 Not Implemented Not Implemented

61 PMM PMM

62 RI RI

63 LE LE

Table 3-23. Implementation MSR and SRR1/HSRR1 Bits (Sheet 2 of 2)

Bits MSR SRR1/HSRR1

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 118 of 450
Version 1.3

16 March 2016

3.8.23.3 System Reset Interrupt

The system reset interrupt is a non-maskable, asynchronous interrupt that is caused by an SCOM command
for a soft reset.

Note: There is no explicit SRESET pin; SRESET must be invoked from the service processor.

Table 3-24. System Reset Interrupt

Register Bits Description

SRR0 0:63 Set to the effective address of the instruction that the processor would have.

SRR1 0:31 Implemented bits loaded from the MSR.

32 Set to ‘0’.

33 LPAR mode switch occurred while the thread was in power savings mode.

35:36 Set to ‘0’.

42:45 Interrupt caused by IFU detection of a hardware uncorrectable error (UE)
0000 Reserved by pervasive function.
0010 Interrupt caused by SCOM when not in power-saving mode or caused by back-to-back

SRESET.
0011 Interrupt caused by hypervisor door bell.
0101 Interrupt caused by privileged door bell.
0100 Interrupt caused by SCOM when in power-saving mode.
0110 Interrupt caused by decrementer wake-up when in power-saving mode.
1000 Interrupt caused by external interrupt wake-up when in power-saving mode.
1010 Interrupt caused by HMI wake-up when in power saving mode.
1100 Interrupt caused by implementation-specific wake-up when in power-saving mode.

46:47 Indicates if the interrupt occurs when the processor is in power-saving mode.
00 Interrupt did not occur while the processor was in power-saving mode.
01 Interrupt occurred while the processor was in power saving mode. The state of all

resources was maintained as if the processor was not in power-saving mode
10 Interrupt occurred while the processor was in power-saving mode. The state of some

resources was not maintained but the state of all hypervisor resources was maintained as
if the processor was not in power-saving mode and the state of all other resources is such
that the hypervisor can resume execution.

11 Interrupt occurred while the processor was in power-saving mode. The state of some
resources was not maintained, and the state of some hypervisor resources was not main-
tained or the state of some resources is such that the hypervisor cannot resume execution.

62 Loaded from MSR[62] if recoverable. Otherwise set to zero

Others Implemented bits loaded from MSR.

The POWER8 core implements a 1-deep queue to remember the reason of a subsequent system reset inter-
rupt while a system reset interrupt is pending. The reason of the most important subsequent system reset
interrupt is remembered per the following priority:

1. Hypervisor doorbell initiated system reset
2. Privileged doorbell initiated system reset
3. SCOM-initiated system reset
4. HMI-initiated system reset
5. External-initiated system reset
6. Decrementer-initiated system reset
7. Implementation-specific initiated system reset

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 119 of 450

3.8.23.4 Machine Check Interrupt

The are several possible causes of machine check interrupts in the POWER8 chip, some of which are gener-
ally recoverable and some of which are non-recoverable.

The following causes of machine check interrupts are precise and synchronous with the instruction that
caused the operation which encountered the error (that is, SRR0 contains the address of the instruction that
caused the operation).

1. The detection of either a parity error, or a multi-hit error, or both in the SLB during the execution of a load,
store SLBFEE, or MFSLB instruction. If the interrupt is caused by a soft error, executing the appropriate
sequence of instructions in the machine check handler program clears the error condition without causing
any loss of state, permitting the interrupted program to be resumed if MSR[RI] was a ‘1’ when the instruc-
tion that encountered the error was executed.

2. If there is a multi-hit in D-ERAT or TLB, the core finishes the operation with a machine check interrupt and
sets the proper DSISR bit to indicate where the multi-hit occurred.

3. If there is an uncorrectable ECC error when a load instruction is executed or when the page table is being
searched in the process of translating an address, the instruction finishes with a machine check indication
to the instruction sequencing unit. The instruction is flushed and re-executed without generating any
machine check. A counter is maintained to see how many UEs occurred. If the UE occurs more than a
pre-established threshold, a machine check interrupt is taken.

4. For a caching-inhibited load operation, the machine check interrupt is taken on the first occurrence of the
UE.

5. For the I-side, if an instruction is executed and the instruction is in the nonspeculative path, only then will
it be treated as a UE. Otherwise, the I-side UE handling mechanism is similar to the D-side.

In the cases described in items (2), (3), (4) and (5), no state is lost in the processor, but recovery of the
correct data might not be possible.

For more traumatic errors or hard errors, these characteristics cannot be reliably provided on a machine
check because it is likely that the failure will prevent reliable execution. Additionally, a machine check inter-
rupt that occurs when MSR[ME] = ‘0’ results in a checkstop.

In the POWER8 core, there is no asynchronous machine check interrupt. A machine check interrupt is taken
when the machine check input pin is asserted, if enabled by HID0[32] = ‘1’. The FIR, debug logic, and hang
recovery logic can also be programmed to induce machine check interrupts for various error conditions. In
general, the POWER8 core works hard to make these interrupts recoverable, but there are some scenarios
where it cannot achieve this. Software can use the MSR[RI] bit to help identify the cases where the machine
check interrupt is recoverable.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 120 of 450
Version 1.3

16 March 2016

Information about the suspected source of the error condition is logged into either the SRR1 Register, the
DSISR Register, or both as defined in Table 3-25 for synchronous machine checks.

Table 3-25. Synchronous Machine Checks

Register Bits Description

SRR0 0:63 Effective address of the next instruction that would have executed if the machine check inter-
rupt was not taken. For cases where this is a recoverable machine check due to a load that
has surfaced an error, this will be the address of the load instruction itself. (The POWER8 core
allows the instruction to execute to surface the error, but inhibits the commitment of the
results.) For cases where this is a recoverable machine check due to an instruction fetch sur-
facing an error, this will be the address of an instruction that initiated the memory/cache
access.

SRR1 42 Interrupt caused by load/store detection of error (see DSISR).

36, 43:45 Interrupt caused by instruction fetch, indicated by the following encoding:
0000 Reserved.
0001 Interrupt caused by a hardware uncorrectable error detected while doing an instruc-

tion fetch (but not translation related).
0010 Interrupt caused by an SLB parity error while translating an instruction fetch address.
0011 Interrupt caused by an SLB multiple hit, while translating an instruction fetch address.

Note: This condition occurs if the ESID fields of two or more SLB entries contain the
same value.

0100 Interrupt caused by an I-ERAT multi-hit error.
0101 Interrupt caused by a TLB multiple-hit error detected while translating an instruction

fetch address. Note: This condition occurs if an address is mapped to both a small
and large page in the SLB. This condition can also occur due to a software bug, when
a software-managed TLB mechanism is used.

0110 Interrupt caused by a hardware UE detected while doing a TLB reload for I-side.
0111 Reserved.
1000 Interrupt caused by an L2 abort on an instruction fetch due to foreign link time out.
1001 Interrupt caused by an L2 abort on an instruction tablewalk due to foreign link time

out.
1011 Reserved.
11xx Reserved.

62 Loaded from MSR[62] if recoverable. Otherwise, set to zero.

others Implemented bits loaded from MSR.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 121 of 450

DSISR Implementation Note: All the bits have been implemented in hardware.

Machine Check Interrupt Handler Notes:

As mentioned previously, the machine check interrupt handler is expected to help hardware recover from
certain types of D-ERAT, TLB, and SLB errors detected by the hardware. In general terms, the interrupt
handler must check whether or not the machine check interrupt is recoverable (by looking at the state of the
RI bit in SRR1). It must determine the type of error that caused the machine check (by looking at the state of
the SRR1 and DSISR registers). It must flush the contents of the array that reported the detected error (this
process is slightly different for each of the possible arrays). Finally, it must return to the interrupted process.

DSISR 32:47 All zeros.

48 Interrupt caused by a UE deferred error, but not for tablewalk (D-side only).

49 Interrupt caused by a UE deferred error during a tablewalk (D-side).

50 Nest abort.

51 Nest abort for tablewalk.

52 Interrupt caused by a D-ERAT multi-hit.

53 Interrupt caused by a TLB multi-hit due to translation (D-side only) or MFTLB operation.

54 Secondary D-ERAT multi-hit.

55 Interrupt caused by a SLB parity error (translate lookup or mfslbfee) due to a translation
(D-side only), SLBFEE, or MFSLB instruction.

56 Interrupt caused by an SLB multi-hit (might not be recoverable) for translation (D-side only),
SLBFEE, or MFSLB instruction.

57 Zero.

58:63 All zeros.

DAR 0:63 Effective address computed by a load or store instruction that caused the operation that
encountered a parity error, or multi-hit, or both in the SLB, or which encountered a multi-hit in
the TLB, or which encountered a multi-hit in D-ERAT, or which encountered an uncorrectable
error (UE) while attempting to reload a TLB entry. For all other types of machine check inter-
rupts, the DAR is undefined (including the case where the operand of the load instruction con-
tains a UE).

1. SLB parity error, multi-hit, or both: DAR is loaded with the EA of the target of the load or
store instruction that caused the error.

2. TLB multi-hit: DAR is loaded with the EA of the target of the load or store instruction that
caused the error.

3. D-ERAT multi-hit: DAR is loaded with the EA of the target of the load or store instruction
that caused the error.

4. UE on D-side table walk: DAR is loaded with the EA of the target of the load or store
instruction.

5. UE on instruction fetch: DAR is undefined.
6. UE on I-side tablewalk: DAR is undefined.
7. UE on load or store instruction: DAR is undefined (EA is not available in LMQ for loads, so

DAR cannot be loaded).

Table 3-25. Synchronous Machine Checks

Register Bits Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 122 of 450
Version 1.3

16 March 2016

3.8.23.5 Hypervisor Maintenance Interrupt

The POWER8 hypervisor maintenance interrupt replaces the malfunction alert and thermal interrupt; and
provides support for the recovery function. The Hypervisor Maintenance Exception Enable Register (HMEER)
contains the sources of the interrupt, which can be masked by setting the HMEER enable bits to zero. The
Hypervisor Maintenance Exception Register (HMER) setting indicates a successful recovery.

3.8.23.6 External Interrupt

An external interrupt is classified as being either a direct external interrupt or a mediated external interrupt.
Both cause an interrupt to 0x500.

Direct External Interrupt

The direct external interrupt is signaled by the assertion of the external interrupt input signal. The external
interrupt signal must remain asserted until the processor has actually taken the interrupt. Failure to meet this
requirement can lead the processor to not recognize the interrupt request.

When LPES = ‘0’, the following registers are set.

Table 3-26. Direct External Interrupt (LPES = ‘0’)

Register Bits Description

HSRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute
next if no interrupt conditions were present.

HSRR1 33:36 Set to ‘0’.

42:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA.

When LPES = ‘1’, the following registers are set.

Table 3-27. Direct External Interrupt (LPES = ‘1’)

Register Bits Description

SRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute
next if no interrupt conditions were present.

SRR1 33:36 Set to ‘0’.

42:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 123 of 450

Mediated Exernal Interrupt

Mediated external interrupts are caused by the LPCR[MER] = ‘1’, when the thread is in privileged (supervisor)
or problem state mode.

When LPES = ‘0’, the following registers are set.

Table 3-28. Mediated External Interrupt (LPES = ‘0’)

Register Bits Description

HSRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute
next if no interrupt conditions were present.

HSRR1 33:36 Set to ‘0’.

42 Set to ‘1’.

43:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA.

When LPES = ‘1’, the following registers are set.

Table 3-29. Mediated External Interrupt (LPES = ‘1’)

Register Bits Description

SRR0 0:63 Set to the effective address of the instruction that the thread would have attempted to execute
next if no interrupt conditions were present.

SRR1 33:36 Set to ‘0’.

42:47 Set to ‘0’.

Others Loaded from the MSR.

MSR – See the Power ISA.

3.8.23.7 Alignment Interrupt

See Section 3.1.4.2 for details on when the POWER8 core takes alignment interrupts.

Table 3-30 shows how the DSISR and DAR are set for alignment interrupts.

Table 3-30. Alignment Interrupt

Register Bits Description

DSISR 32:63 Unchanged.

DAR 0:63 See Table 3-2 on page 46 and Table 3-3 on page 54 on how the DAR is set on alignment
interrupts.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 124 of 450
Version 1.3

16 March 2016

3.8.23.8 Trace Interrupt

The trace interrupt is taken when the single-step trace-enable bit (MSR[SE]) or the branch trace enable bit
(MSR[BE]) is set and an instruction successfully completes. After a trace interrupt is taken, SRR0, SRR1,
SIAR, and SDAR are set as shown in Table 3-31.

Table 3-31. Trace Interrupt

Register Bits Description

SRR0 0:63 Set as specified in the architecture.

SRR1 0:32 Implemented bits loaded from the MSR.

33:34 ‘10’

35 Set for a load instruction; otherwise, cleared.

36 Set for a store instruction; otherwise, cleared.

37:41 Loaded from the MSR.

42 Set for a lbarx/lharx/lwarx/ldarx/lqarx or stbcx./sthcx./stwcx./stdcx./stqcx. instruction; oth-
erwise, cleared.

43 Set to a ‘1’ if a CIABR trace.

44:47 Set to ‘0’.

48:63 Implemented bits loaded from the MSR.

Note: Bit 35 and 36 are not set if an X-form Load String or Store String instruction specifies an operand length of 0.

SIAR 0:63 Set to the effective address of the traced instruction; undefined if a CIABR trace.

SDAR 0:63 If the instruction that took the trace interrupt was a storage access instruction, the SDAR is set
to the effective address of the storage access. SDAR is not set if an X-form Load String or
Store String instruction specifies an operand length of 0; undefined if a CIABR trace.

The contents of SIAR and SDAR are undefined until a trace interrupt occurs.

3.8.23.9 Performance Monitor Interrupt

The performance monitor interrupt is signaled when the MSR[EE] bit is set, the MMCR0[PMAE] bit is set, and
any of the performance monitor counters overflow (this includes the eight performance counters defined in
the SPR space, as well as the counters defined in MMIO space for the nest).

After such an event is detected, the POWER8 core waits for previously dispatched instructions to complete,
and then takes the interrupt.

3.8.23.10 SPMC Performance Monitor Interrupt

The SPMC performance monitor interrupt is an implementation-specific interrupt introduced on the POWER8
core. The SPMC performance monitor interrupt is signaled when an SPMC overflow exception occurs.

The MSR, SRR0, SRR1 interrupt settings are the same as the architected performance monitor interrupt as
described by the POWER ISA. For the SPMC performance monitor interrupt execution resumes at the effec-
tive address x‘0000_0000_0000_0EE0’.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Architecture Compliance

Page 125 of 450

3.8.23.11 Facility Unavailable Interrupt

The POWER8 core implements the facility unavailable interrupt as defined in the Power ISA.

3.8.24 Logical Partitioning Support

The following sections describe the POWER8 implementation aspects of the LPAR architecture. Each
POWER8 core can support one, two, and four LPARs referred to as 1 LPAR, 2 LPAR and 4 LPAR mode
respectively.

3.8.24.1 Thread-to-LPAR Mapping

Logical threads are tied to partitions as follows:

• 2 LPAR mode
– LPAR0 - threads 0, 1, 2, and 3
– LPAR1 - threads 4, 5, 6, and 7

• 4 LPAR mode
– LPAR0 - threads 0 and 1
– LPAR1 - threads 2 and 3
– LPAR2 - threads 4 and 5
– LPAR3 - threads 6 and 7

The snooped TLBIE in 4 LPAR mode only invalidates the D-ERAT and I-ERAT entries for the partitions that
matched. If only one LPAR ID matches, the thread pair for that LPAR is used to invalidate the D-ERAT and
I-ERAT. If two LPAR IDs match, two thread pairs for that LPAR are used for ERAT invalidation. If more than
two LPAR IDs match, no thread bits are used for ERAT invalidation.

3.8.24.2 Dynamic LPAR Switching

In 2 LPAR or 4 LPAR mode, the POWER8 core runs in SMT8 mode and each LPAR is entitled to its share of
execution bandwidth, irrespective of how many threads are actually active on the core. HID0 Register bits 11,
12, and 15 are used to control dynamic LPAR switching.

• HID0[DYN_LPAR_DIS]. If not set and the core is in either 2 LPAR or 4 LPAR mode, hardware switches
the core to 1 LPAR mode when threads 1 - 7 are all in nap mode.

• HID0[1LPARto2LPAR]. A write to the bit initiates a dynamic switch from 1 LPAR mode to 2 LPAR mode.

• HID0[1LPARto4LPAR]. A write to the bit initiates a dynamic switch from 1 LPAR mode to 4 LPAR mode

3.8.25 Strong Access Ordering Mode (SAO)

The POWER8 core supports the SAO mode defined in Power ISA.

3.8.26 Graphics Data Stream Support

For cache-inhibited stores, the POWER8 core provides store gathering with an intentional stall to maximize
the amount of gathering that can occur.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Architecture Compliance

Page 126 of 450
Version 1.3

16 March 2016

3.8.27 Performance Monitoring, Sampling, and Trace

Performance monitoring facilities have been incorporated into the POWER8 processor to enable the collec-
tion of performance related data and instruction traces. In general, the POWER8 core supports the recom-
mended architecture for performance monitoring as described in the Power ISA.

3.8.28 Processor Compatibility Mode

The POWER8 core implements the Processor Compatibility Register (PCR) as described in the Power ISA to
facilitate partition migration. Setting PCR[2] = ‘1’ disables the transactional memory (TM) instructions in
problem state. Setting PCR[61] = ‘1’ disables all problem state instructions and facilities that were added in
Version 2.07 of the Power ISA. Thus, setting this bit effectively makes a POWER8 core architecturally appear
to problem state software as a Power ISA version 2.06 core. Likewise, setting PCR[62] = ‘1’ disables all
problem state instructions and facilities that were added in Version 2.06 of the Power ISA. Thus, to migrate a
partition from a version 2.05 system to a POWER8 (version 2.07) system, PCR[61:62] must be set to ‘11’.

R
es

er
ve

d

TM Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved v2
.0

6

v2
.0

5

R
es

er
ve

d

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

The POWER8 core does not follow the Power ISA for controlling the problem state code’s ability to set thread
priority to ‘001’ based on the PCR[v2.06] bit. Instead, the POWER8 core controls this only by using the
HID1[11:14] partition bits. See Section 3.7.2 HID1 Register on page 95.

There are bits in the I-cache that are generated based on the settings of bits in the PCR. Therefore, if the
state of the PCR is changed due to a mtspr(PCR), the I-cache should be flushed using HID1[0].

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Storage Subsystem

Page 127 of 450

4. Storage Subsystem

4.1 L1 Cache

The L1 I-cache is 8-way set associative and is indexed with five effective address bits (EA[51:55]). A partic-
ular physical block of memory with a given real address can be found in one of two positions in the L1
I-cache. The tag comparison associated with lookups in this cache (as well as all other caches in the system)
are done using physical addresses, so that there are no synonym or alias hazards that must be explicitly
handled by the system software.

The L1 D-cache is 8-way set associative and is indexed with six effective address bits (EA[51:56]). A partic-
ular physical block of memory with a given real address can only be found at a particular location in the L1
D-cache. On each access, the tag comparison is done with the physical address. On a cache miss, the cache
reload mechanism searches the other seven related sets to determine if the required real address block is
located elsewhere in the cache, and if so, it appropriately eliminates these copies.

4.2 L2 Cache

The L2 cache is a unified cache that is accessed privately by a given core on the POWER8 processor. The L2
cache maintains full hardware coherency within the system and can supply cache intervention data to other
cores on this die or on other POWER8 chips (for example, both on-chip and off-chip intervention). The L2
cache is a store-in cache that is fully inclusive of both the D-cache and I-cache for its private core (that is, the
core has a store-through L1 D-cache). The L2 cache also supports private bus access to an 8 MB L3 cache
region that is also private to this core.

4.2.1 L2 Cache Features

A summary of the L2 cache follows:

• 512 KB private cache per core

– 128-byte line, 8-way set associative

– Both I-side and D-side inclusive (ICBI is not required on the SMP interconnect)

– Double-banked cache design interleaved on even or odd cache-line boundary

– Can perform a read from one bank while writing to the other bank

– Cache-array data protected by 8-byte SECDED ECC

• 8-way directory, dual-banked multiport

– One processor read port, one snoop read port, and one write port per bank

– The processor port into a given bank operates at ½ the processor clock rate (initiated on 2:1 clock
boundary)

– The snoop port into a given bank operates at ½ the processor clock rate (initiated on 2:1clock bound-
ary) allowing for two snoops per 2:1clock across the two banks.

– A bank can initiate up to two directory reads in a given 2:1 cycle (one on the snoop port, one on the
processor port). A bank can initiate one write in a given pclk cycle (no reads allowed during a write
pclk cycle)

data cache

instruction cache

single-error correction, double-error detection

error correcting code

processor clock

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Storage Subsystem

Page 128 of 450
Version 1.3

16 March 2016

– Directory array data protected by SECDED ECC

• 512 × 13-bit LRU arrays (logical configuration); 2 × 4 LRU vector tracking tree with cache-invalidate state
biasing

• Seven processor cycles latency beyond L1 data cache on an L2 hit through the fastpath

• Eight processor cycles latency beyond L1 instruction cache on an L2 hit

• Point of global coherency

• Reservation stations, one per processor thread

• Support for transactional memory (TM) transactions

• Dual snoop bus port split by even and odd cache-line address

• Support for micropartition prefetch assist logging

• Support strong access ordering (SAO)

• Hardware line delete for error tolerance

4.3 L3 Cache

The L3 cache controller services read and cast-out requests from the attached L2 cache and snoop requests
from the fabric. It also provides a mechanism to prefetch cache lines into the L3 cache based on requests
from the core. Data movement for L2 cast-outs (cast-ins for the L3 cache) are carried out using a private
interface between the L2 and L3 cache. Data movement for L3 cast-outs, L3 interventions, and memory
pushes are carried out by sending commands and data to the fabric interface. The L3 cache supports victim
mode for others on chip L3 cache (referred to as L3.1 caches).

4.3.1 L3 Features, Queues and Resources

• Local L3 cache region and shared L3.1

– 128-byte cache line, 8-way set associative.

– 8 cache banks (interleaved for access overlapping)

– 64-byte reload and CI data buses.

– 128-byte read or write per bank every 12 pclks.

– macros configured in eight 8-byte dataflows.

– 8-way directory: 4 banks, up to 4 reads or 2 reads and 2 writes every 2 pclks to differing banks.
Physically 16 SRAMs.

– 26.5 pclk L1 data-cache load to use penalty.

– Cache contents protected by 8-byte ECC.

– Directory contents protected by ECC.

– LRU algorithm with enhancements (for efficient L3.0/L3.1 victimization).

• Functionality

– L3.0 management of victim lines from local L2 cache.

– L3.1 management of victim lines from on-chip L3 caches.

– Services load/store/l3 prefetch misses from local L2 cache.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Storage Subsystem

Page 129 of 450

– Dual Snoop ports split by even and odd cache-line address.

– Streaming data prefetch and cache-inject support.

– Dual-class L3.0/L3.1 LRU support and L3.1 activity throttling.

– Support for speculative memory transactions, including footprint tracking to detect collisions and
mechanisms for conditional completion. Consists of fast flash 64 CL per thread and slow walk entire
8 MB available for one thread.

– Fast broadcast on-chip fetch request to memory controllers and other L3 caches for L2 demand load
miss L3.

• Entire L3 cache clocked at ½ core frequency.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Storage Subsystem

Page 130 of 450
Version 1.3

16 March 2016

4.4 NCU

The POWER8 noncacheable unit (NCU) is responsible for processing noncacheable operations (such as,
load and store operations with I = ‘1’) and certain other uncacheable operations such as TLBIE, various sync
instructions, ptesync instructions, and so on. All of these instructions support the behavioral definitions given
in the Power ISA documents. One NCU unit is instantiated per core and this NCU handles operations for all
eight threads in the associated POWER8 core.

The POWER8 NCU provides one dedicated cache-inhibited load station per thread to process one
outstanding cache-inhibited load per thread. In the POWER8 implementation, cache-inhibited loads (whether
guarded or not) are not gathered and are not reordered in any fashion.

For stores, sixteen 64-byte store gather stations are provided and are shared across the eight core threads. A
pair of 64-byte stations can “chain” together to gather up to full 128-byte lines. The POWER8 NCU supports
gathering and reordering for stores in the IG = ‘10’ space. In the IG = ‘11’ space, stores are neither reordered
nor gathered as required by the architecture. The POWER8 NCU only gathers 4-, 8-, and 16-byte stores. The
stores must be naturally aligned, start at a given address, not overlap and be contiguous. This is designed to
support the general gathering case of a set of stores of a given size starting at the beginning of a 128-byte
block and continuing on to fill the entire 128-byte block.

4.4.1 NCU Characteristics

The NCU has the following characteristics:

• Store buffer

– 16 × 64-byte store gather stations (chainable to 8 × 128-byte gathered lines).

– The store buffers are shared across threads (LSU backoff mechanism prevents any thread from
blocking any other thread).

• Store modes (IG = ‘1X’)

– IG = ‘11’ mode; stores are done in-order and no gathering is allowed.

– IG = ‘10’ mode; stores can be gathered and reordered.

• Loads. One outstanding load per thread.

load store unit

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Storage Subsystem

Page 131 of 450

4.5 Memory Controller

The POWER8 memory controller function is split between the POWER8 memory controller (MC) unit, which
provides an interface to the processor bus, and the POWER8 Memory Buffer chip, which provides memory
command scheduling, a memory buffer cache, and memory diagnostic functions. The POWER8 MC unit is
connected to the POWER8 Memory Buffer chip through the differential memory interface (DMI) channel inter-
face.

The POWER8 memory controller design has two memory controller units and 4 DMI ports per chip.

4.6 POWER8 Memory Stack Partitioning

Figure 4-1 shows a memory buffer chip connected to a memory controller synchronous (MCS) unit.

The POWER8 Memory Buffer chip contains four DDR3/4 memory ports that interface to Industry-Standard
RDIMMs or LRDIMMs. Two of the four memory ports on the memory buffer operate in tandem to read or write
a cache line of data using a burst length 8 (BL8) operation to the installed DIMMs.

Figure 4-1. Memory Stack Partitioning

MCS

CMD LIST
41 ENTRIES

1 INBAND
BUFFER

32 WRITE
BUFFERS

32 READ
BUFFERSEVEN SNOOP

ODD SNOOP

WR RAMP (2X)

RD RAMP C
2

C
 P

H
Y

POWER8 Memory

32 WRITE
BUFFERS

32 READ
BUFFERS

C
2

C
 P

H
Y

CACHE DIR,
CONTROLS

16 MB MEM
BUF CACHE

32 WRITE
BUFFERS

RRQ/WRQ

SEQ/PWR/
REF/TIMERS

MCBIST/
MNT

D
D

R
3
 P

H
Y

D
D

R
3
 P

H
Y

32 WRITE
BUFFERS

RRQ/WRQ

SEQ/PWR/
REF/TIMERS

MCBIST/
MNT

D
D

R
3

 P
H

Y
D

D
R

3
 P

H
Y

ASYNC I/F

14+2+2

20+2+2

1 - 8
RANKS

1 - 8
RANKS

9 BYTE

9 BYTE

9 BYTE

9 BYTE

DMI

Buffer Chip

Registered dual in-line memory module

Load-reduced dual in-line memory module

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Storage Subsystem

Page 132 of 450
Version 1.3

16 March 2016

4.7 POWER8 Chip Memory Controller Unit Features
• Physical Organization

– POWER8 processor contains two memory controller units per chip.
– Each memory controller unit contains two independent MCS units.
– MCS units are accessed in pairs for selective memory mirroring.
– Each MCS unit connects to a single DMI channel.

• Processor Bus Interface (per MCS unit)
– Single 16-byte read data ramp, dual 16-byte write data ramp interfaces
– 128-byte cache lines supported (cache line interleaving on a 32-byte basis)
– Automatic maintenance of domain bits for multi-node systems
– Speculative dispatch on a bandwidth-available basis
– Delivery of critical octword of read data not gated by reading the entire cache line

• Memory Channel Interface (per MCS unit)

– Downstream command/write data interface, up to 1 TB of memory addressing
– Upstream tagged read data/status interface
– CRC-protected
– Error status and logging interface
– Automatic hardware replay of soft channel faults
– Automatic reconfiguration to use spare channel lanes to recover from hard failures
– Hardware and software channel initialization capability

• Pervasive Interfaces (per MCS unit)

– Performance monitor interface
– SCOM interface
– Debug bus interface (to shared trace array in processor bus logic)

• Resources (per MCS Unit)

– Forty-one command list entries (32 memory entries, eight address-only entries, one inband configu-
ration register entry)

– Thirty-two 128-byte read data buffers
– Thirty-two 128-byte write data buffers
– One 128-byte configuration register read/write buffer

• Mirroring

– Selective memory mirroring supported across MCS pairs. The pairs of MCS units must be within the
same MC unit.

– Mirrored memory accessed through unique memory address range (independent of memory extent).

• Clocking

The memory buffer supports the following fixed clocking ratios and the maximum and minimum frequen-
cies shown in Table 4-1 and Table 4-2 on page 133:

– 1:1 with processor bus
– 1:4 with DMI channel

Memory controller synchronous

cyclic redundancy check

scan comsmunication

Table 4-1. Maximum Frequencies

DRAM Speed (GHz)
POWER8 Memory Buffer

DDR Frequency
(GHz)

Processor Bus/MCS
Frequency

(GHz)

POWER8 Memory Buffer
Cache Frequency

(GHz)

DMI Channel Frequency
(GHz)

1.33 1.33 2.4 1.2 9.6

1.6 1.6 2.4 1.2 9.6

Table 4-2. Minimum Frequencies

DRAM Speed (GHz)
POWER8 Memory Buffer

DDR Frequency
(GHz)

Processor Bus/MCS
Frequency

(GHz)

POWER8 Memory Buffer
Cache Frequency

(GHz)

DMI Channel Frequency
(GHz)

1.33 1.33 2.0 1.0 8.0

1.6 1.6 2.0 1.0 8.0

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Storage Subsystem

Page 133 of 450

4.7.1 Bandwidth

Table 4-3 lists the bandwidth per MCS unit per POWER8 Memory Buffer.

Table 4-3. Bandwidth (per MCS/POWER8 Memory Buffer)

Performance Parameter Goal

Maximum downstream (write) DMI channel data bandwidth, 9.6 GHz channel 9.6 GB/s

Maximum upstream (read) DMI channel data bandwidth, 9.6 GHz channel 19.2 GB/s

Note: See the POWER8 Memory Buffer User’s Manual for additional performance parameter goals.

4.7.2 POWER8 Memory Controller Characteristics

Table 4-4 lists key characteristics of the POWER8 memory controller.

Table 4-4. POWER8 Memory Controller Characteristics (Sheet 1 of 2)

Parameter POWER8

Processor Bus Interface

Reflected command/partial response/combined
response interfaces Two per MCS unit

Read data ramp One 16-byte read data ramp per MCS unit

Write data ramp Two 16-byte write data ramp per MCS unit

Read buffers Thirty-two 128-byte buffers per MCS unit

Write buffers Thirty-two 128-byte buffers per MCS unit

Processor bus transfer size 32 bytes

Cache-line size 128 bytes

Command list entries Thirty-two read/write, eight address-only, one configuration register per MCS unit

Address hashing 1, 2, or 4 MCS/group, 128-byte hashing

Dynamic random-access memory

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Storage Subsystem

Page 134 of 450
Version 1.3

16 March 2016

Memory Interface

Memory channels One per MCS unit

Channel speed/signaling 9.6 Gb/s maximum differential

Channel command/write data bus format Combined command/data buses

Channel error protection CRC, with retry

Read delay latency calculation None, returned read data is tagged

Channel initialization/calibration Dynamic

Channel lane sparing Firmware (CRC syndrome capture), hardware

Memory fetch/store sizes 128 bytes

Channel speed ratios 4:1 (to SMP interconnect frequency)

Table 4-4. POWER8 Memory Controller Characteristics (Sheet 2 of 2)

Parameter POWER8

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Simultaneous Multithreading

Page 135 of 450

5. Simultaneous Multithreading

5.1 Overview

The POWER8 processor core supports ST, SMT2, SMT4, and SMT8 modes. Any thread number can be run
in any SMT mode, on any thread set. Table 5-1 shows the SMT mode definitions.

Table 5-1. SMT Modes

Description Number of Threads Enabled Switch to this SMT mode when ...

SMT0 0 POR state

SMT1 1 1 thread

SMT2 1 - 2 2 threads

SMT4 1 - 4 3 - 4 threads

SMT8 1 - 8 5 - 8 threads

5.2 Partitioning of Resources in Different SMT Modes

Table 5-2 lists the resources that are partitioned in certain SMT modes.

Table 5-2. Front-End Execution Core Resource (Sheet 1 of 2)

Resource ST SMT2 SMT4 SMT8

Fetch Bandwidth

EAT Entries 24 24 per thread 12 per thread 6 per thread

Instruction Buffer Entries 64 64 per thread 32 per thread 16 per thread

Link Stack 32 32 per thread 16 per thread 8 per thread

D-ERAT Entries 48 48 per thread 48 per thread set 48 per thread set

Decode Bandwidth

Dispatch Groups 6 nonbranch + 2 branch
per thread

3 nonbranch + 1 branch
per thread

3 nonbranch + 1 branch
per thread

3 nonbranch + 1 branch
per thread

GPR Entries 124 124 per thread 124 per thread set 124 per thread set

GPR in-flight renames 92 92 per thread 60 per thread set 60 per thread set

GPR Architected in First
Level

32 32 per thread 64 per thread set 64 per thread set

GPR Architected in SAR 64 per thread set in SAR

VRF Entries 144 144 per thread 144 per thread set 144 per thread set

VRF in-flight renames 80 80 per thread 80 per thread set 80 per thread set

FP/VMX Architected in
First Level

64 64 per thread 64 per thread set 64 per thread set

FP/VMX Architected in
SAR

64 per thread set in SAR 192 per thread set in SAR

Steering Toggle Assign by thread set Assign by thread set Assign by thread set

Power-on reset

effective address translation

Effective-to-real address translation

General Purpose Register

Second-level Architected Register

Vector Register File

Single thread

simultaneous multithreading

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Simultaneous Multithreading

Page 136 of 450
Version 1.3

16 March 2016

5.3 Program Priority Register (PPR)

Each thread has a 64-bit status register associated with it, and bits 11:13 contain the priority for that thread.
The effect of the priority set in the PPR is described in Section 5.14 Thread Prioritization Implementation on
page 146. Some bits are read-only, while other bits are read/write. There is one PPR per thread.

Reserved T
hr

ea
d

P
rio

rit
y

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:10 Reserved Reserved (not implemented).

11:13 Thread
Priority

Thread Priority.
000 Not allowed
001 Very low
010 Low
011 Medium low
100 Normal
101 Medium high
110 High
111 Extra high
Set to ‘100’ on system reset interrupt.

14:63 Reserved Reserved (not implemented).

The local PPR Register can be accessed with the mtspr or mfspr instructions using SPR 896.

The PPR Register for each thread is initialized to x‘0010_0000_0000_0000’ at power-on.

Unified Issue Queue
Entries

64 32 per thread 32 per thread set 32 per thread set

FXU, LSU, LU, VSU 2 each 1 each per thread 1 per thread set 1 per thread set

Completion Rates 1 group per cycle 1 (3+1) group per thread 1 (3+1) group per thread
set

1 (3+1) group per thread
set

Table 5-2. Front-End Execution Core Resource (Sheet 2 of 2)

Resource ST SMT2 SMT4 SMT8

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Simultaneous Multithreading

Page 137 of 450

5.4 Thread Priority NOPs

The thread switch priority can be read or written by software using the mfspr and mtspr instruction to the
Thread Status Register. Thread priority can also be altered by executing special forms of the or x,x,x NOP.
The priority is changed upon completion of the operation, provided the function is enabled for the current priv-
ilege level.

• On the POWER8 core, problem-state programs can set their priority to very-low. TSCR[16] is reserved on
the POWER8 core.

• Supervisor programs can set their thread priority to six different values, very-low through high.
TSCR[15] is reserved on the POWER8 core.

• Hypervisor code can set all levels.

Table 5-3 shows how to set the thread priority NOPs.

Table 5-3. Thread Priority Nops

Priority NOP / mtSPR PPR[11:13] Thread Priority Required Privilege Level to
Set Given Thread Priority Value

or 31,31,31 / mtPPR[11:13] ‘001’ Very Low Hypervisor, Supervisor, Problem

or 1,1,1 / mtPPR[11:13] ‘010’ Low Hypervisor, Supervisor, Problem

or 6,6,6 / mtPPR[11:13] ‘011’ Medium Low Hypervisor, Supervisor, Problem

or 2,2,2 / mtPPR[11:13] ‘100’ Medium (Normal) Hypervisor, Supervisor, Problem

or 5,5,5 / mtPPR[11:13] ‘101’ Medium High Hypervisor, Supervisor, Problem1

or 3,3,3 / mtPPR[11:13] ‘110’ High Hypervisor, Supervisor

or 7,7,7 / mtPPR[11:13] ‘111’ Extra High Hypervisor

1. See Section 5.12 Priority Boosting to Medium-High in User Mode on page 144.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Simultaneous Multithreading

Page 138 of 450
Version 1.3

16 March 2016

5.5 Control Register

The Control Register (CTRL) is an architected 32-bit register. The bit assignment for the thread control bits in
the CTRL supports up to eight threads. The POWER8 core supports threads 0 - 7. A bit in the CTRL Register
represents the architected state for a particular thread.

Reserved Thread Run Latch Reserved R
un

 L
at

ch

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:15 Reserved Reserved.

16:23 Thread Run Latch Thread Run Latch bits (indirectly written supervisor and hypervisor).
Threads 0 - 7.

24:30 Reserved Reserved.

31 Run Latch Run Latch for thread doing CTRL read/write (read only / rerouted supervisor or hypervisor write).

The CTRL Register can be read with the mfspr instruction using SPR 136 in user, supervisor, or hypervisor
state.

The CTRL Register can be selectively written with the mtspr instruction using SPR 152 in the supervisor or
hypervisor state.

The CTRL Register is initialized to 0x0000_0000 at power-on.

Even though a single CTRL Register is shared by the eight threads, there is no need to obtain a lock before
updating the CTRL Register. There is only one bus that goes to the core pervasive unit, and the instruction
issue logic serializes all mtctrl instructions. Updating the Run Latch bit must be done in hypervisor mode.
When updating the Run Latch bit (in hypervisor mode), the software is recommended to set the Thread
Enable bits to ‘00000000’. Setting the Thread Enable bit to ‘00000000’ is not allowed. Therefore, this updates
the run latch, but there is no effect to the Thread Enable bit and no thread will be killed or woken up.

CTRL[16:23] contain the Run Latches for threads 0 - 7. A mtspr CTRL instruction does not modify
CTRL[16:23] based on GPR bits [48:55]. Instead, these bits are indirectly loaded by writing a value to
CTRL[31]. The value written to CTRL[31] is loaded into CTRL[16] if thread 0 issued the move to CTRL and
CTRL[17] if thread 1 issued the move to CTRL, and so on. A thread cannot update the thread Run Latch bit of
another thread.

The run latch bit is only used by software for status and is sent to the performance monitor for performance
analysis. For this purpose, the POWER8 processor core supports one run latch per thread. To use this func-
tion, if a thread is executing a dispatchable task, software must set the CTRL Run Latch for that thread to ‘1’
by writing a ‘1’ to CTRL[31]. If a thread is in a wait state, waiting for a dispatchable task, software must set the
CTRL Run Latch for that thread to ‘0’.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Simultaneous Multithreading

Page 139 of 450

Software can load the CTRL Register with a Run Latch value for its thread by writing the Run Latch value to
CTRL[31]. Hardware routes data directed to CTRL[31] into either CTRL[16] - CTRL[23], depending on which
thread is doing the write (see previous definition of CTRL[16:23]). When the CTRL Register is read, data
driven on CTRL[31] comes from CTRL[16] - CTRL[23], depending on which thread is doing the read.
CTRL[31] does not physically exist in hardware.

The data read on a mfspr(CTRL) is formatted differently based on the MSR[PR] and MSR[HV] bits and
whether the core is in Big Core, 2 LPAR, or 4 LPAR mode. Bit 63 is always the Run Latch of the thread
executing the mfspr. Bits 48:55 are formatted as shown in Table 5-4, where R0 equals run latch for thread 0,
RT equals run latch of thread executing mfspr.

Table 5-4. mfspr CTRL Data Formatting

MSR[HV], MSR[PR] Core Mode Bits 48:55

00 - Privileged Single LPAR R0, R1, R2, R3, R4, R5, R6, R7

*1 - Problem Single LPAR RT, 0, 0, 0, 0, 0, 0, 0

10 - Hypervisor Single LPAR R0, R1, R2, R3, R4, R5, R6, R7

00 - Privileged
4 LPAR

(Threads 0, 1)
R0, R1, 0, 0, 0, 0, 0, 0

00 - Privileged
4 LPAR

(Threads 2, 3)
R2, R3, 0, 0, 0, 0, 0, 0

00 - Privileged
4 LPAR

(Threads 4, 5)
R4, R5, 0, 0, 0, 0, 0, 0

00 - Privileged
4 LPAR

(Threads 6, 7)
R6, R7, 0, 0, 0, 0, 0, 0

*1 - Problem 4 LPAR RT, 0, 0, 0, 0, 0, 0, 0

10 - Hypervisor 4 LPAR R0, R1, R2, R3, R4, R5, R6, R7

00 - Privileged
2 LPAR

(Threads 0, 1, 2, 3)
R0, R1, R2, R3, 0, 0, 0, 0

00 - Privileged
2 LPAR

(Threads 4, 5, 6, 7)
R4, R5, R6, R7, 0, 0, 0, 0

*1 - Problem 2 LPAR RT, 0, 0, 0, 0, 0, 0, 0

10 - Hypervisor 2 LPAR R0, R1, R2, R3, R4, R5, R6, R7

Logical partition

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Simultaneous Multithreading

Page 140 of 450
Version 1.3

16 March 2016

5.6 Thread Priority, Status, and Control Requirements

Thread priority, control, and status registers enable software to do the following:

• Give a large percentage of execution resources to critical tasks.

• Reduce the amount of resources and power used by low-priority work.

• Read foreground and background thread priority and status.

• Save and restore priority during interrupts.

• Provide a controlled way to allow supervisor/user code to change priority.

• Provide a means to kill or revive a thread.

• Avoid fine-grain livelock or deadlock situations between threads.

5.7 Thread Balance Control Requirements

The following mechanisms can be used to balance work between threads:

• Reduce ifetch priority of a thread using too many resources.

• Reduce decode priority of a thread using too many resources.

• Hold decode of thread with long latency events.

• Dispatch flush decode pipe to clean congested operations.

• Balance flush from next-to-complete plus one group and hold at IBUF until miss (and so on) resolves.

Table 5-5. Thread Balance Control (Balance Flush)

Indicator of Balance Decode Priority Decode Hold Dispatch Flush Balance Flush

GCT Utilization (covers UniQ utilization) in plan in plan - in plan1

UniQ Full - in plan2 in plan2 -

Sync operations3 - in plan4 in plan -

TLBIE - in plan5 in plan -

Score Board Full - - in plan -

TLB or L2 miss in plan - - -

TLB or L3 miss - In plan in plan6 in plan

1. Only used when a thread is stalled at dispatch and threads other than the stalled thread are consuming too many available
resources.

2. If a particular thread or thread pair is using up its allocated UniQ resource, the thread pair is dispatched flushed and held at
decode.

3. Synchronization instructions include: sync, lwsync, ptesync, tlbsync, isync, read/write of nonrenamed SPRs .
4. SYNC: After getting a dispatch flush, a sync instruction is held at IBUF(CLB) until its dispatch conditions are met. This is irrespec-

tive of thread priority.
5. TLBIE: After getting a dispatch flush, a tlbie instruction is held at the IBUF until the thread’s GCT is empty. After the tlbie instruc-

tion is dispatched, the following instruction gets dispatched flushed and then held at IBUF until the “tlbie ack” is received from the
GRS (through LSU). There is no effect on the tlbiel instruction. This is irrespective of thread priority.

6. A dispatch flush is performed on the thread that is balanced flush only if that thread is stalled at dispatch and TSCR[3] is enabled.

load/store unit

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Simultaneous Multithreading

Page 141 of 450

5.8 Thread Switch Control Register (Hypervisor Access Only)

Thread priority controls are programmable. All bits are read/write. There is one Thread Switch Control
Register per core. TSCR is initialized to x‘0000_0000’ at power-on.

G
C

T
 D

ec
od

e
P

rio
rit

y
C

on
tr

ol

B
al

an
ce

 F
lu

sh
 D

is
ab

le

T
hr

ea
d

B
al

an
ce

 D
is

pa
tc

h
F

lu
sh

 D
is

ab
le

G
C

T
 B

al
an

ce
 F

lu
sh

 T
hr

es
ho

ld

G
C

T
 B

al
an

ce
 F

lu
sh

 T
hr

es
ho

ld

G
C

T
 B

al
an

ce
 F

lu
sh

 M
is

s
C

ou
nt

er
 T

hr
es

ho
ld

R
es

er
ve

d

E
xt

er
na

l B
oo

st
 P

rio
rit

y

F
or

w
ar

d
P

ro
gr

es
s

C
ou

nt
 F

lu
sh

D
ec

od
e

S
to

p

R
es

er
ve

d

L2
 M

is
s

D
ec

od
e

P
rio

rit
y

C
on

tr
ol

T
LB

 M
is

s
D

ec
od

e
P

rio
rit

y
C

on
tr

ol

R
es

er
ve

d

D
is

pa
tc

h
F

lu
sh

 S
yn

c
C

on
tr

ol
 E

na
bl

e

Reserved P
T

E
sy

nc
 D

is
pa

tc
h

S
ta

ll

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0:1 GCT Decode
Priority
Control

GCT Decode Priority Control.
If all threads are at the same software-set priority, decrease priority when a thread is using more
than the following number of GCT entries:
00 Function disabled (TSCR POR default).
01 Scan-only latch value programmable 1 - 28. Scanlatch POR default is: 13 (SMT2);

7 (SMT4); 4 (SMT8).
10 Scan-only latch value programmable 1 - 28. Scanlatch POR default is 14 (SMT2);

8 (SMT4); 5 (SMT8).
11 Scan-only latch value programmable 1 - 28. Scanlatch POR default is 15 (SMT2);

9 (SMT4); 6 (SMT8).

2 Balance Flush
Disable

Balance Flush Disable.
0 Enable NTCP1 balance flushes.
1 Disable NTCP1 balance flushes.

3 Thread Balance
Dispatch Flush

Disable

Thread Balance Dispatch Flush Disable.
0 Enable dispatch flush for the thread that was chosen for a balance flush if that thread is

stalled at dispatch. A dispatch flush is a lower-latency flush than a balance flush.
1 Disable.
Note: Conditions for dispatch flush are the same as a balance flush.

4:5 GCT Balance
Flush

Threshold
for L3/TLB miss

GCT Balance Flush Threshold for L3/TLB miss.
If a thread is stalled at dispatch with an L3 or TLB miss, consider the thread for balance flush when
the thread is using more than the following number of GCT entries:
00 Function disabled (TSCR POR default).
01 Scan-only latch value programmable 1 - 28. Scan latch POR default is: 2 (SMT2);

2 (SMT4); 2 (SMT8).
10 Scan-only latch value programmable 1 - 28. Scan latch POR default is: 3 (SMT2);

3 (SMT4); 3 (SMT8).
11 Scan-only latch value programmable 1 - 28. Scan latch POR default is: 4 (SMT2);

4 (SMT4); 4 (SMT8).

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Simultaneous Multithreading

Page 142 of 450
Version 1.3

16 March 2016

6:7 GCT Balance
Flush Threshold if
no L3/TLB miss

GCT Balance Flush Threshold if no L3/TLB miss.
In SMT2 and higher, if a thread is stalled at dispatch with no L3 or TLB misses, consider thread for
balance flush when the thread is using more than the following number of GCT entries:
00 Function disabled.

Option available to have hardware disabled function in SMT2.
01 Scan-only latch value programmable. 1 - 28. Scan latch POR default is: 22 (SMT2);

14 (SMT4); 7 (SMT8).
10 Scan-only latch value programmable. 1 - 28. Scan latch POR default is: 24 (SMT2);

16 (SMT4); 8 (SMT8).
11 Scan-only latch value programmable. 1 - 28. Scan latch POR default is: 26 (SMT2);

18 (SMT4); 9 (SMT8); 8 (4 LPAR).

8:9 GCT Balance
Flush Miss

Counter Threshold

GCT Balance Flush Miss Counter Threshold.
If a thread is chosen to be balanced flushed based on TSCR[4:5] (GCT balance flush threshold),
apply a CLB hold to that thread until the miss is resolved or until the following miss counter thresh-
old is reached:
00 Function disabled (If thread is balanced flushed due to TSCR[4:5], CLB hold is applied

until a Miss is resolved).
01 Scan-only latch value programmable, 10-bit LFSR; Scan latch POR default 256 cycles

(x3C1 LFSR).
10 Scan-only latch value programmable, 10-bit LFSR; Scan latch POR default 384 cycles

(x0E4 LFSR).
11 Scan-only latch value programmable, 10-bit LFSR; Scan latch POR default 512 cycles

(x20F LFSR) 1023 cycles (x000 lfsr) is the maximum setting available.

10:11 Reserved Reserved.

12 External Boost
Priority

External Boost Priority.
If ‘1’ and an external interrupt request is active and the corresponding threads’ priority is less than
normal priority, set the threads’ priority to normal.
Note: This will not change the value in PPR[11:13] for the affected thread.

13 Enable Forward
Progress Count

Flush

Enable Forward Progress Count Flush.
Note: This bit only enables/disables the flush from occurring.

The forward progress timer does not stop decrementing when set to ‘0’
SMT2 and higher: If one thread is not making progress, enable flushing the other active threads.

14 Decode Stop Decode Stop.
When set to 0, the forward progress timer (in PPR) is decremented even when the current thread is
in decode stop state. When set to 1, the forward progress timer is not decremented when the cur-
rent thread is in decode stop state.

15:16 Reserved Reserved.

17 L2 Miss Decode
Priority Control

L2 Miss Decode Priority Control.
If all threads are at the same software set priority, then:
0 L2 miss disabled for use in adjusting decode priority.
1 L2 miss enabled for use in adjusting decode priority.

18 TLB Miss Decode
Priority Control

TLB Miss Decode Priority Control.
If all threads are at the same software set priority, then:
0 TLB miss disabled for use in adjusting decode priority.
1 TLB miss enabled for use in adjusting decode priority.

19 Reserved Reserved.

20 Dispatch Flush
Sync Control

Enable

Dispatch Flush Sync Control Enable.
Stop decode if mode for thread with sync instruction is outstanding, (always on in shipping mode).
Applies only to SMT2 and higher.

21:23 Reserved Reserved.

Bits Field Name Description

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Simultaneous Multithreading

Page 143 of 450

The TSCR can be accessed with the mtspr and mfspr instructions using SPR 921.

A SCOM latch is added to make this register as read-only for debug purposes.

TSCR is initialized to x‘0000_0000’ at power-on.

The preferred setting is: x‘8ACC_6880’.

5.9 Thread Time-Out Register (Hypervisor only)

The Thread Time-Out Register (TTR) is used to ensure forward progress. There is one TTR per core. For
more information see Section 5.10 Forward Progress Timer on page 144.

Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved Thread Time-out Flush

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:43 Reserved Reserved.

44:63 Thread Time-out
Flush Value.

Thread Time-out Flush Value.
A x’00000’ value generates a maximum count.

The TTR Register can be accessed with the mtspr and mfspr instructions using SPR 922.

The TTR Register is initialized to x‘0000_0000_0000_0000’ at power-on.

24 PTEsync Dispatch
Stall

PTEsync dispatch stall.
Set to ‘1’ to enable the following function for ptesync instruction. Hold the ptesync instruction at
dispatch until GCT is empty, SRQ is empty, no I-side table walk pending, and wait for a minimum of
15 cycles. After these conditions are satisfied, dispatch the ptesync. Afterwards, wait for GCT
empty and SRQ empty to continue with the dispatch of further instructions.

25:31 Reserved Reserved.

Bits Field Name Description

Store reorder queue

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Simultaneous Multithreading

Page 144 of 450
Version 1.3

16 March 2016

5.10 Forward Progress Timer

For the POWER8 core, the forward progress timer bits were moved out of the PPR Register. A non-archi-
tected latch bank holds these bits. PPR[44:63] are now reserved, non-implemented bits.

The forward progress latch bits are loaded from TTR[44:63] every time a group of instructions are retired on
the current thread.

If the current thread is not in a decode stop state, the counter is decremented by ‘1’ every time a group
completes on another thread in the same thread set (see TSCR[14] in Section 5.8 Thread Switch Control
Register (Hypervisor Access Only) on page 141).

Initialized by scan flush to x‘00000’ (maximum count)
Decrementer stops at x‘00001’ (minimum value)

For SMT2 and higher:

A flush of the other active threads in the same thread set occurs when:

– The timer count reaches x‘00001’.
– The forward progress count flush is enabled TSC[13] = ‘1’.
– The group completes on another thread in the same thread set.

After the threads are flushed, no dispatch slots are given to the flushed thread until one group has com-
pleted for the current thread.

5.11 Thread Priority Boosting

Hardware typically does not change the thread priority value in the PPR, unless an mtPPR or one of the
priority changing NOP instructions is committed. However, on the POWER8 core, problem-state programs
can change the thread priority value to medium-high (‘5’) depending on the contents of the Problem-State
Priority Boost Register (PSPBR). The problem-state boosting changes the contents of PPR[11:13].

The thread priority can be boosted internally by the hardware (in a software invisible manner) in certain cases
(as described in Section 5.13 Thread Priority Boosting on Asynchronous Interrupt on page 145) to medium
priority (‘4’). The boosting of thread priority for pending asynchronous interrupts does not affect the actual
architected thread priority value in the PPR. Therefore, if the software does a mfPPR at any time during the
asynchronous boosting, it always gets the last priority value explicitly set by the software for that thread.

5.12 Priority Boosting to Medium-High in User Mode

The POWER8 core allows a problem-state program that is executing on a thread to temporarily change the
PPR thread priority value to medium high (‘5’) by executing an mtPPR or priority NOP. The temporary thread
priority boosting is controlled by a 32-bit privileged Problem-State Priority Boost (PSPB) Register. There is
one PSBPR per thread, which is set by a move-to PSPB.

A problem state program can set the program priority to medium-high only when the PSPB of the thread
contains a nonzero value. The maximum value to which the PSPB can be set must be a power of 2 minus 1.
Bits that are not required to represent this maximum value must return ‘0’s when read, regardless of what was
written to them.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Simultaneous Multithreading

Page 145 of 450

When the PSPB of the thread is set to a value less than its maximum value but greater than ‘0’, its contents
decrease monotonically at the same rate as the SPURR until its contents minus the amount it is to be
decreased are ‘0’ or less when a problem state program is executing on the thread at a priority of medium
high.

When the contents of the PSPB minus the amount it is to be decreased are ‘0’ or less, its contents are
replaced by ‘0’. When the PSPB is set to its maximum value or ‘0’, its contents do not change until it is set to
a different value.

Whenever the priority of a thread is medium high and either of the following conditions exist, hardware
changes the priority to medium:

• PSPB counts down to ‘0’, or

• PSPB = 0 and the privilege state of the thread is changed to problem state (MSR[PR] = ‘1’)

While in problem state at medium-high priority, there can be the potential of the PSPBR reaching ‘0’ at the
same time a priority NOP or mtPPR is trying to lower the thread priority to a value less than medium. If the
attempted write to the PPR occurs in the same cycle, the priority NOP or mtPPR must update the PPR with
its thread priority instead of allowing the PSPB reset to set the PPR to medium priority.

5.13 Thread Priority Boosting on Asynchronous Interrupt

If a thread has a priority less than medium (‘4’), the priority of the thread is boosted on a pending asynchro-
nous interrupt. This allows the interrupt to be serviced faster for a thread (that is waiting for the interrupt at a
low-priority state). TSCR[12] is used to enable or disable priority boosting for any pending asynchronous
interrupt. The boosting of thread priority does not affect the actual architected thread priority value in the
PPR. Therefore, if the software does a move from PPR (mfPPR) at any time during asynchronous boosting, it
always gets the last priority value explicitly set by the software for that thread.

5.13.1 When to Boost Thread Priority

Thread priority is boosted internally by the hardware on an asynchronous interrupt based on Table 5-6. After
the priority is boosted, the hardware continues to treat the thread at medium (‘4’) priority until there is an
mtPPR or priority NOP instruction that changes the thread priority.

Table 5-6. Asynchronous Interrupt

Interrupt MSR Bits

Debug EE = 1 or HV = 0 or PR = 1

Hmaintenance EE = 1 or HV = 0 or PR = 1

External EE = 1

Perfmon EE = 1

HDEC EE = 1 or HV = 0 or PR = 1

DEC EE = 1

System Reset Always (ignores TSCR[12])

Scaled Processor Utilization Resource Register

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Simultaneous Multithreading

Page 146 of 450
Version 1.3

16 March 2016

In other words, there is no thread priority boosting for:

• Debug, Hmaintenance, or HDEC interrupt, if in hypervisor with EE = ‘0’

• External, Perfmon, or Decrementer interrupt, if EE = ‘0’

Otherwise, boost the priority on a pending interrupt. The reasons for not boosting the priority in the previous
cases include:

• Operating system and hypervisor: Spinning on a lock, the priority is low and MSR[EE] = ‘0’. Priority must
not be boosted because nothing useful is going to happen until the lock is acquired. Before the stdcx can
get the lock, high priority is asserted. Therefore, if a thread is holding a lock, its priority does not need to
be boosted when an external interrupt becomes pending.

• Operating system interrupt handler running with MSR[EE] = ‘0’. Priority is already at the desired level as
a result of the implicit or explicit boost. No additional boost is required by the hardware.

5.14 Thread Prioritization Implementation

5.14.1 Thread Switch Fetch Priority

The thread priority is used to apportion fetch cycles. For example, if two threads have a priority weighting that
is different, the ratio of those two weights determines the relative number of cycles those two threads will be
given access to the I-cache. If all threads have equal priority, the threads are accessed in a round-robin
manner.

The instruction fetcher makes no priority provisions for an asymmetric SMT environment. For example, if one
side of the core has one thread, and the other side has more then one thread, and all threads are of equal
priority, then each thread gets an equal number of fetch cycles, even though there are more decode
resources available for the thread that is on its own side.

If all of the threads have the same priority, the fetcher fetches the threads in an order that tries to swap from
one core side to the other as much as it can. This is desirable, because fetching multiple cycles on the same
core side increases the chance that no instructions are available to decode/dispatch on the other core side.

Normally, a thread uses its fetch cycle if there is a chance that the fetch can result in a transfer. There are
several cases where a thread relinquishes its fetch cycle and allows it to be skipped over. The cases where
this happens are as follows:

• The thread is an I-cache miss pending or I-ERAT miss pending.

• The IBuffer is full for eight cycles, such that it is unlikely that there is room in the IBuffer when the instruc-
tions are fetched from the I-cache.

• There is a hold fetch from either the ISU or the pervasive core unit that tells us we cannot fetch on that
thread.

When all the highest priority threads give up their cycle, there are times when the base hardware algorithm
cannot assign another thread based on the priority. On the cycles when this occurs, the other threads that
can be fetched take turns fetching, ignoring the thread priority.

If there is a flush on a thread and that thread is not already being selected, that thread is selected on the next
IFM1 cycle, which is done to reduce the average latency on a flush.

Instruction sequencing unit

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Simultaneous Multithreading

Page 147 of 450

5.14.1.1 SMT2 Fetch Pattern

In SMT mode, the target of a predicted taken branch can be fetched three cycles after the branch instruction
is fetched. If threads are alternated in SMT2 mode, the earliest time that an instruction could be fetched would
be allocated to the other thread, and thus the taken branch penalty goes from three to four cycles.

To reduce this effect, use a pattern in SMT2 mode that in most cases allows the same thread to be allocated
every third cycle. The pattern implemented in SMT2 mode is ‘00100100 11011011’. This pattern causes the
same thread to be assigned three cycles later 87.5% of the time.

5.14.2 Thread Switch Decode Priority

The instruction buffer, decode, and dispatch are divided into two parallel groups in SMT2, SMT4, and SMT8
modes. Each group gets half the dispatch width. In ST mode, the single thread gets the entire dispatch width.
This drives the need for a pair of decode priority engines to run in parallel; one for the threads assigned to
thread set 0 and one for those assigned to thread set 1. In SMT modes, each thread set operates in its own
half of the dispatch group, independent of the other thread set.

To support two independent thread sets that dispatch in parallel, two SMT4 thread priority engines are used.
One controls the decode cycles of the threads assigned to thread set 0. The other controls thread set 1. Each
engine can manage 1 - 4 threads, depending on how many are assigned to the thread set. Additionally, the
decode cycle selections of the two engines are balanced by controlling the number of GCT entries each
thread set has access to. The GCT limits are set based on the relative values of the sum of thread set 0 prior-
ities and the sum of thread set 1 priorities. As one side of the GCT fills up, the ISU naturally throttles back that
thread set on the dispatch hold interface. This achieves SMT2, SMT4, and SMT8 thread management at the
system level, while allowing two thread sets to decode and dispatch in parallel.

Figure 5-1. Dual SMT4 Decode Priorities

4-Way SMT
Priority

thd A thd B thd Dthd C

4-Way SMT
Priority

thd E thd F thd Hthd G

Balance

Priorities

GCT

IDU

ISU

Group 0 Group 1

Group 0

Group 1

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Simultaneous Multithreading

Page 148 of 450
Version 1.3

16 March 2016

In SMT mode, decode cycles (opportunities to form instruction groups out of the IBuffer) are given to a thread
based on the following ordered criteria:

1. Thread enabled, no slots given to a stopped thread, CTRL[8:15].

2. Per thread decode stops for Decode Hold. See Section 5.16 Controlling the Flow of Instructions in SMT
on page 152.

3. Instruction availability in the threads IBuffer. Used only if the priority in PPR[11:13] is equal for all enabled
threads.

4. Software-set thread priority, controlled in Thread Status Register (PPR[11:13]). See Section 5.14.3 Soft-
ware-Set Thread Priority on page 149.

5. Dynamically changing thread decode priority. See Section 5.14.5 Dynamic Thread Priority on page 149.

The first three criteria are used only to eliminate threads from consideration for the next decode cycle. If all
available threads are eliminated based on those three criteria, no thread forms an instruction group next
cycle. Otherwise, the remaining eligible threads are considered for the next decode cycle according to either
their software-set thread priority or a dynamic thread priority algorithm using the current state of each eligible
thread.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Simultaneous Multithreading

Page 149 of 450

5.14.3 Software-Set Thread Priority

Software-set priority is used to determine the thread to receive the next decode cycle if at least one of the
enabled threads has a different Thread Priority value in PPR[11:13] than the other enabled threads. The
intention for the software-set priority algorithm is to divide decode cycles according to the relative values of
the thread priority values.

POWER8 core control is given by allowing the user to define the weightings between the seven priorities. A
64-bit SPR, Relative Priority Register (RPR), is provided for the user to set any 6-bit value (0 - 63), for each of
the seven priority levels (very low, low, medium low, normal, medium high, high, extra high). Then,
PPR[11:13] for each active thread determines which value to read from the RPR.

Each active thread receives a number of decode cycles, relative to the other threads, equal to their priority
values. For example, within thread set 0, T0 has a relative priority of 17 (as defined by PPR[11:13] and the
RPR), T3 has a relative priority of 6, and T7 has a relative priority of 45. Within a window of 17 + 6 + 45 = 68
decode cycles, T0 gets 17 cycles, T3 gets 6 cycles, and T7 gets 45 cycles. The pattern repeats every 68
decode cycles. Additionally, the cycles given to each thread are distributed as evenly as is reasonably
possible within the pattern.

5.14.4 Low-Power Modes for Application

The POWER8 core slows the rate of group formation and decodes to reduce power whenever all enabled
threads have a priority of ‘001’, as set in each thread’s PPR[11:13]. This has different effects depending on
the SMT mode (CTRL[24:27]).

In ST mode, the single thread receives one decode cycle every 128 cycles.

In SMT2 mode, the threads in Thread Set 0 and Thread Set 1 each receive one decode cycle every 128
cycles. Thread Set 0 and Thread Set 1 are independent, and their decode cycles are not guaranteed to be
concurrent or non-concurrent.

In SMT4 and SMT8 modes, one thread from Thread Set 0 receives one decode cycle every 128 cycles, simi-
larly for Thread Set 1. As in SMT2, the two thread sets operate independently. Within a given thread set, the
threads are queued in a modified round robin fashion. Every 128 cycles, a thread is selected from the queue
and given a decode cycle. The thread at the head of the queue receives the next available decode cycle
unless its IBuffer is empty or it is otherwise removed from eligibility (ISU applies an IBuffer hold, and so on). If
the thread is ineligible, the next thread in line is selected. After a thread receives a decode cycle, it is moved
to the back of the queue.

5.14.5 Dynamic Thread Priority

If all enabled threads have the same thread priority value, a dynamic thread priority algorithm based on the
state of the eligible threads determines which will get the next decode cycle. This algorithm uses a scoring
system built on the number of GCT entries occupied by each thread, whether the thread has any outstanding
L2 or TLB misses, and a final round-robin adder used only to break any ties between threads. This algorithm
is implemented twice, once per thread set, where each algorithm manages 1 - 4 threads. The two thread sets
are then balanced using the GCT as described in Section 5.14.2 Thread Switch Decode Priority on page 147.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Simultaneous Multithreading

Page 150 of 450
Version 1.3

16 March 2016

Table 5-7 lists a summary of the scoring system.

Table 5-7. Scoring System Summary

Description Score Adder

If a thread occupies fewer GCT entries than the threshold set in TSCR[0:1] +10

If TSCR[0:1] = ‘00’ +0

If TSCR[17] = ‘1’ and the thread has no outstanding L2 misses, +5

If TSCR[18] = ‘1’ and the thread does not have an outstanding TLB miss. +5

A final value is added based on the thread’s position relative to a round-robin pointer:

Thread being pointed to +4

Thread that shares downstream resources with the pointed thread (thread0 shares with thread1, thread 2
with thread3) +3

Thread with the same LSB as the pointer (thread0 with thread2, thread1 with thread3) +2

Remaining thread +1

The eligible thread with the highest overall score is given the next decode cycle. Note that the round-robin
pointer only affects results in the event of a tie from the other three adders. To ensure fairness between
threads when one or more threads are disabled, the round-robin pointer rotates between all threads available
in the current SMT mode regardless of whether the thread is enabled.

5.15 Support for Multiple LPARs

In cloud-computing mode, the core can be partitioned into 2 or 4 LPARs. When in 2 or 4 LPAR mode, the
SMT mode is always forced to SMT8 so that most resources are allocated based on Table 5-2 Front-End
Execution Core Resource on page 135.

5.15.1 Instruction Fetch

When the processor is configured in 2 or 4 LPAR mode, fetch cycles are allocated in a round robin manner to
the partitions. This implies each partition will always get an equal percentage of the fetch cycles. If a partition
does not have any threads that are ready, those cycles will be allocated to another partition, as long as other
partitions have threads that are ready to fetch. If a partition contains multiple threads, the partition’s fetch
cycles for the threads in that partition are divided based on the relative software priority weighting.

5.15.2 Decode

In 2 LPAR mode, each partition gets 50% of the decode bandwidth. In 4 LPAR mode, each partition gets
25%. Each LPAR is given its 25% or 50% of the decode bandwidth, regardless of how many LPARs are
active.

For 4 LPAR mode, one or two threads can be active. If an LPAR has two threads active, an SMT2 priority is
followed as described in Section 5.14.3 Software-Set Thread Priority on page 149. Each thread is given
cycles within its partitions time slice, relative to the other thread in its partition, based on their relative priori-
ties. See Figure 5-2 for details. For 2 LPAR mode, an SMT4 priority is followed.

Figure 5-2. Decode Priority in 4 LPAR Mode

IBuffer configured in SMT8 Mode

Group 0 Group 1

25% of decode
bandwidth

25% of decode
bandwidth

25% of decode
bandwidth

25% of decode
bandwidth

Alternate between
LPAR 0 and 1

every cycle

Alternate between
LPAR 2 and 3

every cycle

LPAR 0 LPAR 2

LPAR 3LPAR 1

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Simultaneous Multithreading

Page 151 of 450

5.15.3 Microcode Fairness

In multi-LPAR mode, the goal is to give each LPAR the same number of dispatch cycles. However, multi-
cycle microcode instructions can cause an LPAR to consume multiple consecutive cycles. To remedy this,
give the other LPAR sharing the dispatch bandwidth extra decode cycles to compensate for the loss of
decode cycles. When microcode operations are in flight, each operation generates 32 groups (such as, load
multiples).

The counter handles 32 × 12 = 384 catch-up cycles for either LPAR. A 10-bit counter handles up to 512
cycles for each LPAR.

5.15.4 Instruction Cache

I-cache allocation is altered for LPAR modes.

5.15.5 Thread Set Allocation

Threads 0 - 3 are allocated to side 0, and threads 4 - 7 to side 1, for both 2 LPAR or 4 LPAR mode. Thread
set reconfiguration is disabled.

5.15.6 Data Cache

Threads 0 - 1 reload into sets 0 - 1, threads 2 - 3 reload into sets 2 - 3, threads 4 - 5 reload into sets 4 - 5, and
threads 6 - 7 reload into sets 6 - 7

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Simultaneous Multithreading

Page 152 of 450
Version 1.3

16 March 2016

5.15.7 ERATs

Threads 0 - 3 share half of the primary/secondary ERAT, while threads 4 - 7 share the other half.

5.16 Controlling the Flow of Instructions in SMT

The ability to control the flow of instructions in an SMT processor is very important for the performance
improvement due to SMT. When one thread is not making good progress (which can happen due to many
reasons, such as an L2 miss, TLB miss, sync or other long latency operations), the other thread must be
allowed to have as much of the machine resources as necessary for it to make progress. The following
features are built into the POWER8 core for controlling instruction flow.

5.16.1 Dispatch Flush

A dispatch flush is a low-latency flush that flushes the decode pipe. Sync, lwsync, ptesync, tlbsync, tlbie,
and instructions with the scoreboard bit set can cause a dispatch flush on the POWER8 core. Also, if
enabled, a thread that was balanced flushed is dispatch flushed if the chosen thread is stalled at dispatch.

5.16.1.1 Dispatch Flush Rules

1. Dispatch flushes are disabled if the core is in single-thread mode, or if the core is in SMT2 or SMT4 mode
and there is one or fewer than one threads active.

2. Dispatch flush only occurs if a thread shares a group with another thread. SMT2 mode should not dis-
patch flush if each thread has its own group.

3. If both threads are on group0 (not balanced), dispatch flush can still occur.

4. Never dispatch flush a thread if it is in the middle of a microcode. Dispatch flushes related to SMT-perfor-
mance are never done if in the middle of a microcode dispatch. Other dispatch flushes can happen to
microcode, however, such as quiesce, RAS, or a forward-progress timeout.

5. If a thread’s virtual LRQ or virtual SRQ is full, it gets dispatch flushed, irrespective of its thread priority.

6. A sync, lwsync, ptesync, or tlbsync instruction from thread A causes a dispatch flush of thread A (sim-
ilarly, for other threads).

7. If the GCT thread is not empty, the tlbie instruction gets dispatch flushed. The instruction that follows the
tlbie is dispatch flushed if the tlbie instruction has not received tlbie acknowledge from the Nest, through
the LSU.

8. If thread A has its scoreboard bit set (such as, non-renamed mtspr followed by mfspr), thread A is dis-
patch flushed (similarly, for other threads).

9. The instruction that follows an instruction that stalls dispatch until GCT empty can cause a dispatch flush.
Instructions that stall dispatch until GCT empty include: mtamr, treclaim., and power mode instructions:
doze, nap, sleep, rvwinkle, and sp_attn.

10. If TSCR[3] is enabled, dispatch flush the thread that was chosen for a balance flush if that thread is
stalled at dispatch.

11. If a thread is stalled at dispatch because its unified queue half is full and the core is in SMT4 mode, then
dispatch flush the stalled thread.

Reliability, availability, and serviceability

Load reorder queue

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Simultaneous Multithreading

Page 153 of 450

5.16.1.2 Stall at Dispatch

A thread can be stalled at dispatch due to unavailability of a shared resource that it needs for the next
dispatch. When stalled, dispatch_hold is asserted to hold the decode pipe. The complete list of stall condi-
tions follows:

• Required issue queue entries are not available
• Not enough renames are available for the entire group
• GCT is full

Note:

1. A 5-cycle delay is expected between counting the GCT entries and taking any action based on that count.

2. A 4-cycle delay is expected between the detection of a stall condition and causing a dispatch flush.

5.16.2 Decode Hold

1. After a dispatch flush, a sync, lwsync, ptesync, tlbsync instruction is held at IBUF until its dispatch con-
ditions are met. This is done irrespective of thread priority.

2. After a dispatch flush, a tlbie instruction is held at IBUF until the GCT thread is empty. After the tlbie
instruction is dispatched, the very next instruction gets dispatch flushed and then held at IBUF until GCT
and the SRQ are empty. This is done irrespective of thread priority.

3. After a balance flush due to an L3 or TLB miss, instructions on the balance flush thread are held at IBUF
until the miss is resolved or until the balance flush miss counter reaches the threshold value as deter-
mined by TSCR[8:9].

5.16.2.1 Balance Flush

A balance flush is an NTC+1 flush that flushes all instructions on a selected thread that are younger than the
next-to-complete instruction group. It flushes the execution units, GCT, and EAT for the selected thread.
Threads are considered for a balance flush only if a thread is stalled at dispatch. Balance flushes can be
disabled using TSCR[2].

Criteria for Selecting a Thread to be Balanced Flushed

If the core is in SMT mode and more than one thread is active, then on a dispatch stall perform the following
steps:

1. Select the threads with any number L3 or TLB misses, regardless of the balance flush miss counter
value. If enabled by a debug switch, only select the threads with any number of L3 or TLB misses, if the
balance flush miss counter for the thread is less than the counter threshold as described by TSCR[8:9]. If
the miss counter for the thread is greater than the threshold value, ignore the miss on that thread and do
not consider the thread for a balance flush.

2. If only one thread has an L3 or TLB miss, select that thread to be balanced flushed. Raise the CLB hold
on the thread that was chosen to be balanced flushed until either the miss has been resolved or the bal-
ance flush miss counter threshold has been reached as described by TSCR[8:9].

3. If in SMT4 or SMT8 and more than one thread is eligible to be balanced flushed based on having an L3 or
TLB miss and a GCT count over the balance flush GCT threshold TSCR[4:5], select all eligible threads to
be balanced flushed. Raise the CLB hold on the threads that were chosen to be balanced flushed until

effective address table

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Simultaneous Multithreading

Page 154 of 450
Version 1.3

16 March 2016

either the miss has been resolved or the balance flush miss counter threshold for that thread has been
reached as described by TSCR[8:9].

4. If in SMT2 and both threads are eligible to be balanced flushed based on having an L3 or TLB miss and a
GCT count over the balance flush GCT threshold TSCR[4:5], do not balance flush either thread. Do not
raise the CLB hold.

5. If no threads have an L3 or TLB miss, select the threads with GCT counts over the TSCR[6:7] balance
flush no-miss GCT threshold to be balanced flush. For the POWER8 processor, the default is to allow this
option in SMT2, with a mode to disable it. It can be disabled for all SMT modes by setting TSCR[6:7] to
‘00’.

6. If the thread that is stalled at dispatch is also the thread that was chosen to be balanced flushed, then
also do a dispatch flush on that thread if TSCR[3] is enabled. Otherwise, do only a balance flush on the
chosen thread.

5.17 Dynamic Thread Transitioning

5.17.1 Overview

Any thread can be run in any SMT mode, on any thread set. Starting and stopping a thread, without crossing
an SMT mode boundary (SMT1/2/4/8), can be done seamlessly without having to quiesce the core. However,
if an SMT boundary is crossed, a quiesce (and optionally additional action) is required, as detailed in
Section 5.17.3 SMT Mode Boundary Crossings on page 155. Note that the POWER8 processor treats the
DOZE instruction as a NAP instruction.

5.17.2 Thread Set Definition

If only one thread is running, it is guaranteed to be on thread set 0. As threads are added, they are assigned
to alternating thread sets, to strive to achieve balance in the number of threads per thread set. The GCT sets
are tied to the thread sets and can complete one thread per cycle from each thread set. The dispatch groups
are also tied to the thread sets. As threads are disabled, the thread set definition remains the same. Conse-
quently, the remaining enabled threads can have imbalanced thread sets, which is addressed in
Section 5.17.4.1 Balancing on page 155.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Simultaneous Multithreading

Page 155 of 450

5.17.3 SMT Mode Boundary Crossings

When SMT mode boundaries (SMT1/2/4/8) are crossed, different resources throughout the core are reconfig-
ured to maximize performance in a certain SMT configuration. All threads must be quiesced before any
reconfiguration can occur.

Table 5-8 on page 155 shows how the different resources must be reconfigured in the various SMT mode
boundary crossings. If multiple boundaries are crossed simultaneously, the action is the OR of the respective
boundary-crossing functions listed in Table 5-8.

Table 5-8. SMT Mode Boundary Crossing Reconfigurations

From To Drain AMCs Reconfigure
IFU

Reconfigure
IDU

Reconfigure
LSU Notes

SMT1 SMT2 Y Y

SMT2 SMT4 Y

SMT4 SMT8 Y

SMT8 SMT4 Y

SMT4 SMT2 Y

SMT2 SMT1 Y Y Y Place remaining thread in thread set 0.

It is possible that, when an SMT mode is lowered, there might be too many threads in one of the thread sets,
or the number of threads per thread set might be imbalanced. Table 5-1 SMT Modes on page 135 shows the
maximum allowable number of threads per thread set. The corrective action is to reconfigure thread sets as
described in Section 5.17.4 Thread Set Reconfiguration.

5.17.4 Thread Set Reconfiguration

Threads can be moved to a different thread set, for a variety of reasons. To do so, all threads must be
quiesced.

5.17.4.1 Balancing

There can be an imbalance in the number of threads per thread set, either after an SMT mode change, or as
threads are disabled. Table 5-9 shows the different scenarios where a rebalance can be triggered. Some of
the scenarios can only occur after an SMT mode change because once in a given SMT mode, there is a
maximum allowable number of threads per thread set, as shown in Table 5-1 SMT Modes on page 135.
Otherwise, the scenario can occur at any time.

Table 5-9. Thread Balancing Scenarios (Sheet 1 of 2)

Mode Threads Per Set Rebalanced Threads Per Set

SMT2 2/0 1/1

SMT4 2/0 1/1

SMT4 3/0 2/1

SMT4 3/1 4/0 2/2

SMT8 2/0 1/1

SMT8 3/0 2/1

instruction fetch and decode unit

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Simultaneous Multithreading

Page 156 of 450
Version 1.3

16 March 2016

5.17.4.2 Mixing

There can be an inequality in the processor resources being used per thread set. If one thread set is heavily
using a given resource, but the other thread set is not, wasting its allotment of the resource, it might be
advantageous to move a thread using the resource to the other thread set, to maximize the usage of the
resources. A reconfiguration based on this thread “mixing” can only occur in SMT4 and SMT8 modes.

5.17.4.3 Action

When moving a thread to the opposite thread set, its AMC data must be drained, pushing that thread’s
GPR/VRF data out to the SAR, so that it can be reloaded into the opposite register file after it starts
executing. If the action is triggered while executing, only perform the action after the trigger remains in the
same state after a delayed amount of time, controlled by a programmable 20-bit LFSR counter (up to 1 million
cycles). This delay is inserted because a reconfiguration is expensive in terms of latency. Therefore, it is
important that the events that caused the trigger are in a relatively steady state. The link stack and D-ERAT
must be rebuilt for the moved threads; therefore, performance initially suffers for those threads.

SMT8 3/1 4/0 2/2

SMT8 4/1 3/2

SMT8 4/2 3/3

Table 5-9. Thread Balancing Scenarios (Sheet 2 of 2)

Mode Threads Per Set Rebalanced Threads Per Set

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 SMP Interconnect

Page 157 of 450

6. POWER8 SMP Interconnect

The POWER8 SMP interconnect fabric controller (FBC) is the underlying hardware used to create a scalable
cache-coherent multiprocessor system. The POWER8 SMP interconnect controller provides coherent and
noncoherent memory access, I/O operations, interrupt communication, and system controller communication.
The FBC provides all of the interfaces, buffering, and sequencing of command and data operations within the
storage subsystem. The FBC is integrated on the POWER8 chip, with up to 12 processor cores and an on-
chip memory subsystem.

The POWER8 chip has up to three FBC links that can be used to connect to other POWER8 chips. The FBC
link is a split-transaction, multiplexed command and data bus that can support up to four POWER8 chips. The
bus topology is a fully-connected topology to reduce latency, increase redundancy, and improve concurrent
maintenance. Reliability is improved with ECC on the external I/Os.

Cache coherence is maintained by using a snooping protocol. Address broadcasts are sent to the snoopers,
snoop responses are sent back in-order to the initiating chip, and a combined snoop response broadcast is
sent back to all of the snoopers. Multiple levels of snoop filtering, Chip pump, and remote chip pump, are
supported to take advantage of the locality of data and processing threads. This approach reduces the
amount of interlink bandwidth required, reduces the bandwidth needed for system-wide command broad-
casts, and maintains hardware enforced coherency using a single snooping protocol. Chip pump limits the
command broadcast scope to the snoopers found on a physical POWER8 chip. When the transaction cannot
be completed coherently using this limited scope, the coherence protocol forces the command to be re-
issued to all chips in the system (system pump). Conversely, remote chip pump limits the broadcast scope to
a remote POWER8 chip; if the operation cannot complete coherently, the command is re-issued using
SystemPump to complete the operation.

6.1 POWER8 SMP Interconnect Features

6.1.1 General Features

• Master command/data request arbitration.

• Command requests are tagged and broadcast using a snooping protocol, enabling high-speed cache-to-
cache transfers.

• Multiple command scopes are used to reduce the bus utilizations system wide. The SMP interconnect
controller uses cache states indicating the last known location of a line (sent off chip), information main-
tained in the system memory (snoop filter bits), a coarse-grained MCD indicating when a line has gone off
the chip, and combined response equations indicate if the scope of the command is sufficient to complete
the command or if a larger scope is necessary.

• The command snoop responses are used to create a combined response, which is broadcast to maintain
system cache state coherency. Responses are not tagged. Instead, the order of commands from a chip
source, using a specific command broadcast scope, is the same order that combined responses are
issued from that source.

• Data is tagged and routed along a dynamically selected path using staging/buffering along the way to
overcome data routing collisions. Command throttling and retry command back-off mechanisms are used
for livelock prevention.

• Multiple data links between chips are supported (link aggregation).

SMP interconnect controller

Error correcting code

Memory coherence directory

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 SMP Interconnect

Page 158 of 450
Version 1.3

16 March 2016

6.1.2 POWER8 Specific Features

• Chip pump, remote chip pump, and system pump command broadcast scopes with memory domain indi-
cators in cache states, memory, and in the MCD to determine when an increase in the command broad-
cast scope is required.

• 1- 4 socket configuration support (12-way - 48-way)

• 2x snoop bus support

• 64 local master (LM) system pump queue size (32 per snoop bus)

• 64 chip master (CM) chip pump queue size (32 per snoop bus)

• Service processor accessible SCOM registers for configuration setup

6.1.3 Off-Chip Features

• 2-byte DMI2 intergroup links (A0:A2)

• Aggregate data link support

6.1.4 Power Management Features

• Core chiplet frequency support
– Doze mode within the floor/ceiling range
– Doze mode outside the floor/ceiling requires change frequency command

• EX chiplet sleep mode support

6.1.5 RAS Features

• 100% ECC protection on external A-bus off-chip links
– Single-bit error correction (incoming and outgoing data)
– Double-bit error detection

• 100% ECC protection on internal data flow

• Livelock recovery mechanism

• Trace array

• Performance monitor

• FIR error reporting
– Protocol errors
– Underflow/overflow checkers
– Asynchronous drop/repeat checkers
– Parity checkers on coherency register files

• Error injection for system-code debug
– Single-bit or double-bit errors on external SMP links

scan communications

differential memory interface

Fault Isolation Register

symmetric multiprocessing

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 SMP Interconnect

Page 159 of 450

6.2 External POWER8 SMP Interconnect

Within the SMP, the off-chip POWER8 SMP interconnect supports up to three coherent SMP links (A0:A2).
The interchip A links connect up to four chips. The A links carry coherency traffic, as well as data, and are
interchangeable with each other. The A links can also be configured as aggregate data-only links between
groups.

The A links are configured as 2 bytes in width (A0:A2, 2-byte DMI2 intergroup links).

6.2.1 POWER8 SMP Interconnect Multichip Configurations

Figure 6-1 and Figure 6-2 illustrate various POWER8 SMP interconnect multichip configurations.

Figure 6-1. Two Socket Configuration (24-way)

P8P8
A0:A2 A0:A2

Note: The dotted line indicates an aggregate data-only link that only applies to the POWER8 processor in the SCM.

Figure 6-2. Four Socket Configuration (48-way)

P8P8P8P8
A0:A2 A0:A2 A0:A2 A0:A2

6.2.2 Protocol and Data Routing in Multichip Configurations

The SMP ports configured for coherency are used for both data and control information transport. The use of
the buses is as follows:

1. The chip containing the master that is the source of the command issues the reflected command and the
combined response to all other chips in the group. The other chips direct the partial response that is a
result of the reflected command back to the chip which provided the reflected command. Partial
responses are collected at intermediate chips along the directed path from the partial response source to
the chip containing the master. The number of partial responses received at the chip containing the mas-
ter is equal to the number of SMP ports used to broadcast the reflected command.

2. Data is moved point-to-point. For read operations, the chip containing the source of the data directs the
data to the chip containing the master. For write operations, the chip containing the master, directs the
data to the slave that performs the write operation. Note that the routing tag contains chip and unit identi-
fier information for this purpose.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 SMP Interconnect

Page 160 of 450
Version 1.3

16 March 2016

6.3 Coherency Flow

6.3.1 Physical Broadcast Flow

There are three physical broadcast flows within the POWER8 SMP interconnect.

• Chip Pump (CP) - Command broadcast is limited to the local physical chip

• System Pump (SP) - Command broadcast is to all chips in the system.

• Remote Chip Pump (RCP) - Command broadcast is limited to the local physical chip and a remote physi-
cal chip.

Each physical broadcast flow has an independent set of coherency tracking structures (master tag FIFO,
ticket counters, and so on).

6.3.2 Broadcast Scope Definition

The POWER8 broadcast terminology used in this documentation denotes the physical broadcast scope for
commands. Table 6-1 describes the physical broadcast scope and the equivalent coherency scope.

Table 6-1. POWER8 Broadcast Scope Definition

Coherency Command Scope unit_pb_cmd_scope Physical Broadcast

Chip scope 000 Chip

System scope 010 All SMP chips

Remote chip scope 011 Local/remote physical chips

6.4 Command Ordering Support

The processor bus supports the ability for a master to issue commands in a specific order per scope and for
their completion to maintain the same order. The issue order is determined by the order the master issues the
command request to the processor bus. The command completion is when the combined response is formed.
The processor bus, however, does not guarantee the order in which commands are presented on the
reflected command bus or the broadcast combined response bus.

6.5 Memory Coherence Directory

6.5.1 Directory Size

The Memory Coherency Directory (MCD) contains 2 bits per 16 MB page (1 bit for even 8 MB, 1 bit for odd
8 MB) for a total 2 TB of group LPC address space.

6.5.2 Operation

The MCD Lite is the MCD implementation for the POWER8 chip in the SCM. It is a coarse-grained directory
of group scope memory domain status (MDS) bits designed to cover the full real address range of the
memory controllers on the POWER8 chip. The size of memory address space covered by each bit (granule)
of the MCD depends on the memory configuration. The MCD is functionally split into 2 units, called slices,

Lowest point of coherency

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 SMP Interconnect

Page 161 of 450

each connected to one of the two processor bus ports. The two units operate independently and do not share
granule state. Additionally, the MCD unit can be enabled by software to probe the memory domain status of
cache lines through the processor bus command interface. The MCD can recover the on-group status of a
granule if all cache lines are found on group. The MCD also has the ability for software to directly read and
write any bit in the MCD arrays. For data reliability purposes, the MCD arrays are protected by ECC.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 SMP Interconnect

Page 162 of 450
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Interrupt Control Presenter

Page 163 of 450

7. Interrupt Control Presenter

The interrupt control presenter (ICP) function combines the interrupt presentation and router functions. It
decides which thread is to be notified of an available interrupt or returned to a source layer. The notification to
a given thread is via a control wire to each PowerPC thread.

Interrupts reach the ICP via interrupt commands, issued through the processor bus, that either originate from
a device attached to a PCIe bus or from an internal interrupt control source (ICS) function, depending on the
system configuration. Figure 7-1 on page 164 depicts the general interrupt structure.

Figure 7-1. POWER8 Logical Interrupt Controller Structure

Core x

Thr x

Thr m

Thr b

Core x

Thr x

Thr m

Thr y

Core m

Thr x

Thr z

Thr y

HFI

PCIe IODA
Layer

ICE

MVT

R
e

fl
C

m
d

, A
d

dr

M
st

C
m

d
,

A
d

dr
PCIe

PCIe Protocol
Layer

LSI Assert/Deassert

1

1

Interrupt Lines
MSI Interrupt Messages

PCIeDevice or
Switch

Processor Bus

Int Req

Int Fwd
Int EOI

ICP

T
hr

ea
ds

 0
-7

PM
State

In
t

R
eq

In
t

E
O

I

XIRR
MFRR

LinkA

OutQ

LinkB
LinkC

 R
e

je
ct

ICP/Rtr
ICP/Rtr

ICP/Rtr
ICP/Rtr

T
hr

ea
ds

 0
-7

ICP/Rtr
ICP/Rtr

ICP/Rtr
ICP/Rtr

T
hr

ea
ds

 0
-7

ICP/Rtr
ICP/Rtr

ICP/Rtr
ICP/Rtr

T
h

re
a

d
s

0
-7

ICP/Rtr
ICP/Rtr

ICP/Rtr
ICP/Rtr

T
hr

ea
ds

 0
-7

ICP/Rtr
ICP/Rtr

ICP/Rtr
ICP/Rtr

T
hr

ea
ds

 0
-7

ICP/Rtr
ICP/Rtr

ICP/Rtr
ICP/Rtr

Core 4 Core 5

Core 6

Core 9

Core 10 Core 11

R
ef

le
ct

ed
 C

m
d

, A
dd

re
ss

pR
e

sp

L
oa

d
D

a
ta

S
to

re
 D

a
ta

MMIO
Dcd

In
Cmd

Load Data

Store Data

Address

C
or

e
R

te

M
as

te
r

C
m

d
, A

d
dr

e
ss

C
o

re
cr

b

ICPMaster ICPSlave

D
ie

In
tF

w
d

Int Fwd
MMIO Address
Store Data

C
or

e
A

rb

Load Data

Int Req, Int Fwd

Int EOI, Int Fwd, Int Rej

EE Signals to Cores

In
t R

eq

...

XIVE per src

ICS

pR
e

sp

L
oa

d
D

a
ta

S
to

re
 D

a
ta

N
o

de
A

rb

ICSMaster ICSSlave

D
ie

In
tF

w
d

Chip Pervasive

R
e

fle
ct

e
d

C
m

d
,

A
d

dr
es

s

M
a

st
er

 C
m

d,
 A

dd
re

ss

In
t

E
O

I,

M
M

IO
 A

d
dr

S
to

re
 D

a
ta

L
o

ad
 D

at
a

X
IV

E
 S

e
t

Int Fwd

In
t

F
w

d

In
t

R
e

q
,

I/
O

 E
O

I

X
IV

E
 R

e
je

ct

1

2

3

4

6

CI Store to ICS or LSI Wire

Interrupt Request Packet

EE Assert to Thread or Interrupt Packet Fwd

CI Load to ICP (Accept)

CI Store to ICP (EOI)

or Interrupt Reject Packet

3

2In
t

R
e

j

7

3

6

C
I

S
to

re
 t

o
 I

C
S

Int Rej

7 Interrupt EOI Packet

5 IEE Deassert to Thread

5

4

power-system

Core x

Thr x

Thr m

Thr b

Core x

Thr x

Thr m

Thr y

Core m

Thr x

Thr z

Thr y

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Interrupt Control Presenter

Page 164 of 450
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Interrupt Control Presenter

Page 165 of 450

7.1 Features

The interrupt presenter layer consists of the following facilities:

• Supports 96 threads (12 cores with 8 threads each) for the POWER8 processor in the SCM configuration.

• One External Interrupt Request Register (XIRR) per thread.
– Current Processor Priority Register (CPPR).
– External Interrupt Source Register (XISR) - interrupt source number (ISN) determines origin of inter-

rupt.

• Most Favored Request Register (MFRR) per thread for interprocessor interrupts.

• PAPR Type II routing.
– Three link registers for interrupt forwarding.
– Link traversal detection creating an interrupt return.

• Continuous evaluation of priority of queued interrupt.

• Resides as a unit on the processor bus. Acknowledges (receives) interrupt request packets and produces
interrupt return or end-of-interrupt (EOI) packets back to the requesting ICS or interrupt forward packets
to pass the request to another ICP.

• Uses processor bus address-only transactions for interrupt requests, returns, EOIs, or forwarding.

• Interrupt source number of the processor is implemented as a 19-bit field.

• Supports internal ICS and PCIe.

• Has the following queue depths per chip.
– 8-deep interrupt request queue.
– 8-deep interrupt return queue.
– 8-deep external forwarding queue.
– 16-deep shared CI load/CI store queue.

7.1.1 Routing Layer

The IRL that handles the server number in the interrupt request acknowledges the command and passes it to
the associated IPL. If the priority of the interrupt is more favored than the current operating priority, the IPL
asserts the external interrupt signal to the thread and loads the interrupt into the XIRR. If the interrupt is less
favored than the current priority, the interrupt is given back to the IRL. If the interrupt is a directed interrupt
(also known as, specific to this thread), the IRL issues an interrupt return to the ICS for later representation.

If the interrupt is not directed, a field in the interrupt request (link pointer) identifies which of the link registers
will be used for forwarding the interrupt to another thread’s IRL using the interrupt forward command.

Because the link registers can be set up by software to form a ring, there is the danger that interrupts might
be forwarded forever in such a loop. To avoid this, software must set the loop trip bit in one and only one of
the link registers that form such a loop. When an interrupt-forward or an interrupt-request command reaches
a link register, that has the loop trip bit set, the loop trip bit is carried in and passed on with all newly gener-
ated interrupt forward commands generated from that link register. An interrupt forward loop is detected when
an interrupt-forward command reaches a link register that has the loop trip bit set and the command already
carries the loop trip bit. If an interrupt forward loop is detected, the IRL issues an interrupt return to the ICS for
later representation.

single-chip module

Power Architecture Platform Reference

interrupt routing layer

interrupt presenter layer

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Interrupt Control Presenter

Page 166 of 450
Version 1.3

16 March 2016

7.1.2 Presentation Layer

Each thread has an interrupt management area that contains register facilities that software uses to accept
and initiate the end-of-interrupt operation. This interrupt management area is shown in Table 7-1. The base
address (BA) is established by system firmware to locate the interrupt management area for each thread in
the system address space.

Table 7-1. Interrupt Management Area: Interrupt Presentation Layer Ports

Address Byte 0 Byte 1 Byte 2 Byte 3 Comments

BA+0 CPPR XISR XIRR without side effects

BA+4 CPPR XISR XIRR with load/store side effects

BA+8 Reserved

BA+12 MFRR Reserved or Unimplemented

BA+16 LINK A

BA+20 LINK B

BA+24 LINK C

The definition of these facilities are defined in Table 7-2:

Table 7-2. Facility Definitions

Facility Name Description

CPPR The Current Processor Priority Register is 8 bits in length allowing for 256 priorities values. The least favored level
is x‘0FF’, and the most favored is x‘000’. The interrupt presentation layer only signals the associated processor
with interrupt conditions that are more favored than the current setting of the CPPR.

MFRR The Most Favored interprocessor Request Register is 8 bits in length of identical format to the CPPR. Its value indi-
cates the most favored interprocessor interrupt queued for the associated processor. If its value is more favored
than the CPPR, an interprocessor interrupt is signaled to the processor.

LINK One or more Link registers are found in only Type II interrupt presentation controllers. These registers are config-
ured by platform code to form one or more circular linked lists of per processing unit thread interrupt presentation
controllers that make up the group servicing a group server queue. The circular linked list replaces the functionality
of the interrupt routing layer’s Available Processor Mask used by type I interrupt presentation controllers. The Link
register is composed of five fields, The length of four of these fields is implementation dependent. However, all Link
registers of a given machine provide the same implementation-dependent values. All unimplemented bits read as
zeros, and all unimplemented/read-only bits silently ignore writes. Below are defined the fields of the Link registers.

FLAG The FLAG field of the Link register is a 1-bit long read-only field that defines the number of implemented Link Reg-
isters.
The FLAG field of all Link registers except for the last implemented Link register FLAG is ‘1’.
The FLAG field of the last implemented Link register FLAG is ‘0’.

LSPEC The LSPEC field specifies the LINK register within the targeted interrupt presentation controller that contains the
next link in the circular chain. The LSPEC field starts from the low-order bit of the LINK register (bit 31) consisting
of M bits where M is the log base 2 of (the number of implemented link registers per interrupt presentation control-
ler +1).

LOOP TRIP The LOOP TRIP bit in the Link register tells the interrupt forward command to set this bit in the forward packet
when an interrupt traverses this register. Once set, the next Loop Trip encounter causes the forwarding to cease
and a return packet is generated. This is used by firmware to avoid creating open loops during partition updates.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Interrupt Control Presenter

Page 167 of 450

Software accepts the interrupt condition and is responsible for resetting the interrupt condition through the
operations defined in Table 7-3.

Table 7-3. Resetting the Interrupt Condition

Load/Store Operation Interrupt Presentation Function

Load BA+0 (1 byte) Poll of CPPR value.

Load BA+0 (4 bytse) Poll of current interrupt status (source and priority).

Load BA+4 (1 byte) Poll of CPPR value.

Load BA+4 (4 bytes) Software accepts interrupt. This causes the deactivation of the interrupt signal to the processor thread.

Load BA+12 (1 byte) Poll MFRR.

Store BA+4 (1 byte) Set CPPR value.

Store BA+4 (4 bytes) Software signals end-of-interrupt (EOI) processing. This cause the EOI to be sent to the source.

Store BA+12 (1 byte) Software signals an interprocessor interrupt event of the priority stored.

When the interrupt presentation layer signals an interrupt to a processor-thread, it loads the XISR with the
source of the interrupt. Any nonzero value in the XISR field causes an interrupt to be signalled to the
processor. This signal is masked by the processor’s MSR[EE] bit before the processor generates the interrupt
sequence. If, at a later time, a more favored priority interrupt is made available to the interrupt routing layer,
the interrupt routing layer can atomically change the value in the XISR to reflect the source of the more
favored interrupt. If a more favored interrupt pre-empts a less favored interrupt in this way, the less favored
interrupt is re-presented at a later time.

After the processor has read the XIRR at BA+4, the interrupt routing layer cannot change its mind and either
pre-empt or cancel the request.

The XIRR facility appears twice in the external interrupt management area. Address BA+0 is designed to be
used with interrupt polling. Address BA+4 has side effects when read or written, and is designed to allow effi-
cient interrupt handler software by having the hardware assist the software in the interrupt queueing process.

The Most Favored Request Register (MFRR) holds the priority of the most-favored request queued on a soft-
ware managed queue for this processor. When written to a value other than x‘FF’ the MFRR competes with
other external interrupts for the right to interrupt the processor. When the MFRR priority is the most-favored of
all interrupt requests directed to the processor, an appropriate value is loaded into the XISR and an interrupt
is signaled to the processor. When the processor reads the XIRR at BA+4, the value in the MFRR is loaded
by the hardware into the CPPR. The MFRR can be read back by the software to ensure that the MFRR write
has been performed.

During the processing of an interprocessor interrupt, the highest priority request is de-queued by the software
from the software queue associated with the MFRR and the priority of the next-favored request is loaded into
the MFRR by the software.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Interrupt Control Presenter

Page 168 of 450
Version 1.3

16 March 2016

7.2 Interrupt Control Presenter Registers

7.2.1 ICP Address Map

Table 7-4. Interrupt Presenter Register Address Map

Mnemonic Register Name Address (44:63)1 Length

PowerPC System Interrupt Registers:

XIRR External Interrupt Request Register (CPPR and XISR) for processor
thread nnnnnnn (without side effects) 0nnn nnnn 0000 0000 0000 1 byte / 4 bytes

XIRR External Interrupt Request Register (CPPR and XISR) for processor
thread nnnnnnn (with load/store side effects) 0nnn nnnn 0000 0000 0100 1 byte / 4 bytes

MFRR Most Favored Request Register for processor thread nnnn 0nnn nnnn 0000 0000 1100 1 byte

LINKA Link A Register 0nnn nnnn 0000 0001 0000 4 bytes

LINKB Link B Register 0nnn nnnn 0000 0001 0100 4 bytes

LINKC Link C Register 0nnn nnnn 0000 0001 1000 4 bytes

1. Where nnn_nnnn is defined as the following to identify the targeted thread: 45:48 - CoreID and 49:51 - ThreadID

7.2.2 Interrupt Base Address Register (ICPBAR)

Access: R/W/A/O SCOM only

ICP_BAR E
na

bl
e

R
es

er
ve

d

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Bits Field Name Description

0:29 ICP_BAR Interrupt Control Presenter Base Address Register. Contents of this register are compared to real
address bits 14:43 for a match.

30 Enable Indicates that ICP_BAR is valid.

31:63 Reserved Reserved.

This register indicates the 1M region for the PowerPC architected presentation registers within the POWER8
processor. This register is sized to support a 50-bit physical address space.

The following registers are located at an address offset from base address (BA) established by the ICPBAR
Register.

• Address (14:43) = 0xbbbb bbbb (where bbbb bbbb is from ICPBAR Register)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Interrupt Control Presenter

Page 169 of 450

7.2.3 External Interrupt Request Register (XIRRt with t = 0 - 7)

Access: R/W (1-byte and 4-byte length to BA+4, 4-byte length only to BA+0)

XISR

CPPR Reserved ISN

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

This register is used to pass the ISN to the software on a read and to cause an end-of-interrupt (EOI) on a
write. This register also contains the priority register CPPR. There is one register for each processor
supported.

The XIRR is made up of two parts: the CPPR and the XISR. The XISR portion contains the ISN of an interrupt
being presented. If the XIRR is read when there is no interrupt being presented, the XISR is all zeros.

The XIRR can be read at two addresses, BA+0 and BA+4.

• A 4-byte read from BA+0 returns the current CPPR and XISR, but does not have any side effects.

• A 1-byte read from BA+0 returns the current CPPR and has no side effects.

• A 1- or 4-byte write to the BA+0 has no side effects and does not update the XIRR.

• A 1-byte write of the XIRR at BA+4 stores a new value to the CPPR. This results in an interrupt resend
being broadcast on the SMP interconnect controller bus if the priority is lowered. This can also result in a
pending interrupt being returned to its source with a interrupt return issued on the processor bus.

• A 4-byte write of the XIRR at BA+4 stores a new value to the CPPR. This results in an interrupt resend
being broadcast on the processor bus if the priority is lowered. Software must ensure that the level being
set in the CPPR is not higher than the current level. The XISR is not modified but the store data is sent as
the ISN for the EOI command.

Note: Essentially, software must store the XIRR exactly what it read from XIRR when it received the
interrupt. This causes an EOI to the interrupt source and puts CPPR back to its original priority.

Bits Field Name Description Initial Value

0:7 CPPR Current Processor Priority Register
Gives the current operating priority of the processor (not the priority of the external
interrupt being presented).
x‘FF’ is lowest priority and x‘00’ is the highest.

x‘FF’

8:12 Reserved Reserved.

13:31 ISN Interrupt source number.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Interrupt Control Presenter

Page 170 of 450
Version 1.3

16 March 2016

7.2.4 Most Favored Request Register (MFRRt with t = 0 - 7)

Access: R/W (1-byte length) BA+12

MFRR Reserved

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

These registers are used by software to send interprocessor interrupts. There is one register for each
processor/thread supported.

To send an interprocessor interrupt, software writes into the MFRR associated with the processor that it
wants to interrupt. When software has written the MFRR to something other than x‘FF’, the POWER8
processor activates the interrupt to the associated processor if the MFRR priority is higher priority than the
associated processor CPPR and higher than the priority of any pending interrupt to that processor.

When the software reads the XIRR at BA+4, the value in the MFRR and ISSR is loaded by the hardware into
the XIRR. Further interrupts from this MFRR are blocked until software writes to this MFRR again. Reads of
BA+4 for an interprocessor interrupt returns the ISN = 2. When no interprocessor interrupt is active, software
should write a x‘FF’ to the first byte of this register.

Bits Field Name Description Initial Value

0:7 MFRR Most Favored Request Register.
Establishes the priority of an interprocessor interrupt.
x‘FF’ is lowest priority, and x‘00’ is the highest priority.

x‘FF’

8:31 Reserved Reserved.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Interrupt Control Presenter

Page 171 of 450

7.2.5 Link Register A (LinkAt with t = 0 - 7)

Access: R/W (4 byte to BA+16)

F
la

g

Lo
op

T
rip

Reserved NodeID ChipID PCore TSpec

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0 Flag Indicates that the Link Register is the last one implemented of the three architected.

1 LoopTrip Indicates that this presenter controls loop checking:
0 Do not set upon forward packet.
1 Set upon forwarded packet.

2:21 Reserved Reserved.

22:24 ChipID ChipID. See note 1.

25:28 PCore Processor core that is the next link in the chain. See note 1.

29:31 TSpec Thread Specification. Thread within the specific processor core that is the next link in the chain.
See note 1.

1. If an interrupt request to the thread in question cannot be presented at this point in time, the interrupt is forwarded to the appropri-
ate node, chip, core, or thread. Such a chain, as mentioned previously, can be created, where an interrupt is forwarded from a pos-
sible candidate (thread) to the next candidate. The current test relates to this chain, but is not very expressive.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Interrupt Control Presenter

Page 172 of 450
Version 1.3

16 March 2016

7.2.6 Link Register B (LinkBt with t = 0 - 7)

Access: R/W (4 byte to BA+20)

F
la

g

Lo
op

T
rip

Reserved NodeID ChipID PCore TSpec

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0 Flag Indicates that the Link Register is the last one implemented of the three architected.

1 LoopTrip Indicates that this presenter controls loop checking:
0 Do not set upon forward packet.
1 Set upon forwarded packet.

2:18 Reserved Reserved.

19:21 NodeID NodeID. See note 1.

22:24 ChipID ChipID. See note 1.

25:28 PCore Processor core that is the next link in the chain. See note 1.

29:31 TSpec Thread specification. Thread within the specific processor core that is the next link in the chain.
See note 1.

1. If an interrupt request to the thread in question cannot be presented at this point in time, the interrupt is forwarded to the appropri-
ate node, chip, core, or thread. Such a chain, as mentioned previously, can be created, where an interrupt is forwarded from a pos-
sible candidate (thread) to the next candidate. The current test relates to this chain, but is not very expressive.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Interrupt Control Presenter

Page 173 of 450

7.2.7 Link Register C (LinkCt with t = 0 - 7)

Access: R/W (4 byte to BA+24)

F
la

g

Lo
op

T
rip

Reserved NodeID ChipID PCore TSpec

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Bits Field Name Description

0 Flag Indicates Link Register is the last one implemented of the three architected.

1 LoopTrip Indicates that this presenter controls loop checking:
0 Do not set upon forward packet.
1 Set upon forwarded packet.

2:18 Reserved Reserved.

19:21 NodeID NodeID. See note 1.

22:24 ChipID ChipID. See note 1.

25:28 PCore Processor core that is the next link in the chain. See note 1.

29:31 TSpec Thread specification. Thread within the specific processor core that is the next link in the chain.
See note 1.

1. If an interrupt request to the thread in question cannot be presented at this point in time, the interrupt is forwarded to the appropri-
ate node, chip, core, or thread. Such a chain, as mentioned previously, can be created, where an interrupt is forwarded from a pos-
sible candidate (thread) to the next candidate. The current test relates to this “chain,” but is not very expressive.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Interrupt Control Presenter

Page 174 of 450
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

PCI Express Controller

Page 175 of 450

8. PCI Express Controller

The PCI Express controller (PEC) bridges between the internal processor bus and the high-speed serial
(HSS) links that drive the PCI Express (PCIe) I/O. The PEC acts as a processor bus master on behalf of the
PCIe port, converting inbound memory read and write packets into processor bus DMA traffic. The PEC also
acts as a processor bus slave, transferring processor load and store commands to the PCIe devices attached
to the port.

8.1 Specification Compliance

The PEC is compliant with the following IBM and industry standards:

• POWER Architecture Platform Requirements (PAPR+) Specification, Version 2.1
• I/O Design Architecture v2
• PCI Express Base Specification, Revision 3.0

8.2 PEC Feature Summary
• PCIe Generation 3 Root Complex (RC)

– Backwards compatible with Generation 1 and 2
– 2.5, 5.0, and 8 GT/s signalling rate

• 32 PCIe I/O lanes configurable to three independent root complexes for the POWER8 SCM
configuration

• Each root complex with 256 partitionable endpoints (PE) for LPAR support

• TCE based address translation for DMA requests.
– 50-bit address support
– Translation validation table based on PCI routing ID

• 2048 MSI interrupts per RC

• Eight LSI interrupts per RC

• IBM enhanced error handling (EEH) support

• Processor bus cache-inhibited space segmented by PE:
– PCI 32-bit memory space segmented into 256 domains by the memory domain table
– PCI 64-bit memory space segmented by 16 M64 BARs with 16 segments each

• Support for ECRC

• Support for lane swapping

• Support for TLP hints

direct memory access

logical partition

Translation control entry

Message signalled interrupt

Level signalled interrupt

Base Address Register

End-to-end cyclic redundacy check

translation layer packet

User’s Manual
Single-Chip Module
POWER8 Processor Advance

PCI Express Controller

Page 176 of 450
Version 1.3

16 March 2016

8.2.1 Supported Configuration

The 32 lanes of HSS I/O can be configured to support three independent PCI buses. Table 8-1 describes the
maximum lane allocation. In addition to supporting PCI operations, the HSS I/O can be allocated for use by
the processor bus SMP interface.

Table 8-1. Supported I/O Configurations

PEC0 PEC1 PEC2

16 16 Unused

16 8 8

8 16 Unused

8 8 8

Unused 16 Unused

Unused 8 8

symmetric multi-processor

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Management

Page 177 of 450

9. Power Management

9.1 Overview

The POWER8 processor uses a number of the more traditional dynamic power-saving techniques, such as
clock gating latches and arrays when they are not needed. These techniques make it possible to reduce peak
power and therefore, thermal design point power (TDP). They also make it possible to dynamically power
gate (turn the power off to) individual cores or full core chiplets when the core is not being used.

The POWER8 processor has an adaptive power management technique to reduce average power, collec-
tively known as EnergyScale, to proactively take advantage of variations in workload, environmental condi-
tion, and overall system utilization. This, coupled with a policy direction from both the customer and feedback
from the Hypervisor/operating system that is running on the machine, is used to determine modes of opera-
tion and the best power and performance trade-off to implement during runtime to meet customer goals yet
achieve best possible performance.

The POWER8 processor extends support to enable:

• Micropartition energy management by providing more synchronous input to the hardware platform upon
LPAR switches through hypervisor control Pstate (performance states)

• Faster adaptive monitoring and actuation through the on-chip controller (OCC) (one per POWER8 chip)

• Better instrumentation and control for memory power management (including partition-level memory
monitoring and throttling)

Managing the power and performance trade-off is a complex problem. There are many ways to control the
behavior of the hardware, but these also have a number of side effects, all of which vary based on the work-
load being processed. Because there is no “one-size fits all” policy that can be implemented, the POWER8
processor supports an adaptive approach to the problem in the form of a joint hardware, firmware, and soft-
ware solution.

9.2 Power Management Infrastructure

The POWER8 processor supports a hierarchical solution to power management. An entity running on an
attached service processor, with management software running on the cores, can establish power budgets.
Then, the POWER8 processor can be required to stay within the budget. Hypervisor-based energy manage-
ment algorithms for the partition and micropartition level can then influence the power/performance trade-off
in conjunction with the on-chip controller (OCC), which deals with the processor and memory level. Features
are handled at the lowest level possible to allow the greatest flexibility and to reduce overall complexity of the
hardware design. In general, power management hooks exist inside the processor core itself, inside the
processor core chiplet (the asynchronous entity which includes the core’s L2 and L3 caches), in the chip-level
nest unit level, and at the chip level. This affects how the features are implemented and therefore, laid out in
the SCOM registers. For example, voltage is controlled at the chiplet level (as well as the chip), frequency
and power gating in each core chiplet, and software-directed modes and instruction throttling controls inside
the core itself.

Logical partition

scan communication

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Management

Page 178 of 450
Version 1.3

16 March 2016

9.3 Power Management Policies and Modes of Operation

The POWER8 interface must be simple but powerful to observe the operating power of the POWER8 system
and its subcomponents and to direct overall policies and modes of operation for the system. The POWER8
power management subsystem (EnergyScale hardware and firmware) must provide clear policies that can be
customized to achieve the desired level of power and performance efficiency, within bounds specified by the
customer. The POWER8 processor supports multiple power management choices for the system operation.
They can be selected by the customer, depending on the situation at any given time or for particular data
center constraints.

9.3.1 Maximum Power Savings Based on Utilization and Idle

With this policy,1 decisions are made by the EnergyScale and hypervisor firmware to take advantage of
predictable idle periods of low-processor utilization. No performance (throughput) loss is allowed during long
periods of invariant utilization percentage in the observable seconds or minutes timescale. This mode is
tailored to satisfy the SPEC-Power benchmark, various upcoming government regulations, and some predict-
able data center usage models. In this policy, power is not reduced during periods of near 100% utilization,
because full performance is maintained.

9.3.2 Adaptive Power Savings with Performance Loss Floor

This policy attempts to save as much power as possible with a maximum defined allowable performance loss.
This policy is useful for system workloads or periods of time with high or unpredictable utilization. An attempt
is made by the EnergyScale firmware and hardware to save as much power as possible while maintaining at
least a minimal performance level. In more advanced forms, a power shifting technique can be used to maxi-
mize performance by giving more power to busier cores by taking power from less busy cores.

9.3.3 Power Cap

For this policy, the EnergyScale firmware allows the POWER8 processor to perform as well as possible
underneath a hard power ceiling (to within milliwatts of accuracy). Frequency, voltage, and throttling are used
to limit the throughput of the system to prevent the Power Cap from being exceeded. This policy allows data
centers to limit the total power consumed by the server to budget their electric bill or work within physical
constraints (power delivery, cooling capacity) of their data center

9.3.4 Turbo Performance Boost

This policy allows EnergyScale to boost frequency by managing voltage and internal modes assuming lower
than peak workload. Chip health (temperature, circuit performance, and so on) is monitored by internal
sensors to ensure safety, such that the chip never exceeds its power or thermal specification. By using
activity event counters as an estimation for power being consumed at various periods during runtime, a given
code sequence and mode selection is deterministic on every part in every environment. As a result, the
execution time of a given piece of code is largely invariant between multiple runs, regardless of environmental

1. Any of these three policies can be run concurrently. Under these policies, a given code sequence can run at different frequencies
(including overclocked “Turbo” when possible) and operating modes depending on the part, environmental conditions, workload,
and so on. The system manages voltage, frequency, and internal modes as a function of customer policy and internal sensors (DTS
and performance counters).

digital thermal sensor

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Management

Page 179 of 450

conditions, a part’s ability to overclock, and so on. Under this policy, EnergyScale firmware can change
frequency or modes dynamically during runtime, but this change occurs the same way every time code is run
and on every part in that sort bin.

9.4 Feature Summary

The POWER8 processor has additional enhanced high-value power management features as follows:

• Enablement of micropartition energy management through SPR-based PStates controlled by the hypervi-
sor.

• Autonomous, real-time management through firmware driven, on-chip controller (OCC).

• Per core chiplet voltage regulation to allow each core to be independently set based on the currently run-
ning workload. Bounds are managed by the OCC.

• Per-thread accounting (instruction completion, work rate, memory counting) to enable advanced utiliza-
tion-based power management algorithms.

• Memory access threshold throttling to control both partition-level power management and power shifting
between processors and memory, the two largest components of power in the CEC.

9.5 Overview of Chip Hardware Power-Management Features

9.5.1 Communication Paths for System Controllers

• Dedicated special wake-up bit per core chiplet owned by the OCC

• Hypervisor and OCC communication. Dedicated indirect OCB channel for hypervisor queue (up to 64
bytes) in OCC SRAM.

9.5.2 Sensors

• Digital thermal sensor (DTS)

– Diode bandgap design.

– Analog/digital converter built into hardware to provide a digital readout.

– Available via SCOM during runtime; used by the OCC to safely implement turbo modes and to protect
the chip from environmental changes that could lead to overheating.

– Three implemented per core; one implemented per EX cache region.

– Automated hardware thermal overtemperature protection is not supported. The real-time OCC firm-
ware accomplishes this function.

• Dedicated performance, microarchitecture, and activity/event counters

– Used for processor and memory utilization and weighted power activity proxy measurement to direct
power and performance trade-off decisions and selection of appropriate power management tech-
niques.

– Not shared with the performance monitor unit (PMU).

– Events and thresholds are also routed to the PMU and HTM for power and performance analysis
using traditional performance techniques.

special-purpose register

Central Electronics Complex

Static random-access memory

hardware trace monitor

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Management

Page 180 of 450
Version 1.3

16 March 2016

– Per-thread run cycle, instruction dispatch, instruction completing, work rate, and programmable mem-
ory hierarchy counters for per-thread utilization accounting.

– Chiplet memory access counter and throttling for per-core-chiplet memory power allocation and shift-
ing.

– Processor bus overcommit retry counter access.

9.5.3 Accelerators

• On-chip controller (OCC)

– Embedded PowerPC 405 with 16 KB instruction cache and 16 KB data cache

– On-chip SRAM tank (512 KB)

– Access to system DRAM memory via the processor bus for instruction and data area overflow (firm-
ware managed)

• SPIVID command interface to chip external VRMs controlling core voltage rails. SPIVID VRMs accept
respective core VDD and VCS target values.

9.5.4 Actuators/Controls

• Architected idle modes (nap, sleep, winkle)

– Hypervisor can execute idle instructions to quiesce the processor pipeline and allow varying levels of
power savings, each with higher latency to enter or exit.

– No support for doze.

– Support for sleep instruction (fast sleep: core power on; deep sleep: core power off). The sleep
instruction allows for the L3 cache to remain functional for use by other cores.

– Support for the rvwinkle instruction (fast winkle: chiplet power to VRET; deep winkle: chiplet power
off).

• Per-chiplet core frequency control.

– Digital PLL (DPLL) allows desired dynamic frequency range of -50% to +10%.

– With winkle of other cores, can be up to +30% of nominal core frequency.

– Automated frequency reduction nap, sleep, winkle and low activity detect – controlled by PMICR SPR
settings.

• External (off-chip) VRM voltage control.

– Three SPI VID interfaces to VRMs are associated with a given chip.
— VRMs are passed respective core VDD and VCS targets with CRC to ensure transmission. VRMs,

using load-line sensing, ramp the rails without offset overlap.
— VRMs return a status frame for command confirmation of VID write validity.

– Redundancy supported via a broadcast of VID commands on all configured interfaces.
— If two interfaces, good if one responds positively (acknowledged and no errors).
— If three interfaces, good if two respond positively (acknowledged and no errors).

– If responses are negative (timeouts, acknowledged with errors), voltage changing is suspended.
OCC notification for firmware handling.

• Memory controller (DIMM) throttling. See POWER8 Memory Buffer User’s Manual for full support details.

• Firmware runtime power-management controls.

Dynamic random-access memory

Serial Peripheral Interface - Voltage ID

Voltage regulator modules

phase-locked loop

cyclic redundancy check

voltage ID

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Management

Page 181 of 450

– Power Management Control Register (PMCR) SPR for run-time Pstate control. (See Section 9.8
Architected Control Facilities on page 192 for details.)
— Pstates: 8-bit signed values that are an offset from the part’s nominal frequency.
— Global: requests the global voltage rail to be changed.
— Local: requests the local frequency and voltage to be changed.

– Power Management Idle Control Register (PMICR) SPR for idle-time Pstate control.
— Nap Pstate
— Sleep Pstate
— Winkle Pstate

– Power Management Memory Access Register (PMMAR) SPR for chiplet memory traffic control.
— Chiplet memory traffic accounting.
— Chiplet memory traffic throttling (if in single-core chiplet partition mode).

9.5.4.1 Configurations with Unused Components

• Dynamically or statically disable active power in the I/O devices for unused buses.

– Static disablement of unused buses available in each EI4 bus using SCOM.
– EI4 buses support hardware-driven dynamic spare lane power down.

• Dynamically clock-gating unused units.

– The following units can be clock gated (via thold) when the associated chip is not attached to the
interface.
— PCI-E Host Bridges (PHB)
— SMP interconnect A0:A2 Elastic Differential I/O (EDI) buses individually

• Statically clock-off unused units/buses
– Each MCS0 or MCS1 unit and associated differential memory interface (DMI) buses.
– Memory control buffer (MCB) for direct drive memory
– Elastic I/O - four buses individually.

• Partial good requirements
– Both partial good “bad” scenarios and gard/runtime deallocation
– Bad core chiplets (with a bad L3 cache region) can be completely power gated at IPL time (chiplet

power same as winkle).

special purpose register

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Management

Page 182 of 450
Version 1.3

16 March 2016

9.6 Chip Hardware Power-Management Features

9.6.1 Chiplet Voltage Control

The POWER8 processor supports several VRM control mechanisms to support multiple different system
configurations. The core chiplets are on a separate voltage plane than the other Nest components of the chip.
The chip-level power management control (PMC) macro and the OCC are, in combination, programmable to
support these configurations.

Core chiplets all share the same voltage plane and have to run with “highest common denominator” (that is,
the core demanding the highest voltage sets the value of the voltage rail). The OCC is responsible for estab-
lishing the best frequency and therefore voltage bounds based on the workload running, the power/perfor-
mance efficiency policy selected by the customer, and the system budgets established by the thermal
management component.

9.6.2 Chip-Level Voltage Control Sequencing

The external VRMs (eVRMs) sourcing the logic (VDD) and array (VCS) rails are controlled by voltage control
interfaces from the POWER8 chip. These interfaces use serial peripheral interconnect (SPI) signaling to a
VRM chipset that converts the addressed VID command to industry standard Intel VRM-11 interface compo-
nents or others as implemented by the VRMs.

9.6.2.1 SPIVID VRM Control Sequencing

The VDD and VCS target voltages are sent in one command to the VRM set. That target can be the full voltage
swing request (VMAX to VMIN or vice versa) or any subset. With the VDD and VCS targets, the VRMs, through
sampling of load lines, manage the offset of the two rails during the slew.

9.7 Functional Description of Processor Core Chiplet

9.7.1 Power Gating

The POWER8 processor implements per-core and per-core-chiplet power gating with two separately
controlled power grid regions inside the EX core chiplet. These power regions also correspond to clocking
domains. Thus all circuits on the full-frequency core clock grid (that is, processor core and L2 cache) are
controlled by the core power gate. The EX cache power gate controls the voltage to the circuits on the half-
speed cache_nclk region of the chiplet (for example, L3 cache, NCU, and processor bus interface units). This
allows the entire core chiplet to be powered off to save maximum power when not in use (via the winkle state
or static EX cache mode). It also allows only the core region to be powered off via the sleep state, such that
the L3 cache remains available for other cores on the chip to use as an L3.1 extended cache for lateral
castouts to maximize their performance.

The benefits of POWER8 power gating include:

• Dynamic EX cache mode can be a runtime option via sleep mode.

• The adjacent core can enter turbo mode to take advantage of overall lower chip power and temperature.

• Idle power is significantly reduced.

noncacheable unit

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Management

Page 183 of 450

• Per-chiplet control enables better partition-level power management capability (due to per-chiplet con-
trol).

• Better power efficiency modes are enabled.

• Better energy managment capability and benchmark scores.

9.7.2 Idle States

When a section of a unit or macro detects that it is idle, it gates clocks to the unneeded latches to save active
power. This is done extensively in both the core and the nest which has the effect of reducing peak power
because all circuits cannot be kept busy 100% of the time. However, when the hypervisor decides that the
entire processor core can be idle, it can execute one of the architected idle state instructions. These instruc-
tions stop the fetch and dispatch of instructions, quiescing the core. Depending on the idle instruction
executed, hardware can further reduce voltage and clock grid frequency or even power the core completely
off to zero volts to save leakage power. Figure 9-1 shows the effect of each of these idle modes on the
processor core chiplet power.

Figure 9-1. Idle Mode Summary

Core +
L2 Cace

L3 Cache

Core +
L2 Cache

L3 Cache

Core +
L2 Cache

L3 Cache

Core +
L2 Cache

L3 Cache

Core +
L2 Cache

L3 Cache

Running
Core
Chipe

(per chiplet)

Fast Sleep

Deep Sleep

Fast Winkle

Deep Winkle
POWER8 Chip

(12 core)

Power OFF the entire chiplet.
Requires restore/re-init to wakeup.
Shared L3 performance loss.

Stop clock to entire chiplet.
Drop chiplet voltage to retention.
Shared L3 performance loss.

Power OFF the core plus private L2 cache.
Requires restore/re-init to wakeup.
Leave shared L3 cache running.

Stop clocks to core plus private L2 cache.
Drop core and L2 voltage to retention.
Leave shared L3 cache running.

A single thread entering any architected idle state causes that thread to stop dispatching and fetching instruc-
tions.

When a thread wakes up from an idle state, it takes an SRESET interrupt to restart program execution. The
SRR0 contains the address of the idle instruction that caused the thread to go into idle state. (Note: The
architecture says that SRR0 content is undefined.) SRR1 contains the reason for the wake-up and amount of
state that was lost due to being in that idle mode.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Management

Page 184 of 450
Version 1.3

16 March 2016

All threads on a core must be in that architected idle state or deeper1 for that core to enter an architected idle
mode. The core enters the least aggressive idle mode of the eight threads. For example, if a core has one
thread in nap, two in sleep, and one in winkle, the Core enters nap mode.

Note: Modes exist to disable chiplet clock/voltage off for lab modes such as hardware trace (performance
and debug analysis).

The POWER8 processor supports three of the four architected power-save or idle states defined in the Power
ISA (nap, sleep, and winkle). There is an important distinction between thread idle state and core idle state.
When all threads on a core are in an architected idle state, more aggressive power-management techniques
can be engaged at the core, core chiplet, or even chip level.

Table 9-1. Supported Chiplet Power Management Modes

Mode/State
Core

Domain
Voltage

EX Cache
Domain
Voltage

Core
Domain
Mesh

EX Cache
Domain
Mesh

Core
Domain
THolds

EX Cache
Domain
THolds1

Estimated
Relative
Power 2

Estimated Entry
and Exit Latency

Running VFUNC
3 VFUNC

3 Running Running Running Running N/A N/A

Nap VFUNC
3 Running4 Partially

stopped Running 90%
Typical: ~ 2 μs
Worst case: <

50 μs

Fast Sleep VON VFUNC
3 RefClk Running4 Stopped Running 60% Expected typical

< 1 ms

Deep Sleep VOFF
5 VFUNC

3 Off Running4 Stopped Running 25% Expected typical
< 5 ms

Fast Winkle VON RefClk Stopped Stopped 45% N/A

Deep Winkle VOFF
5 VOFF

5 Off Off Stopped Stopped
Effectively

zero
(~0.1 W)

Expected typical
< 20 ms

1. Full L3.1 performance.
2. Compared to operating system idle loop.
3. If enabled, these states allow for internal voltage reulation.
4. These states have an optional frequency reduction available.
5. This state requires POR assistance to restore lost state.
6. Power save mode transition rules: There are no transitions between power management idle states. Entry and exit from all archi-

tected idle states happens to and from a running state.

1. Deeper is defined as an idle state that is architecturally defined to save more power; that is, winkle is deeper than sleep which is
deeper than nap.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Management

Page 185 of 450

With the power-gating capabilities implemented, the sleep and winkle idle states provide a progression as
shown in Figure 9-2.

Figure 9-2. Sleep and Winkle Power Gating Progression

TP Core L2 Cache

L3 CachePB

N
C

U

TP

TP To/from other POWER8
Cores and Chips

EX Chiplet (Running)

ex
ca

ch
e_

pf
et

_e
na

bl
es

co
re

_p
fe

t_
en

ab
le

s

TP Core L2 Cache

L3 CachePB

N
C

U

TP

EX Chiplet

TP Core L2 Cache

L3 CachePB

N
C

U

TP

EX Chiplet (Winkle)
(EX Cache/Sep)

1:1 Clock (nclk) and
Core Power Domain

2:1 Clock (cache_nclk)
and EX Cache
Power Domain

TP TP
Processor

Bus
Processor

Bus
Processor

Bus

9.7.2.1 Core and Thread Doze

Core and thread doze are not supported. The hypervisor does not use doze mode.

9.7.2.2 Single Thread Nap, Sleep, and Winkle

Thread state can be lost when a single thread enters nap, sleep, or winkle mode, because it can cause the
core to perform an SMT thread switch for performance gain on the remaining non-idle threads.

The only state lost in thread nap mode is the thread-specific state in the case that SMT mode changed. All
non-thread-specific states including timebase registers and hypervisor states are preserved. Some thread-
specific hypervisor states are preserved in nap.

When an SMT thread switch is enabled, the napping thread’s resources can be given to other threads to
improve core performance. Software must restore the architected state of the dormant thread upon exiting
nap mode except for the following architected facilities, which are preserved by the hardware:

• SLB State

• All Hypervisor Special Registers (includes PURR, SPURR, AMOR, UAMOR, AMR)

• DEC

• SPRG0-3

• DAR

• DSISR

• DABR, DABRX

• DSCR

• All Performance Monitoring Special Registers (PMCs, SIAR, SDAR)

simultaneous multithreading

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Management

Page 186 of 450
Version 1.3

16 March 2016

9.7.2.3 Sleep

Generally, the sleep instruction removes the core from operation while leaving the associated L3 cache for
use by other core chiplets. The amount of power savings and the inverse amount of exit latency is controlled
by whether the core power gating is used or not.

Upon entering sleep, hardware invalidates the coherency caches (L1, ERAT, TLB, and so on) in the core and
purges cache/state in the L2 units. The L3 cache is fenced from the core/L2 and retained as operational in
lateral castout (LCO) mode, so that it can be used by other operational core chiplets.

Upon fencing the L3 portion (referred to as the extended cache option), the core and L2 cache are either:

• Powered off using power gating core FETs within the chiplet (defined as deep sleep).

• Have all clocks in the core stopped and the core clock grid dropped to the refclk frequency. The voltage is
lowered to a VRETENTION level for low-latency exit (defined as fast sleep).

Logically, all state of the processor core domain is lost, including hypervisor state.

Before entering sleep, the hypervisor must update the power-on memory image with the state of any registers
that must be set after wake-up. This list includes: HRMOR, HSPRG0, LPCR, HID0, HID1, HID5, along with
meaningful Timer Facility PURR/SPURR/TB values. In addition, the hypervisor can set values into the
PMICR for the following fields:

sleep_pstate_req Indicates the Pstate that the EX cache portion of the chiplet is requested to run.

sleep_pstate_en Enables as valid the sleep_pstate_req field.

sleep_global_en Indicates if the sleep_pstate_req is to be treated as global.

Because the threads are waking up in real mode, the hypervisor guarantees that the first thread to wake-up
restores SDR1 and LPIDR before the others leave real mode.

Any runtime changes to the state of the processor core and L2 cache by the off-chip firmware components
(OCC and FSP) must be done with special wake-up asserted and a simultaneous update to the power-on
memory image containing the necessary SCOM operations to restore it.

SCOM (and PCB) accesses to a core in sleep are no longer possible as the power to the core may been shut
off (deep sleep case); for simplicity, fast sleep is treated the same. To access the core for these operations, a
special wake-up action must take place. See Section 9.7.3 Special Wake-up on page 188.

Note: The hypervisor is required to set LPCR[PECE] = ‘101’ on nonguarded cores (otherwise the core hangs
when an interrupt occurs).

Exiting sleep only occurs because either a malfunction alert (caused by some other core checkstop) or
external interrupt targeting a thread in the core. In the case of a deep sleep exit, a mini-power-on reset is
performed on the core by a chip level power-on reset (POR) to bring the core back online (scan, ABIST,
SCOM, and so on.). In the case of a fast sleep exit, voltage and frequency are restored and fencing is
dropped to allow processing of the waking condition.

In either case, after wake-up, the hypervisor must resynchronize the Timebase facility.

field-effect transistor

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Management

Page 187 of 450

9.7.2.4 Nap

In this state, clocks to a majority of the processor core is turned off while preserving coherency (L1 and L2
caches, ERATs, TLB, and SLB). The clock rate to the chiplet is dropped to lowest frequency that the current
processor bus setting allows. This allows for low-latency entry and exit (micro-seconds). Generally, the entire
IFU and LSU remain running while allowing for gating of non-snoop portions. A portion of pervasive remains
running (for example, sensors, Timebase, and interrupt processing).

Nap Frequency Change

Based on the setting of the PMICR, the execution of the nap instruction will drop the chiplet to reduced
frequency (nap Pstate). Upon wake-up. latency of a few microseconds will be incurred for the DPLL to ramp
back to full frequency.

9.7.2.5 Winkle

Generally, the rvwinkle instruction removes the core and associated L3 EX cache from operation. The
amount of power savings and the inverse amount of exit latency is controlled by whether the core and EX
cache power gating is used or not.

The winkle idle instruction causes power to be gated off to the entire chiplet (core/L2/L3) and cause the
chiplet to be disconnected from the processor bus. Like Sleep, all state in the processor core domain is
considered lost, including Hypervisor state. However, unlike Sleep, any Hypervisor and Firmware state in the
remainder of the chiplet is also lost.

Upon disconnection from the processor bus, the core and chiplet are either:

• Powered off using power gating FETs within the core and chiplet (defined as deep winkle)

• Have all clocks in core and EX cache stopped and the core and chiplet clock grid dropped to the refclk
frequency (defined as fast winkle)

Before entering winkle, the hypervisor must update the power-on memory image with the state of any regis-
ters that must be set after wake-up. This list includes: HRMOR, HSPRG0, LPCR, HID0, HID1, HID5, along
with “meaningful” Timer Facility PURR/SPURR/TB values. In addition, the hypervisor can set values into the
PMICR for the following fields:

winkle_pstate_req Indicates the Pstate that might be requested globally (to lower voltage); locally, this
has no effect.

winkle_pstate_en Enables as valid the winkle_pstate_req field.

winkle_global_en Indicates if the winkle_pstate_req is to treated as global.

Because the threads are waking up in real mode, the hypervisor guarantees that the first thread to wake up
restores the SDR1 and LPIDR Registers before the others leave real mode.

Any runtime changes to the state of the processor core, L2 cache, and L3 cache by the off-chip firmware
components (FSP) must be done with a special wake-up asserted and a simultaneous update to the power-
on memory image containing the necessary SCOM operations to restore it.

SCOM (and PCB) accesses to a core in winkle are no longer possible, because the power to the core chiplet
has been shut off. To access the core for these operations, a special wake-up action must take place. See
Section 9.7.3 Special Wake-up on page 188.

instruction fetch and decode unit

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Management

Page 188 of 450
Version 1.3

16 March 2016

Exiting winkle only occurs due to either a malfunction alert (caused by some other core checkstop) or an
external interrupt targeting a thread in the core. In the case of a deep winkle exit, a mini-power-on reset is
performed on the core by a chip-level power-on reset to bring the core and EX cache back online (scan,
ABIST, SCOM, and so on). In the case of a fast winkle exit, voltage and frequency are restored and fencing is
dropped to allow processing of the waking condition.

9.7.3 Special Wake-up

Normal wake-up from architected idle states resumes instruction execution in the processor core, beginning
at the SRESET vector, due to an interrupt condition being present. There are times when various compo-
nents of firmware need to access facilities inside the chiplet without resuming instructions. A special wake-up
mode is provided to each firmware component (FSP, OCC, and hypervisor). It suppresses new architected
idle states from being entered by the chiplet. If already in an idle state, it causes, if necessary, restoration of
power and state first. This allows the clocks to resume to the chiplet for the access to be completed.

When special wake-up is cleared, one of two things happen:

• If a wake-up condition exists or if the processor core is no longer in an architected idle state because a
wake-up interrupt already occurred, nothing happens.

• If the core is still in an idle state and no wake-up condition exists, the chiplet re-enters the appropriate idle
state that was previously requested by the core.

While special wake-up is asserted, the core chiplet runs at the frequency represented by the idle Pstate
(sleep Pstate or winkle Pstate) as defined in the PMICR unless bounded by the settings of PMax and PMin as
established by the OCC. Low-activity detect is disabled from changing state when architected idle state and
special wake-up are both active.

9.7.4 Pstates

The POWER8 processor implements the Pstate architecture with a local Pstate table of 128 logical entries.

9.7.4.1 Architectural Overview

Hypervisor firmware and operating system software control the scheduling of work on the processor core
threads. It is necessary to abstract out the low-level details of frequency and voltage settings into a facility
called a Pstate. This abstraction provides an isolation layer from the hardware, because the combination of
voltage and frequency can vary per chip based on manufacturing variation and technology while allowing
control of performance and power efficiency, Performance and power efficiency have a linear relationship to
frequency and a quadratic relationship to voltage. As long as this linear and quadratic relationship to Pstates
is understood, the energy management components in the hypervisor can appropriately manage both perfor-
mance and power efficiency.

The Pstate itself does not logically alter the behavior of the core in terms of fetch, dispatch, and execution
rates of instructions. Rather, it is an indication of the performance level represented in terms of a frequency
target that the platform (processor chip and underlying control firmware) attempts to fulfill within the
constraints of available power and thermal capacities while also taking the opportunity to minimize the same.

The Pstate architecture is based upon a hierarchical view. Some elements of a request can be handled in a
manner local to the core chiplet making the request. A primary example of a local operation is frequency
change. Other elements must be sent out of the core chiplet to the central, or global, entity which might have

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Management

Page 189 of 450

to arbitrate between multiple core chiplet requests to take action in response. A primary example of a global
operation is where voltage rails are shared among core chiplets and coordination is required to slew such a
rail.

Underlying the Pstate request notion, as made by energy management components with the hypervisor, is a
platform set of elements that manage the allowable power (and, hence, performance) that is expended by
elements in the machine. In the case of Pstates, the element is the core chiplet. Thus, limits are placed on the
maximum allowable frequency and voltage based on budgetary thresholds as well as, on minimum allowable
frequencies that are necessary to maintain machine coherency. This is why the Pstates are considered
requests in that the platform hardware and firmware can limit or bound the value requested. Therefore, mech-
anisms are provided to allow the hypervisor components to read the actual operational values so as to react,
if necessary, to any such clipping actions.

9.7.4.2 Definitions

Fnom Fnom is the nominal frequency established after part characterization that allows the
part to fully run all supported code streams within the power and thermal envelope
provide by the system. The value of Fnom is, thus, both part and system dependent.

The Fnom value is established by platform-specific firmware that has access to both
information about the part instance (typically held in a vital product data (VPD)
record) as well as the present system characteristics. This value is written into core
chiplet and global chip hardware facilities as a representation of a chip-specific
frequency value. It is then used as the basis from which all Pstate calculations
(global and local) are made.

Pstate Number (PSN) A Pstate Number is a signed value that is an offset from the chip Fnom frequency
value. PSNs range from +127 to -127.

Pmax Pmax is the maximum PSN allowed for the core chiplet and is established by plat-
form-specific firmware. It takes into account a number of factors including, but not
limited to:

• The power delivery into the socket containing this core chiplet

• The number of core chiplets implemented in this socket

• The thermal environment of the socket

• The policy established by the customer (maximum performance, maximum
power savings, deterministic performance, and so on)

Hardware ensures that no mechanism, software in the form of a Pstate, or hardware
in the form of power shifting, or guardband management mechanisms exceeds this
value.

Pmin Pmin is the minimum PSN allowed for the core chiplet and is established by platform-
specific firmware. It takes into account a number of factors including, but not limited
to:

• The cache coherency of the SMP machine, because timely response to cache
snooping actions is typically required

• Any applicable performance floors that customer-driven policy can establish

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Management

Page 190 of 450
Version 1.3

16 March 2016

Global Pstate (GPS) The Global Pstate represents a signed value that is an offset from the chip Fnom
value. It indicates that a frequency change is being requested that requires coordina-
tion by a chip-level entity (for example, outside the core chiplet) to manage any
elements across other dependent core chiplets. Typically, the element that needs to
be managed is the voltage setting. Some examples of a voltage change action are
as follows:

• The voltage rail supplying this core chiplet is shared by other core chiplets. In
this case, a “vote” about what the voltage should be must take place. If war-
ranted, a voltage change action is completed.

• The voltage rail supplying this core chiplet is segregated from other core chiplets
but the control means for changing the voltage setting is external to the core
chiplet itself. In this case, the central entity completes a voltage change action on
the core chiplet’s behalf.

In the case of Global Pstate increase, any voltage change that needs to occur must
be completed and the core chiplet notified of this fact before the frequency change
can take place.

In the case of Global Pstate decrease, the core chiplet requests the decrease to the
central entity, but might or might not lower its present local operating Pstate. This
choice on the local Pstate is a matter of policy. If the request was honored (that is, it
passed the rail volting), the central entity notifies all chiplets of the reduction as a
new Global Actual Pstate. It waits for acknowledgements that the new voltage is
honored and then reduces the voltage.

Local Pstate (LPS) The Local Pstate represents a signed value that is an offset from the chip Fnom
value. It indicates that a frequency change is being requested that does not require
coordination by a chip-level entity; it is handled locally within the core chiplet. For
implementations that do not have any means of varying voltage locally, this becomes
a request to immediately move frequency within the bounds established by the
current Global Pstate or FMax (whichever is lower) on the upper side and FMin on
the lower side. Upon change of the frequency, the new current value is reflected in
the Actual Local Pstate field.

Because any operational changes are local, no communication to the central
element is performed. Implementations can (and probably will) make the Actual
Local Pstate accessible via the service network so that the values can be read as
necessary.

Nap Pstate (NPS) The Nap Pstate is the PSN that indicates the frequency (and, optionally, voltage)
change to request upon the execution of the nap instruction.

Sleep Pstate (SPS) The Sleep Pstate is the PSN that indicates the frequency (and, optionally, voltage)
change to request upon the execution of the sleep instruction.

Winkle Pstate (WPS) The Winkle Pstate is the PSN that indicates the frequency (and, optionally, voltage)
change to request upon the execution of the rvwinkle instruction.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Management

Page 191 of 450

9.7.4.3 Permissible Behavior

• Global Pstate requests are made to the central area upon any PMCR store. There is no interlock defined
that ensures that a previous request was, in fact, honored.

• The core chiplet can run at a higher local Pstate than presented in a Global Pstate Request because the
global actual Pstate is, at all times, honored.

While it is generally viewed that Energy Management algorithms (in the hypervisor) make the local Pstate
less than or equal to the global Pstate request (to save energy), the hardware does not enforce this limitation.

9.7.4.4 Interaction with Idle Modes

The sleep and winkle high, medium, and low latency controls are intended to allow platforms the option of
leveraging power gating (or similar technologies), because these have a major influence on restoration
latency versus power expended.

The winkle Pstate can be used in conjunction with the latency controls where power gating cannot be
invoked; therefore, a Pstate is used to communicate to the platform the intended operating point.

Architecture Note

An intended usage model is:

• Hypervisor energy management algorithms establish the nap Pstate (NPS), sleep Pstate (SPS), and
winkle Pstate (WPS) fields and their respective global and local settings.

• Eventually, all threads will achieve nap (inclusive of some in sleep and some in winkle), sleep (inclusive
of some in winkle) or winkle state

– For the case of nap, the NPS is used to affect frequency and voltage per the flow respective of the
global/local bit.

– For the case of sleep, the SPS is used to affect frequency and voltage per the flow respective of the
Sleep Global Enable bit.

– For the case of winkle, the WPS is used to affect frequency and voltage per the flow respective of the
Winkle Global Enable bit.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Management

Page 192 of 450
Version 1.3

16 March 2016

9.7.5 Resonant Clocking

Resonant Clocking is a mode of the clock distribution whereby on-chip inductors are used in conjunction with
the natural clock mesh capacitance to form a resonant structure to save power drawn by the clock mesh. This
mode can only be enabled when the frequency (Pstate) is within one of two specific bands. These bands are
defined by SCOM registers associated within each chiplet and are setup at POR. After the transition facility is
enabled, any frequency changes that exit these defined bands cause the resonant clocking mode to be
disabled before the transition. Then, after the new frequency is achieved, if that new frequency is within a
defined resonant band, the resonant clocking circuits are re-enabled.

Resonant clocking is modally supported.

9.8 Architected Control Facilities

9.8.1 Power Management Control Register (PMCR)

The PMCR is the mechanism used by the hypervisor firmware to request Pstate changes. This register has
only one instance for the core.

Table 9-2. Power Management Control Register (PMCR) - SPR 884 (Sheet 1 of 2)

Field Field Name Access Function

0:7 global_pstate_req R/W Global Pstate request
Writes to this field initiate a coordination action with any available central element
that arbitrates between other cores that might share a power rail with this core.
Reads from the field return the value last written.
The value is an 8-bit signed integer representing an offset from Fnominal. Legal
values are +127 to -127 with the value increment being platform dependent1.

8:15 local_pstate_req R/W Local Pstate request
Writes to this field initiate a local performance change request without explicitly
orchestrating with any available central element.
Reads from the field return the value last written.
The value is an 8-bit signed integer representing an offset from Fnominal. Legal
values are +127 to -127 with the value increment being platform dependent1.

16 Reserved Reserved

1. For the POWER8 processor, the increment is the reference clock frequency divided by the DPPL divider.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Management

Page 193 of 450

17:23 spurr_fraction R/W SPURR fraction
Modifies utilization/accounting of the SPURR for the requested Local Pstate. This
accounting only occurs if the requested Pstate is honored. The default value is
‘1000000’. It is multiplied by other SPURR factors to create a composite discount
value.
Reads from the field return the value last written.
The value is an 8-bit signed integer representing an offset from Fnominal. Legal
values are +127 to -127 with the value increment being platform dependent1.

24:51 Reserved Reserved

52:63 lpar_id R/W LPAR ID
The value representing the logical partition ID that will be executing with the set-
tings defined by the other fields.
Writes to this field provide the LPAR ID for the platform to associate the power for
the subsequent execution window (for example, until the next PMCR store). The
actual accounting action is controlled by the power_acctng_change field.
Reads from the field return the value last written.

Table 9-2. Power Management Control Register (PMCR) - SPR 884 (Sheet 2 of 2)

Field Field Name Access Function

1. For the POWER8 processor, the increment is the reference clock frequency divided by the DPPL divider.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Management

Page 194 of 450
Version 1.3

16 March 2016

9.8.2 Power Management Idle Control Register (PMICR)

The PMICR controls the Pstates used under idle modes.

This register has only one instance for the core.

Table 9-3. Power Management Idle Control Register (PMICR)- SPR 852 (Sheet 1 of 2)

Field Field Name Access Function

0:7 nap_pstate_req R/W Nap Pstate (NPS) request
Writes to this field initiate a coordination action with any available central element
that will arbitrate between other cores that can share a power rail with this core.
Reads from the field return the value last written.
The value is an 8-bit signed integer representing an offset from Fnominal. Legal
values are +127 to -127 with the value increment being platform dependent1

8 nap_pstate_en R/W Nap Pstate enable
1 Enable the Nap Pstate (NPS) request, Nap Global Enable, and Nap

Latency functions.
0 Disables the Nap Pstate (NPS) Request, Nap Global Enable, and Nap

Latency functions.
Reads from the field return the value last written.

9 nap_global_en R/W Nap global enable
1 Upon the execution of a Nap instruction, the Nap Pstate (NPS) request

is be sent to the central element as a Global Pstate Request.
0 Upon the execution of a Nap instruction, the Nap Pstate (NPS) request

is be sent to the local element as a Local Pstate Request.
Reads from the field return the value last written.

10:15 Reserved Reserved

16:23 sleep_pstate_req R/W Sleep Pstate (NPS) request
Writes to this field initiate a coordination action with any available central element
that arbitrates between other cores that can share a power rail with this core.
Reads from the field return the value last written.
The value is an 8-bit signed integer representing an offset from Fnominal. Legal
values are +127 to -127 with the value increment being platform dependent.1

24 sleep_pstate_en R/W Sleep Pstate enable
1 Enables the sleep Pstate (NPS) request, sleep global enable, and sleep

latency functions.
0 Disables the sleep Pstate (NPS) request, sleep global enable, and sleep

latency functions.
Reads from the field return the value last written.

25 sleep_global_en R/W Sleep global enable
1 Upon the execution of a sleep instruction , the sleep Pstate (NPS)

request is sent to the central element as a global Pstate request.
0 Upon the execution of a sleep instruction , the sleep Pstate (NPS)

request is sent to the local element as a Local Pstate request.
Reads from the field return the value last written.

26:31 Reserved Reserved

32:39 winkle_pstate_req R/W Winkle Pstate (NPS) request
Writes to this field initiate a coordination action with any available central element
that arbitrates between other cores that can share a power rail with this core.
Reads from the field return the value last written.
The value is an 8-bit signed integer representing an offset from Fnominal. Legal
values are +127 to -127 with the value increment being platform dependent.1

1. For POWER8, the increment is the reference clock frequency divided by the DPPL divider.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Management

Page 195 of 450

40 winkle_pstate_en R/W Winkle Pstate enable
1 Enable the winkle Pstate (NPS) request, winkle global enable, and

winkle latency functions.
0 Disables the winkle Pstate (NPS) request, winkle global enable, and

winkle latency functions.
Reads from the field return the value last written.

41 winkle_global_en R/W Winkle global enable
1 Upon the execution of the rvwinkle instruction, the winkle Pstate (NPS)

request is sent to the central element as a global Pstate request.
0 Upon the execution of the rvwinkle instruction, the winkle Pstate (NPS)

request is sent to the local element as a local Pstate request.
Reads from the field return the value last written.

42:43 winkle_latency R/W Winkle latency
00 Ceases instructions and honors Pstate change but does not perform

additional state changing actions.
01 Indicates to the platform that a sub-state that has the lowest latency is

enabled.
10 Indicates to the platform that a sub-state that might have a medium exit

latency is enabled.
11 Indicates to the platform that a sub-state that might have higher exit

latency is enabled.
It is platform-specific as to the differentiation between low, medium, and high.

42:63 Reserved Reserved

Table 9-3. Power Management Idle Control Register (PMICR)- SPR 852 (Sheet 2 of 2)

Field Field Name Access Function

1. For POWER8, the increment is the reference clock frequency divided by the DPPL divider.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Management

Page 196 of 450
Version 1.3

16 March 2016

9.8.3 Power Management Status Register (PMSR)

The PMSR provides access to the platform values in place. This register has only one instance for the core.

Table 9-4. Power Management Status Register (PMSR) - SPR 853

Field Field Name Access Function

0:7 global_pstate_actual RO Actual Global Pstate
Reads from this field return the presently established global Pstate value.
The value is an 8-bit signed integer representing an offset from Fnominal. Legal
values are +127 to -127 with the value increment being platform dependent.

8:15 local_pstate_actual RO Actual Local Pstate
Reads from this field return the presently established local Pstate value. This
value is always less than or equal to global_pstate_actual.
The value is an 8-bit signed integer representing an offset from Fnominal. Legal
values are +127 to -127 with the value increment being platform dependent.

16:23 pmin RO Pstate Minimum
Reads from this field return the presently established minimum Pstate set by the
platform. This value can change autonomously based on the current policy in
place and the physical constraints of the platform.
The value is an 8-bit signed integer representing an offset from Fnominal. Legal
values are +127 to -127 with the value increment being platform dependent.

24:31 pmax RO Pstate Maximum
Reads from this field return the presently established maximum Pstate set by the
platform. This value can change autonomously based on the current policy in
place and the physical constraints of the platform.
Value is an 8 bit signed integer representing an offset from Fnominal. Legal values
are +127 to -127 with the value increment being platform dependent

32:63 Reserved Reserved.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Power Management

Page 197 of 450

9.8.4 Power Management Memory Activity Register (PMMAR)

The PMMAR controls the memory activity that is allowed to be produced by the partition. This register is repli-
cated by partition if in multiple-partition mode.

Table 9-5. Power Management Memory Activity Register (PMMAR) - SPR 854

Field Field Name Access Function

0:31 mem_op_limit R/W Memory operation limit
Defines the number of memory operations operations allowed within the rolling
credit window defined by mem_crdt_window. Once this limit is reached, the
memory operations are stalled until the mem_crdt_window expires.

32:45 mem_crdt_window R/W Memory credit limit
Defines the rolling credit window time for which memory operations are man-
aged.
x‘0000’ Disabled (no stalling)
x‘0001’ 64 μs
...
x‘3FFF’ 1.048 s

47:63 Reserved Reserved

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Power Management

Page 198 of 450
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 199 of 450

10. Performance Profile

This chapter provides information about the performance profile of the POWER8 processor chip. Due to the
complex nature of the speculative, out-of-order execution core coupled with the multilevel storage hierarchy,
it is important that people concerned with performance and performance optimization develop an insightful
understanding about the operational nature of the machine.

10.1 Core

10.1.1 Level-1 Instruction Cache

The L1 I-cache is a 32 KB, 8-way set-associative cache of instructions allocated in 128-byte lines with
32-byte sector valids. The replacement algorithm is pseudo LRU. The I-cache is also kept coherent with the
L2 cache (an icbi instruction can be treated as a NOP). The I-cache is used to feed instructions to the rest of
the core at up to eight instructions per cycle as long as the addresses are presented each cycle and each
address results in a cache hit.

The I-cache consists of three parts:

• Instruction cache
• I-cache directory (IDir)
• Effective address directory (EADIR)

The EADIR is used to predict the way select for a given I-cache access keeps the I-cache access time to
one cycle. The EADIR is accessed using EA bits 52:56 and tagged using EA bits 41:51. All entries are initially
assumed to be shared between threads, but certain combinations of reduced sharing are also possible
(sharing is limited to thread pairs in Cloud mode). The basic I-cache miss latency assumes an EADIR miss.
An EADIR hit that is later determined to be an I-cache miss adds approximately eight cycles to the base miss
latency. The I-cache directory contains the real address (RA) of the lines in the I-cache, line and sector valids,
and certain MSR state bits (PR, LE, and HV) from when the line was fetched. Both the EADIR and the IDir are
addressed using EA bits 52:56.

Single-thread aliasing can occur when a given EA[41:56] cache line is required for more than one real
address, or combination of MSR bits. Only one of the two combinations can be valid in the I-cache for a given
thread at any one time, and an EADIR invalidate is required before fetching the other alias. Multi-thread
EADIR aliasing results when two threads map the same EA(41:56) to two different real addresses or MSR
combinations. The second address is brought in as private, after an EADIR invalidate. In 4 LPAR mode, only
the two threads in the same LPAR can share I-cache lines.

The I-cache is banked and allows a concurrent read and write, if they go to different banks. On an I-cache
miss and L2 hit, instructions are typically returned on the L2 cache interface in two consecutive 64-byte beats.
If the instructions are coming from the L3 cache, four 32-byte sectors are typically expected to arrive in every
other cycle. If the instructions are coming from the processor bus, the critical sector comes first and it is
typical to expect the successive sectors to come every fifth processor cycle. Note that the I-cache miss
latency is typically four cycles longer than the D-cache latency.

The I-cache is arranged in 128-byte lines of four 32-byte sectors. Each sector has its own valid. Within a line,
the I-cache can be accessed on any 16-byte boundary to return 32 consecutive bytes. Addressing the last
16-byte boundary of a line returns only 16 bytes.

Least-recently used

effective address

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 200 of 450
Version 1.3

16 March 2016

Data in the I-cache must also be in the L2 cache (inclusivity). This means that if the L2 cache removes a line
that is thought to be in the I-cache, it must send an invalidate for that line to the I-cache. Invalidates are
handled in parallel with read accesses so that normally they are invisible to performance. The LRU algorithm
in the L2 cache requires data to be accessed to keep it from being replaced. This means that a line in the
I-cache that is being heavily used, can be forced out of the L2 cache due to an L1 D-cache request. To avoid
this situation, the processor periodically sends a dummy request to the L2 cache on an I-cache hit address.
When bandwidth permits, these requests serve only to update the L2 LRU for the I-cache lines in hopes of
preventing them from being aged out.

10.1.2 Level-1 Instruction ERAT

On instruction fetches, effective address bits are used to index into the I-cache, the directory and the effec-
tive-to-real-address-translation (ERAT) table. The ERAT is a fully-associative 64-entry table and contains
both the effective addresses and the real addresses. For an ERAT hit, the effective address of the instruction
must match the effective address contained in the ERAT entry being indexed, and the ERAT entry must be
valid. In addition, the IR, US, HV, and PR bits from the MSR at the time of ERAT miss are stored in the ERAT
when the ERAT is loaded on a ERAT miss. These bits must match the corresponding bits in the MSR at the
time of instruction fetch for an ERAT hit. I-ERAT minimum miss penalty (assuming a TLB hit) is 18 cycles.

The I-ERAT directly supports 4 KB, 64 KB, and 16 MB page sizes. Other page sizes are stored in the next
smaller supported page-size granule.

10.1.3 Instruction Prefetch

If a particular instruction fetch misses in the I-cache, a demand fetch reload request (possibly speculative) is
sent to the L2 cache subsystem. The L2 cache processes this reload request with high priority and forwards it
onto subsequent levels of cache or memory in the event that it misses in these caches.

In addition to these demand-oriented instruction fetching mechanisms, the POWER8 processor core also
works to automatically prefetch instruction cache lines that might be referenced soon into its instruction
cache. If there is an I-cache miss, it generates prefetch requests for the next one in both SMT2 and SMT4
mode or three sequential cache lines (in ST mode). In SMT8 mode, no instruction prefetching requests are
generated. As these requests return cache lines, they are stored directly in the instruction cache. The banked
cache design of the POWER8 instruction cache allows a concurrent read and write (as long as they go to
different banks), so that writing prefetch lines into the instruction cache does not steal cycles from fetching the
instructions from the cache.

The POWER8 core has an additional mode for systems where memory bandwidth is a concern. This mode is
called reduced-speculation mode. In this mode, demand requests are marked as speculative if, at the time of
the I-cache miss, the fetch is not for the next-to-complete instruction. If the request is marked speculative, the
memory subsystem can return an indication of “no data” if the requested data is not found in the L3 cache and
local memory has indicated that recent bandwidth demands were greater than a programmable threshold. In
this case, the demand request must be retried when the request becomes next-to-complete. Also, in this
mode, prefetches are always marked speculative and are not retried regardless of the returned state.

Least-recently used

translation lookaside buffer

simultaneous multithreading

single thread

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 201 of 450

10.1.4 Branch Prediction

In each cycle, up to eight instructions are fetched from the instruction cache. From there, these instructions
are sent to the branch prediction logic. The branch prediction logic scans all the fetched instructions looking
for branches; this information is used by the instruction decode logic to look for up to two branches for group
formation. Depending upon the branch type found, various branch prediction mechanisms engage to help
predict the target address of the branch or the branch direction or both. More specifically, branch target
addresses for bclr and bcctr instructions can be predicted using the link stack or the count cache mechanism
(target addresses for absolute and relative branches are computed directly as part of the branch scan func-
tion). Dynamic branch direction prediction (taken or not taken) is done through the use of three branch history
tables. Static branch direction prediction is done using hints as defined by Power ISA User Instruction Set
Architecture (Book I).

It is important to note that all conditional branches are predicted in the POWER8 core (even if the condition is
resolved well ahead of time or the value of the link or count register is known when the branch to link or count
instruction is fetched) and no unconditional branches are “predicted”. As branch instructions flow through the
rest of the pipeline and ultimately execute in the branch execution unit, the actual outcome of the branches is
determined. At that point, if the predictions were correct, the branch instructions are simply completed like all
other instructions. If the prediction is incorrect, the instruction fetch logic issues a flush and redirects the pipe-
line down the corrected path.

10.1.4.1 Branch Direction Prediction using the Branch History Tables

The POWER8 core uses a set of three branch history tables to predict the direction of branch instructions.
The first table, called the local predictor, is similar to the traditional branch history table. It is a 16K entry array
that is indexed by the address of the branch instruction to produce a 2-bit predictor. The MSb of the 2-bit
predictor indicates whether the branch direction should be “taken” or “not-taken”.

The second table, called the global predictor, works to predict a branch based on the actual path of execution
to reach the branch. The path of execution is identified by a 20-bit vector, one bit per fetch group (that is, the
group of instructions fetched in a cycle), for each of the previous 20 fetch groups. This vector is referred to as
the global history vector. Each bit in the global history vector indicates whether the next group of instructions
fetched are from a sequential cache sector (0) or not (1). The global history vector captures this information
for the actual path of execution through these sectors. That is, if there is a redirection of instruction fetching,
some of the fetched group of instructions are discarded and the global history vector is corrected immedi-
ately. The 20-bit global history vector is first folded (by a bitwise XOR of bits 0:10 with bits 9:19 to generate an
11-bit path vector, which is then hashed by a bitwise XOR with the address of the branch instruction to index
into the 16K entry global history table to produce another 2-bit branch direction predictor. Similar to the local
predictor, the MSb of this 2-bit global predictor is an alternate indicator of whether the branch should be
predicted to be “taken” or “not-taken”.

Finally, the third table, called the selector table, keeps track of which of the two prediction schemes works
better for a given branch. It is used to select between the local and the global predictions. The 16K entry
selector table is indexed exactly the same way as the global history table is indexed and the MSB of the
selected entry is used as the 1-bit selector. This combination of branch prediction tables has been shown to
produce very accurate predictions on a wide range of workload types.

If the first branch encountered in a particular cycle is predicted as not taken, the POWER8 core can predict
and act on a second branch in the same cycle. In this case, the machine registers both branches as predicted
(for subsequent resolution at branch execution), and it redirects the instruction fetching based on the second
branch.

most-significant bit

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 202 of 450
Version 1.3

16 March 2016

As branch instructions are executed and resolved, the branch history tables (as well as, the other predictors
described in the following sections) are updated to reflect the latest and most accurate information. Uncondi-
tional branches (including branches with the BO field set to ‘1z1zz’) and statically predicted conditional
branches (such as, branches with the “a” bit set to ‘1’) do not have an entry in the BHTs. Therefore, they do
not cause any BHT update.

All three BHTs are implemented as banked arrays and allow concurrent read and write operations. If the
concurrent accesses are to different banks, both are honored. However, if there is a bank conflict, the read is
given higher priority. The BHT update logic will perform multiple write updates speculatively up to 5 attempts
before forcing a hole in the fetch logic to allow the write to be done.

10.1.4.2 Branch Prediction using Static Prediction and “a”, “t” Bits

For some conditional branches, the software knows what the branch direction prediction ought to be. The
POWER8 core allows the software to override the dynamic branch prediction in such cases. Software
communicates its wish to override dynamic branch prediction by setting the “a” bit in the BO field. If the “a” bit
is ‘0’, then the “t” bit is ignored and the dynamic branch prediction described above is used. If the “a” bit is ‘1’
for a branch, dynamic branch prediction is not used and no entry is updated in the branch history table when
such a branch is executed. The static branch direction prediction itself is communicated by properly setting
the “t” bit in the BO-field (‘1’ for taken and ‘0’ for not-taken). Software is expected to use this feature only for
those conditional branches for which it believes that software branch prediction will result in at least as good
a performance as the hardware branch prediction.

Three separate cases have been identified where the software should override hardware branch prediction
for improved performance:

• When the conditional branch is known by the software to be almost always uni-directional. For example,
branches that guard segments of code that are only executed when a rare event occurs.

• For the branches that close out a lock acquisition sequence. It is desirable to force the branch prediction
to be not taken. This provides the best performance for the most common case where the lock is suc-
cessfully acquired. Even if the lock is not successfully acquired on this iteration, it is still best to assume
(from a branch prediction standpoint) that it will be acquired in the next iteration. Note that, left alone, if
the lock is not acquired in the first iteration, the branch history mechanism would work to update the pre-
diction to predict taken (that is, predict lock acquisition failure and cause more “lwarx” traffic) for the next
iteration.
top: lwarx
 add
 stwcx
 bc top <-- POWER8 predicts this branch to be not taken, through
 software directives that properly set the “a” and “t” bits.

• To force a conditional branch to be always mispredicted to initiate instruction prefetching. This allows
some instructions to be speculatively executed or processed to some extent by the instruction fetch logic
before they are discarded. The instruction in the (wrongly) predicted path can be used as hint instruction
to the memory subsystem. For example, software prefetching of instructions from location
“Line_to_touch” can be initiated by forcing a branch misprediction as follows (“a”-bit in the bc instruction
indicates “must agree with static prediction”).

Short distance touches:
 bc Line_to_touch // Static prediction taken, but CR bit is set “not-taken”
Long distance touches:
 bc Next // Static prediction not-taken, but CR bit is set “taken”

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 203 of 450

 b Line_to_touch // Initiate prefetch for cache line “Line_to_touch”
 Next:... // Instructions in the actual instruction stream

This type of software prefetching is useful if the line to prefetch is in the L3 cache or beyond. Due to high
penalty for branch misprediction, it might not be beneficial if the referenced line is already in the L2 cache and
even harmful if it is already in the I-cache. It is beneficial if the compiler makes special attempts to schedule
code around such a branch that reduces the misprediction penalty. Attempts to reduce the forced branch
misprediction penalty can be made by:

• Setting the CR bit used by the “bc” as early as possible

• Scheduling such a branch in a code segment where there are relatively few branches so that the branch
does not wait too long in the branch issue queue behind other branches

• Trying to overlap a likely D-cache miss with the forced branch misprediction

• Scheduling such a branch after an existing long chain of flow dependency

10.1.4.3 Address Prediction Using the Link Stack

The POWER8 processor core uses a link stack to predict the target address for a branch-to-link instruction
that it believes corresponds to a subroutine return. By setting the hint bits in a branch-to-link instruction, soft-
ware communicates to the processor whether the instruction represents a subroutine return or a target
address that is likely to repeat or neither (see Table 10-1).

When instruction fetch logic fetches a branch and link instruction either unconditional or conditional but
predicted taken, it pushes the address of the next instruction into the stack. When it fetches a branch-to-link
instruction with “taken” prediction and with hint bits indicating a subroutine return, the stack is popped and
instruction fetching starts from the popped address.

In the POWER8 core, the link stack is 32-entries deep per thread in single-thread and SMT2 mode. In SMT4
mode, it is 16-entries deep. In SMT8 mode, it is 8-entries deep. In all modes, entries are preserved to keep
speculative pushes, which can be used for branch misprediction recovery.

Speculative execution can corrupt the link stack, both its pointer and its contents. The exact nature of the
corruption depends on the sequence of the stack-modifying branch instructions that get purged from the
system on a misspeculation.

Because branch-to-link instructions are fairly common and the branch misprediction penalty is high, the
POWER8 core uses an extensive speculation tolerance mechanism in its link-stack implementation that
allows it to recover the link stack under most circumstances. To recover the stack pointer at misspeculation,
the value of the stack pointer at the time a branch is scanned by the instruction fetch logic is stored in a table
and restored from on branch misprediction.

Table 10-1. Handling of bclr and bclrl Instructions

Instruction BH Field POWER8 Design Power ISA

bclrl xx If the branch is predicted taken, the link stack address is used as the
predicted target address; however, the link stack is not popped.

Reserved.

bclr 00 If the branch is predicted taken, the link stack is popped and the popped
address is used as the predicted target address.

The branch is a subroutine
return.

bclr 01 If the branch is predicted taken, the target is predicted using the count
cache. The count cache data and confidence fields might be updated
when the branch is executed and resolved. No action is taken by the
link stack.

Target address is likely to
repeat.

bclr 10 Same as BH = ‘00’ Reserved.

bclr 11 If the branch is predicted taken, the link stack address is used as the
predicted target address; however, the link stack is not popped.

Target is not predictable.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 204 of 450
Version 1.3

16 March 2016

10.1.4.4 Address Prediction using the Count Cache

The target address of a branch to count (bcctr[l]) instruction is often repetitive and can be predicted if the
address is saved in a cache from an earlier execution of the same instruction. This is also true for some of the
branch-to-link (bclr[l]) instructions, which are not predictable through the use of the link stack because they
do not correspond to a subroutine return. By setting the hint bits appropriately, software communicates to the
hardware whether the target address for such branches are predictable using a cache. See Table 10-2.

The POWER8 core uses two 256-entry count caches (one with hashed addressing similar to the global
branch history table and one using the unhashed instruction address) for predicting the target of a bclr[l] or
bcctr[l] instruction whose target address is likely to repeat. Each entry in the count cache can hold a 62-bit
address. When a bclr[l] or bcctr[l] instruction is executed, for which the software indicates that the target is
predictable using such a cache, the target address is written in the count cache. When such an instruction is
fetched, the target address is predicted using the count cache. The count cache does not have a separate
array to select between the two count caches. Instead, the 2-bit selector value is stored in the array using the
unhashed instruction address.

Sometimes a given branch has a small set of targets, but predominantly favors a particular target. To help
predict such branches, the count cache also uses a 2-bit confirmation counter (for each entry) for replace-
ment. Every time an entry is used for successful prediction, the counter is incremented (saturating counter),
and it is decremented on a misprediction. If the counter is zero, the entry can be replaced. When an entry is
first allocated or installed, the counter value is set to 1.

Note: bcctr instructions that are found in the local count cache must be located in octword blocks for the
POWER8 core. The local count cache is primarily used for bctr(l) instructions that have only one target. The
POWER8 core can only make one prediction per fetch group and bases the prediction off the fetch group
address (octword) and not the branch that is eventually identified as the first taken branch in the group. If
there are other non-bcctr branches in the octword, there is no problem. But if there are two or more bcctr
branches in the fetch group, only one can be in the count cache at a time so prediction can thrash.

Table 10-2. Handling of bcctr and bcctrl Instructions

Instruction BH field POWER8 Design Power ISA

bcctr, bcctrl 00 If the branch is predicted taken, the target address is predicted
using the count cache. Update the count cache when the branch
is executed, if the branch is resolved as taken. For the bcctrl
instruction, if the branch is predicted taken, push in the link stack
the address of the next sequential instruction when the bcctrl
instruction is fetched.

Target address is likely to
repeat.

bcctr, bcctrl 01 Same as BH = ‘00’. Reserved

bcctr, bcctrl 10 Same as BH = ‘00’. Reserved

bcctr, bcctrl 11 Same as BH = ‘00’. Target is not predictable

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 205 of 450

10.1.4.5 Round-Trip Branch Processing

Instruction fetch logic can fetch up to eight instructions in a given cycle and forward them down the pipeline to
the instruction decode logic. It scans through this group of instructions in the next cycle to determine the posi-
tion of all the branches in the group and the predictions for them. At the same time, it fetches the next
sequential cache sector of eight instructions, if there is no I-cache miss, I-ERAT miss, fetch redirection, pipe-
line hold (for example, due to successive stages not having enough resources to process the instructions
already in progress). The next sequential I-cache sector is fetched with the assumption that there is no
unconditional branch or a conditional branch that is predicted taken in the previous group of instructions that
it fetched. If the assumption is correct, instruction fetch proceeds unhindered. If incorrect, a bht redirection
event occurs, when instruction fetch logic instructs the instruction decode logic to discard the instructions it
sent after that branch and starts fetching from the target of that branch. If it is a branch-to-link/count instruc-
tion, the target of the branch is predicted based on the prediction mechanism described earlier. Otherwise,
the target of the branch is calculated from the instruction and its address. On a BHT redirection, two cycles
worth of instruction fetching might be lost.

If the branch is mispredicted, all the instructions in the pipeline that are fetched after the branch instruction
are purged from the system and new instructions from the new address, as determined by the executed
branch instruction, are fetched. The purging involves restoring all the queues and the mapper register files to
the state that is consistent with not having fetched or executed any instruction after the branch.

Because of its deep pipeline, the branch misprediction penalty is high in the POWER8 core. If a mispredicted
branch is executed before some of its earlier instructions (in program order), the pipeline will not be
completely dry after the misprediction. These earlier instructions can keep the execution units busy while the
instruction fetch logic brings new instructions, thus reducing the penalty to some extent. The average branch
misprediction penalty depends on many factors including when the associated CR bit becomes available, the
number of instructions that survive a misprediction, and associated cache misses. However, after a branch is
executed and found to be mispredicted, it takes a minimum of 16 cycles for a new instruction from the redi-
rected path to come down the pipeline.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 206 of 450
Version 1.3

16 March 2016

10.1.4.6 BC+4 Handling

Unconditional branches with the link bit set and a displacement of four can be used to set the address of the
next instruction into the link register. Architecturally these branches are taken and go to the next instruction.
The hardware handles BCL+4, with a BO = 20 (unconditional taken) as a special case. For this special case,
the branch is always treated as not taken for fetch, resulting in a no-fetch penalty. When the special branch
executes, it updates the link register, and does not cause a flush (even though fetch processed it as not taken
and architecturally it was taken). The PMU sees these special branches as requiring direction prediction,
direction predicted correctly, and branch not taken counts.

10.1.4.7 BC+8 Handling

In addition to the normal branch handling, bc instructions whose BO field indicates only a CR dependency
with a displacement of +8 are handled as a special case. Such bc+8 instructions are marked as potential
candidates for conversion to predication. When the next instruction after a bc+8 is in the list of allowed to be
predicated (see Table 10-3), the bc+8 is marked as first for group formation processing. Finally, if the branch
prediction for the bc+8 instruction is predicted not taken, the instruction pair is treated similar to an isel, in that
the branch cannot be mispredicted and the next instruction is conditionally executed based on the bc
outcome. Any time a bc+8 instruction is executed, the branch prediction algorithm writes a value assuming
the branch was not taken. This encourages all bc+8 instructions to be converted to predication. Use of a NOP
can be used to prevent bc+8 conversions in specific cases (making the bc+8 a bc+12).

Table 10-3. bc+8 Pairable Instructions

Assembler Mnemonic

addi

addis

add

and

or

xor

ori

stb

sth

stw

std

When a bc+8 instruction pair is converted to predication, the destination register now is pending until the
predication is resolved. This can mean that subsequent dependent instructions are prevented from issuing.
The bc+8 conversions must be avoided for the following circumstances:

1. If the branch is expected to be very predictable, the branch prediction hardware outperforms predication.

2. If the pairable operation is the start of a dependency chain involving loads, sometimes it is more benefi-
cial to have the loads start execution even if the branch eventually flushes. Predication delays dependent
operations from executing. Therefore, if a long latency load is delayed, the performance is better served
by allowing the branch to be predicted. This is especially true when the resultant memory access can be
the same cache line in either outcome. Branch misprediction can be hidden by the long latency memory

performance monitor unit

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 207 of 450

reference while the dependency delay due to predication cannot be hidden. Heap sort algorithms show
this effect.

10.1.5 Store-Hit-Load Avoidance Table

In an out-of-order execution machine, a younger load can be executed ahead of an older store. When the
addresses are independent, this is not a problem. But if the addresses overlap, the load has the wrong data.
The base design detects this condition and flushes the instruction stream after the store causing all subse-
quent instructions to be refetched. This ensures that the load follows the store and gets the newer data.

There are cases where the store hit load is repeated many times (possibly in a loop) where performance is
degraded due to the flushes. Therefore, the POWER8 core adds an 8-entry table that records the store
address when an SHL flush occurs. On the second occurrence, the decode logic is instructed to mark the RA
field of the store as written (store with dependency). Assuming the out-of-order load uses the same RA
register (RA != 0), the load is now delayed due to this artificial dependency. This performs significantly better
than flushing. The table also monitors the store address for subsequent SHL flushes and disables the func-
tion when it does not appear to help.

The store-hit-load table is managed with an LRU algorithm. Entries are also invalidated when the corre-
sponding I-cache congruence class is written. Only certain stores can be converted to store with dependency.
Table 10-4 lists ineligible stores.

Table 10-4. Stores Ineligible for SHL Avoidance

Ineligible Stores for SHL Table

All stores when RA = 0

All stores with update

All store conditionals

10.1.6 Instruction Buffer

Instructions read out of the I-cache are forwarded to the IBuffer as a staging area for group formation. The
IBuffer is arranged as a register file where each row can hold up to four instructions (16-byte aligned from the
I-cache). There are a total of 32 rows, but the number of rows per thread varies by SMT mode as shown in
Table 10-5. Branches not from the last instruction of an aligned quadword and not to the first instruction of an
aligned quadword cause inefficiencies in the IBuffer.

Table 10-5. IBuffer Rows per Thread

SMT Mode Rows

1 16

2 16

4 8

8 4

IFetching for a thread is prevented if there is no room in the IBuffer and is restarted as the IBuffer is drained.
There must be room for eight instructions before an IFetch is initiated. There are non-flush circumstances
where a full IBuffer could go empty before newly fetched instructions make it back to the IBuffer if groups are
large and dispatch is unencumbered. But this is expected to be rare.

store-hit-load

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 208 of 450
Version 1.3

16 March 2016

10.1.7 Group Formation

Instructions are pulled from the IBuffer and formed into dispatch groups. Instructions in a dispatch group enter
the out-of-order part of the processor in parallel and must complete together so that group formation can limit
the overall performance of a processor.

In single thread mode, the group size is limited to six nonbranch and two branch instructions. All instructions
must come from the oldest two quadwords in the IBuffer, and two quadwords can be emptied per cycle (with
some exceptions). Slots are numbered 0 - 5 for the non-branch instructions and 6 - 7 for the branch instruc-
tions.

In multi-thread mode, group size is limited to three nonbranch instructions and one branch instruction for each
of two threads (groups 0 and 1). All instructions must come from the oldest two quadwords per thread, but
only one quadword per thread can be emptied per cycle. Nonbranch slots are numbered 0 - 2 for the group 0
thread and 3 - 5 for the group 1 thread. The branch slot is 6 for the group 0 thread and 7 for the group 1
thread.

Group formation rules for the POWER8 core are in the following sections.

10.1.7.1 General Rules

General group formation rules (regardless of SMT mode) are:

• Can go past the first branch (predicted T or NT) to pick up more instructions (branch anywhere). A special
case ends a group when a backward branch to within 1024 bytes is predicted taken. This allows a com-
piler to assume group formation starts at a loop-entry point after the first iteration.

• Instructions marked First must start a group.

• Instructions marked Last must end a group.

• No FPU operations are allowed in a group after a branch (T or NT).

• A bc+8/12 operation is marked First if the branch confidence table indicates to predicate.

• A 2-way cracked operation occupies two nonbranch slots.

• A 3-way cracked operation occupies three nonbranch slots (modified from 4-way cracked). This ends the
group.

• Branch and link instructions that update the Link Register are marked Last.

• A 3-source operation in slots 0 or 1 reserves slot 2 for transmitting the third operand. A 3-source opera-
tions in slots 3 or 4 reserves slot 5 for transmitting the third operand. No 3-source operations are allowed
in slots 2 or 5.

taken

not taken

floating-point unit

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 209 of 450

10.1.7.2 Rules Specific to ST Mode

Rules specific to ST mode only (6 + 2 dispatch) are:

• A group is sourced from the bottom two rows of the IBuffer in each cycle.

• Maximum of six nonbranches per group.

• Maximum of two branches per group.

• A group ends immediately after the second branch (T or NT).

• Eight instructions total per group.

• Slot 2 is reserved when a bc+8/12 starts a group. This slot is used for extra source operands in the pred-
icated group.

• Two-way cracked operations go to slots 0 and 1. A second 2-way cracked operation can be in the same
group, if they are next to each other in the code stream (goes to slots 3 and 4).

• Three-way cracked operations go to slots 0, 1, and 2, and end the group.

10.1.7.3 Rules Specific to SMT Modes

Rules specific to SMT modes (dual 3 + 1 dispatch) are:

• The two 3+1 dispatch halves operate independently, reading two threads out of the IBuffer in each cycle.

• A group is sourced from the bottom two rows of the IBuffer (two rows per thread) in each cycle.

• Maximum of three nonbranches per group.

• Maximum of one branch per group.

• Four instructions total per group.

• Two-way cracked operations go to slots 0 and 1 for group 0, or slots 3 and 4 for group 1.

• Three-way cracked operations go to slots 0, 1, and 2 for group 0, or slots 3, 4, and 5 for group 1.

Both dispatch halves share a single microcode engine. This can cause one half to stall the other if both
halves need microcode simultaneously.

10.1.8 Group Ending NOP

When a store is followed by a load in a single-dispatch group and the addresses overlap such that forwarding
is not allowed (load-hit-store), the group must be flushed to break up the store and load (store cannot
complete due to the load and the load cannot complete due to the store). A group ending NOP inserted
between the store and the load will prevent the flush. Use an “ori R2,R2,0” as the group ending instruction.

10.1.9 First and Last Instructions

Instructions that require specific execution units are marked as First. See Table 10-6 on page 210 for a list of
instructions marked as First.

Instructions that require that no other instructions follow in the same dispatch group are marked as Last and
end the present dispatch group prematurely. See Table 10-7 on page 211 for a list of instructions marked as
Last.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 210 of 450
Version 1.3

16 March 2016

Table 10-6. List of Instructions Marked as First

Mnemonic

addc

addc.

addco

addco.

addeo.

addg6s

addmeo.

addzeo.

and

clrbhrb

crand

crandc

creqv

crnand

crnor

cror

crorc

crxor

dcbf

dcbfl.l=1

dcbfl.l=3

dcbst

dcbz.0

doze

eieio

hrfid

isel

isync

lmw

logmpp

lq

lqarx0_1

lqarx1_1

lswi

lswx

lwsync

mcrf

mfbhrbe

mfcr

mfmsr

mfocrf

mfspr [non-renamed]

mfspr_CTR

mfspr_default

mfspr_LR

mfspr_xer

mfsr

mfsrin

msgclr

msgclrp

msgsnd

msgsndp

msle

mtcrf

mtiamr

mtmsr

mtmsr_ee

mtmsrd

mtmsrd_ee

mtspr [non-renamed]

mtspr_CTR

mtspr_default

mtspr_LR

mtspr_xer

mtsr

mtsrin

nap

or

rfebb

rfid

rvwinkle

sc

slbfee.

slbia

slbia.001

slbia.010

slbia.011

slbia.1--

slbie

slbmfee

slbmfev

slbmte

sleep

sp_attn

stbcix

stbcx.

stdcix

stdcx.

Mnemonic

sthcix

sthcx.

stmw

stswi

stswx

stwcix

stwcx.

subfc

subfc.

subfco

subfco.

subfeo.

subfmeo.

subfzeo.

sync

syncpte

tabort.

tbegin.

tcheck.

tend.

tlbie

tlbiel

tlbiellpg

tlbsync

trechkpt

treclaim.

Mnemonic

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 211 of 450

Table 10-7. List of Instructions Marked as Last

Mnemonic

addc

addc.

addco

addco.

addeo.

addg6s

addmeo.

addzeo.

and

clrbhrb

doze

hrfid

isync

lq

lqarx0_1

lqarx1_1

mfcr

mfspr_BESCR

mfspr_BESCRR

mfspr_BESCRRU

mfspr_BESCRS

mfspr_BESCRSU

mfspr_CIR

mfspr_CTRL

mfspr_DEC

mfspr_DSCR3

mfspr_EBBHR

mfspr_EBBRR

mfspr_HDEC

mfspr_HID0

mfspr_HMEER

mfspr_HMER

mfspr_HPMC1

mfspr_HPMC2

mfspr_HPMC3

mfspr_HPMC4

mfspr_IC

mfspr_IMC

mfspr_MMCR0.0

mfspr_MMCR0.1

mfspr_MMCR1.0

mfspr_MMCR1.1

mfspr_MMCR2a

mfspr_MMCR2b

mfspr_MMCRA0

mfspr_MMCRA1

mfspr_MMCRC

mfspr_MMCRH

mfspr_MMCRS

mfspr_PCR

mfspr_PIR

mfspr_PMC1.0

mfspr_PMC1.1

mfspr_PMC2.0

mfspr_PMC2.1

mfspr_PMC3.0

mfspr_PMC3.1

mfspr_PMC4.0

mfspr_PMC4.1

mfspr_PMC5.0

mfspr_PMC5.1

mfspr_PMC6.0

mfspr_PMC6.1

mfspr_PMCR

mfspr_PMICR

mfspr_PMMAR

mfspr_PMSR

mfspr_PPR32

mfspr_PSPB

mfspr_PURR

mfspr_SIER0

mfspr_SIER1

mfspr_SPMC1

mfspr_SPMC2

mfspr_SPRC

mfspr_SPRD

Mnemonic

mfspr_SPURR

mfspr_TAR

mfspr_TB.268

mfspr_TB40

mfspr_TBL

mfspr_TBU.269

mfspr_TBU.285

mfspr_TEXASR

mfspr_TEXASRU

mfspr_TFHAR

mfspr_TFIAR

mfspr_TFMR

mfspr_TMFR

mfspr_TRACE

mfspr_trig0

mfspr_trig1

mfspr_trig2

mfspr_VTB

mfspr_xer

mfsr

mfsrin

msgclr

msgclrp

msgsnd

msgsndp

msle

mtiamr

mtmsr

mtmsr_ee

mtmsrd

mtmsrd_ee

mtspr_BESCR

mtspr_BESCRR

mtspr_BESCRRU

mtspr_BESCRS

mtspr_BESCRSU

mtspr_CFAR

mtspr_CIABR

Mnemonic

mtspr_CIR

mtspr_CSIGR

mtspr_CTRL

mtspr_DEC

mtspr_DSCR3

mtspr_EBBHR

mtspr_EBBRR

mtspr_FSCR

mtspr_HDEC

mtspr_HEIR

mtspr_HFSCR

mtspr_HID0

mtspr_HID1

mtspr_HMER

mtspr_HSPRG0

mtspr_HSPRG1

mtspr_HSRR0

mtspr_HSRR1

mtspr_IC

mtspr_MMCR2a

mtspr_MMCR2b

mtspr_MMCRC

mtspr_MMCRS

mtspr_PIR

mtspr_PMCR

mtspr_PMICR

mtspr_PMMAR

mtspr_PMSR

mtspr_PPR

mtspr_PPR32

mtspr_PSPB

mtspr_PURR

mtspr_RPR

mtspr_SIER0

mtspr_SIER1

mtspr_SPMC1

mtspr_SPMC2

mtspr_SPRC

Mnemonic

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 212 of 450
Version 1.3

16 March 2016

mtspr_SPRD

mtspr_SPRG0

mtspr_SPRG1

mtspr_SPRG2

mtspr_SPRG3

mtspr_SPURR

mtspr_SRR0

mtspr_SRR1

mtspr_TAR

mtspr_TB40

mtspr_TBL

mtspr_TBU

mtspr_TEXASR

mtspr_TEXASRU

mtspr_TFHAR

mtspr_TFIAR

mtspr_TFMR

mtspr_TRACE

mtspr_trig0

mtspr_trig1

mtspr_TSCR

mtspr_TSRR

mtspr_TTR

mtspr_VTB

mtspr_xer

nap

or

rfebb

rfid

rvwinkle

sc

slbfee.

slbia

slbia.001

slbia.010

slbia.011

slbia.1--

slbie

slbmfee

slbmfev

Mnemonic

slbmte

sleep

sp_attn

stbcix

stbcx.

stdcix

stdcx.

sthcix

sthcx.

stwcix

stwcx.

subfc

subfc.

subfco

subfco.

subfeo.

subfmeo.

subfzeo.

tabort.

tbegin.

tcheck.

tcheck.

tend.

tend.

tlbie

tlbiel

tlbiellpg

trechkpt

treclaim.

Mnemonic

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 213 of 450

10.1.10 2-Way and 3-Way Cracked Instructions

For some instructions that are important for performance and that cannot be done in a single IOP but do fit in
two or three IOPs, instruction cracking is used rather than microcode. Instruction cracking involves expanding
a single architected instruction into two or three IOPs in the same instruction dispatch group. The IOPs are
uninterruptable in the middle of the sequence. Table 10-8 lists the 2-way cracked instructions and Table 10-9
on page 214 lists the 3-way cracked instructions.

Table 10-8. 2-Way Cracked Instructions

Mnemonic

addc.

addco

adde.

addeo

addic.

addme.

addmeo

addo.

addze.

addzeo

cntlzd.

cntlzw.

divd.

divde.

divdeo.

divdeu.

divdeuo.

divdo.

divdu.

divduo.

divw.

divwe.

divweo.

divweu.

divweuo.

divwo.

divwu.

divwuo.

extsb.

extsh.

extsw.

isync

logmpp

lq

lqarx0_1

lqarx1_1

mfspr_DSCR3

mfsr

mfsrin

msgclr

msgclrp

msgsnd

msgsndp

mtiamr

mtspr_DSCR3

mulhd.

mulhdu.

mulhw.

mulhwu.

mulld.

mulldo.

mullw.

mullwo.

nego.

rldcl.

rldcr.

rldic.

rldicl.

rldicr.

rldimi.

rlwimi.

rlwinm.

rlwnm.

slbfee.

Mnemonic

slbia

slbia.001

slbia.010

slbia.011

slbia.1--

slbie

slbmfee

slbmfev

slbmte

sld.

slw.

srad.

sraw.

srawi.

srd.

srw.

stbcix

stbcx.

stbux

stbx

stdbrx

stdcix

stdcx.

stdux

stdx

sthbrx

sthcix

sthcx.

sthux

sthx

stvebx

stvehx

Mnemonic

stvewx

stvx(l)

stwbrx

stwcix

stwcx.

stwux

stwx

stxvd2x

stxvw4x

subfc.

subfe.

subfeo

subfme.

subfmeo

subfo.

subfze.

subfzeo

tbegin.

tcheck.

tend.

tlbie

tlbiel

tlbiellpg

xsradi.

Mnemonic

internal operation

Table 10-9. 3-Way Cracked Instructions

Mnemonic

addg6s

addc

addc.

addco

addco.

subfc

subfc.

subfco

subfco.

addeo.

subfeo.

addzeo.

subzeo.

addmeo.

submeo.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 214 of 450
Version 1.3

16 March 2016

10.1.11 Microcode

Instructions requiring microcode to execute have additional performance penalties to access the microcode.
A microcoded instruction after a non-microcoded instruction incurs a 2-cycle penalty before the first group of
the microcode routine is available. These cycles are only visible if the pipeline is not stalled. Consecutive
microcoded instructions do not require the two additional cycles. There is no overhead at the end of a micro-
code sequence. In certain unalign cases, these instructions can trap to microcode:

• lmw
• stmw
• lswi
• lswx
• stswi
• stswx
• ld, ldu, ldx, ldux
• lfdu, lfdux, lfdx, lfd
• lha, lhax, lhau, lhaux, lhz, lhzx, lhzu, lhzux
• lwa, lwax, lwau, lwaux, lwz, lwzx, lwzu, lwzux
• mtsr, mtsrin

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 215 of 450

10.1.12 Instruction Fusion

POWER8 instruction fusion involves combining information from two adjacent instructions into one instruction
so that it executes faster than the non-fused case. “Adjacent instructions” refers to the instruction locations
after group formation. In single-threaded mode, 6/2 groups are formed where there are up to six non-branch
instructions and up to two branch instructions. In multi-threaded mode, two 3/1 groups are formed where
there can be up to three non-branch instructions and one branch instruction. To be adjacent, the instructions
to be fused must be in the same group of non-branches, without a branch in between. Instructions can span
an I-cache line, but will only be fused if both have been fetched and are in the ibuffer.

There are two fuse types:
{addi} followed by one of these {lxvd2x, lxvw4x, lxvdsx, lvebx, lvehx, lvewx, lvx, lxsdx}

Requirements:
addi(rt) = lxvd2x(rb)
lxvd2x(ra) cannot be ‘0’

Result:
addi - no change
lxvd2x gets the immed field from addi., rb is not used.
This effectively provides a d-form version for the vector loads.
The dependency between the two operations is removed.

{addis) followed by one of these {ld, lbz, lhz, lwz}
Requirements:

addis(rt) = ld(ra) = ld(rt) - (cannot be ‘0’)
addis(SI) first 12 bits must be all 0’s or all 1’s
TA = 0 for this fusion to occur and
if SI = 111111111110000 and the msb of the d/ds field of the load equals ‘1’, then fusion does not
occur.

Result:
addis gets changed to a NOP. (It still takes up a dispatch slot, but is sent directly to completion.)
The last 5 bits of addis(SI) are sent with the ld (information from the addis is passed to the ld).
The addis is removed from execution.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 216 of 450
Version 1.3

16 March 2016

10.1.13 Instruction Dispatch

Dispatch represents the last in-order stage of the pipeline until completion. At this point, resources are
checked and the pipeline stalled if not available. Table 10-10 lists the dispatch stall conditions due to
resource limitations.

Table 10-10. Resource Requirements for Dispatch

Dispatch Hold Condition
Minimum
Cycles

Required

Release
(Completion Based) Inefficiencies

Branch Issue Queue full

CR Issue Queue full

Unified Issue Queue full 6 +6 cycles Three cycles reserved per dispatch lane

Insufficient CR mapper entries 6 +0 cycles Three cycles reserved per dispatch lane

Insufficient XER mapper entries 6 +6 cycles

Insufficient CTRLR mapper entries 4

Insufficient GPR mapper entries +9 cycles Three cycles reserved per dispatch lane

Insufficient FPSCR mapper entries 2

Insufficient VRF mapper entries +9 cycles Three cycles reserved per dispatch lane

LRQ full

SRQ full

GCT full (setup stage)

10.1.14 Instruction Issue

Up to eight internal operations (IOPs) can be dispatched and renamed per cycle. After renaming, these IOPs
are placed into a set of issue queues that are distributed by instruction type.

There are three different issue queues:

• Unified issue queue (UniQ): This is a 64-entry queue that is partitioned into two halves. Queue half 0
issues instructions to FX0, VS0, LS0, and LU0. Queue half 1 issues instructions to FX1, VS1, LS1, and
LU1. Each queue half can issue instructions to one FXU, one VSU, one LU, and one LSU. Instructions
from either queue half can issue to the DFU and Crypto units.

• BRQ: 15-entry issue queue for branch operations

• CRQ: 8-entry issue queue for condition register logical operations and mfSPRs, for SPRs that are owned
by the IFU, ISU, and PC units. mfSPR IOPs occupy one entry in both the UniQ and CRQ.

Fixed-Point Exception Register

General Purpose Register

Floating-Point Status and Control Register

Vector scalar register file

load reorder queue

store reorder queue

Global completion table

instruction fetch and decode unit

perasive core unit

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 217 of 450

10.1.14.1 Steering Policy

In ST mode, instructions are assigned to queue halves based on dispatch slots.

The instruction in slots 0, 1, and 2 are steered to alternating queue halves. For example, if IOP 0 is steered to
queue half 1, IOP 1 would be steered to queue half 0 and IOP 2 would be steered to queue half 1. The IOP in
slot 3 must be steered to the opposite queue half as the IOP in slot 0. Likewise IOP 4 is steered opposite
IOP 1, and IOP 5 is steered opposite IOP 2.

The first instruction in a group is assigned to the queue half that had the fewer number of instructions
assigned to it in the previous dispatch cycle.

In SMT2, SMT4, and SMT8 modes, the two queue halves are partitioned by thread set, so instructions are
steered by thread set. Instructions in slots 0, 1, and 2 (thread set 0) are assigned to queue half 0. Instructions
in slots 3, 4, and 5 (thread set 1) are assigned to queue half 1.

10.1.14.2 BRQ and CRQ Operation

Instructions are allocated into the BRQ and CRQ at dispatch time. Each cycle, the oldest ready instruction out
of each queue is selected for execution. The age between threads is determined by dispatch order. An
instruction is deallocated from its issue queue two cycles after it issues.

10.1.14.3 UniQ Issue Policies

Each cycle, each queue half selects four instructions to be issued, one each to the FXU, VSU, LU, and LSU
for that queue half. In general, selection is biased toward the oldest ready instruction. Instructions can be
speculatively issued before their source operands are really ready. They can also be speculatively issued
before knowing if there is going to be contention for a resource such as a GPR write port. Instructions are
rejected if they cannot be successfully issued, and are re-issued again later.

10.1.14.4 FXU and VSU Selection

In general, the oldest ready instruction is selected for issue on a given unit. However, due to cycle time
restrictions, it is impossible to determine the oldest among 32 instructions and select one in a cycle. Instead,
the issue queue half is divided into two quadrants of 16 entries each. The oldest ready instruction in each
quadrant is selected. Each cycle, one quadrant is determined to be high priority and the other is low priority.
An LFSR is used to select which quadrant is high priority. If the high-priority quadrant has any ready instruc-
tions, the oldest one from that quadrant is selected. Otherwise, the oldest from the low-priority quadrant is
selected.

10.1.14.5 LU Selection

In addition to loads, simple fixed-point instructions are also eligible to be issued to the LU. The selection logic
picks the first instruction found in this list:

• Oldest LU-eligible load or store_data in the high-priority quadrant

• Oldest LU-eligible load or store_data in the low-priority quadrant

• Youngest simple fixed-point in the high-priority quadrant

• Youngest simple fixed-point in the low-priority quadrant

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 218 of 450
Version 1.3

16 March 2016

10.1.14.6 LSU Selection

Stores, simple fixed-point, and some loads are eligible to be issued to the LSU. The selection logic picks the
first instruction found in this list:

• Oldest store (or LSU-only load) in the high-priority quadrant

• Oldest store (or LSU-only load) in the low-priority quadrant

• Oldest LSU-eligible load in the low-priority quadrant

• Youngest simple fixed-point in the low-priority quadrant

• Youngest simple fixed-point in the high-priority quadrant

10.1.14.7 Dispatch Bypass Instruction Selection

Instructions are selected for issue using the normal selection mechanism if they were dispatched at least four
cycles ago. Instructions in the dispatch+3 stage are selected for issue using a bypass (such as, dispatch+3
bypass), which uses a different selection policy.

The following instructions are not eligible to use the dispatch+3 bypass:

• Instructions that are dependent upon older instructions in the same dispatch group or the group dis-
patched in the previous cycle

• Conditional IOPs (used by bc+8)

• Loads and stores waiting for real LRQ or SRQ entries

• Completion-serializing instructions

• VS-routed operations

• Instructions with XER sources

Instructions are speculatively scheduled (oldest first) for dispatch bypass as if there are no older ready
instructions in the issue queue in stages disp+4 or later.

10.1.14.8 Back-to-Back Issue Policy

In general, single-cycle fixed-point instructions are issued in consecutive cycles if they are in the same half of
the queue. An instruction is considered to be back-to-back ready (B2B_RDY) if, for all of its source operands,
either (1) the available lines are already set, or (2) the source operands in the same half of the queue and are
currently marked as FX0_RDY and are single-cycle instructions. The oldest instruction that is either
B2B_RDY or FX0_RDY is selected for execution on FX0.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 219 of 450

10.1.14.9 Limitations of Back-to-Back

There are three sources of inefficiency in the back-to-back mechanism:

1. If an instruction has two source operands in the same half of the queue, neither of which has been de-
allocated, the dependent cannot wake up back-to-back unless both of the producer instructions are
marked as Ready (such as, they are candidates for selection).

In the example shown in Table 10-11, instruction C has two source operands, A and B. Instructions A and B
are independent. All three instructions are in the same half of the queue. Instruction A is selected in cycle 0.
In cycle 1, it issues and its available line is set and dependent instructions (might) wake up. In cycle 1, B
wakes up, and it is in the FX0_RDY latch in cycle 2. However, by this point in time, A is no longer marked in
the FX0_RDY latch. Instruction A has not been deallocated from the queue yet; therefore, C is still tracking
two source operands - A and B. Because A is not marked as FX0_RDY, instruction C cannot wake up via the
back-to-back mechanism in cycle 2.

Table 10-11. Example where Back-to-Back is not Possible A->C, B->C (All in the same half of queue)

0 1 2 3

A sel iss rf

B wak sel iss rf

C wak sel iss rf

fx0_rdy A B C

b2b_rdy

2. Only the first level in a chain of dependent instructions can execute via the back-to-back mechanism. For
example, suppose instruction C is dependent on B, which is dependent on A. B can be selected back-to-
back after A, but then C cannot be selected back-to-back after B. This is shown in Table 10-12. Note that
D can then execute back-to-back after instruction C.

If B is not selected back-to-back after A, C can be selected back-to-back after B.

Table 10-12. A -> B -> C (All in the same half of queue)

0 1 2 3 4

A sel iss rf

B b2b wake sel iss

C wake sel iss

D b2b wake sel iss

fx0_rdy A C

b2b_rdy B D

3. If there are two or more FX instructions marked as ready in the ready latches (that is, candidates for
selection) and zero load/stores that are candidates for selection, then in the following cycle there will be
no instructions woken up back-to-back that are candidates for selection. This is to handle the problem of
FX instructions that are issued to the LSU attempting to wake up their dependents back-to-back.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 220 of 450
Version 1.3

16 March 2016

10.1.14.10 Dual-Issued Stores

The store_agen and store_data portions of D-form store instructions share the same entry in the issue queue.
For fixed-point stores, the store_agen is issued to the LSU and the store_data is issued to the LU. For
FP/VMX/VSX stores, the store_agen is issued to the LSU and the store_data is issued to the VSU. The
dependence tracking logic only tracks the source operand of the store_agen. Both the store_data and
store_agen will “wake up” and attempt to issue as soon as the store_agen’s source operand is ready. The
store_data will be delayed until that point even if it was already ready to issue. If the store_data’s source
operand was not yet available and it tries to issue anyway, it will get rejected.

10.1.14.11 Wake-up Misspeculations

There are several cases where instructions issued can be woken up too early. Misspeculations are detected
when the dependent instruction is in the register file access stage. In the following cases, instructions get a
source-unavailable reject:

• Dispatch bypass: instructions can be issued off of a dispatch bypass before their source operands are
ready.

• Store_data IOPs for dual-issued stores wake up when the store_agen wakes up. They can try to issue at
any time after that point, except one or two cycles after the store_agen is issued. They can continue to
reject over and over if their source operands are not ready.

• SAR bypass: If instructions are issued with ‘needs_rtag’ bits on, or if there was a recent castout, they are
rejected. See SAR Bypass - Related Rejects on page 225.

• Dependents of load misses or LSU-rejected loads wake up their dependents too early.

• The instruction’s producers were rejected for any reason (non-ready sources or any unavailable resource)
after they woke up their dependents.

10.1.14.12 Chains of Misspeculations

It should be pointed out that 1-, 2-, 3-, and 4-cycle instructions can wake up their dependents before it is
known that they must be rejected. This is because their available lines get set before or while the misspecula-
tion is detected. Hence, it is possible for an infinite chain of dependent instructions to wake up and be sched-
uled speculatively. Any of the resource conflicts or wake-up misspeculations discussed previously can cause
these scenarios.

Chains of dependents of load instructions continue to wake-up and are issued even after the load is rejected
or misses in the L1 cache and DVAL is known to be zero.

10.1.14.13 Other Issue Inefficiencies

Normally, a 2-cycle FXU operation has an issue-to-issue latency of two cycles within the same FXU, and
three cycles to the other FXU. However, if a 2-cycle FXU operation is issued and then rejected for any
reason, the subsequent times it is issued, the UniQ will attempt to wake up instructions in the other half of the
queue assuming a 2-cycle issue-to-issue latency. If a dependent instruction in the other half of the queue is
issued too early, it will be rejected in the EXE stage because the result of the 2-cycle instruction is not avail-
able.

Second-level Architected Register

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 221 of 450

10.1.14.14 Issue-to-Issue Latencies

Table 10-13 on page 221 shows the minimum issue-to-issue latencies for different classes of instructions.
There are some exceptions, as noted in the comments at the end Table 10-13. A brief explanation of the
acronyms follows:

PM VMX/VSX permute

XS VMX/VSX simple operations

FX All instructions reading from or writing to the FPSCR and VSCR

VX VMX complex operations

FD VSX scalar; BFU floating-point

VD Vector double-precision floating-point

VS VMX/VSX 4-way vector single-precision floating-point

DFU Decimal floating-point

CY Cypher / cryptographic instructions

VSU-FX Move to/from FPSCR

FXU Any operation issued to the fixed-point unit

LU Any operation issued to the load unit, including simple fixed-point and store-data operations

LSU Any operation issued to the load-store unit, including simple fixed-point operations

Table 10-13. Issue-to-Issue Latencies (Sheet 1 of 2)

From To Latency Comments

PM/XS/FX any 2 or 7 [1]

FD/VD any besides FD/VD 7

FD/VD FD/VD 6

CY FD/VD/VX/VS 7

CY any besides FD/VD/VS/VX 6

VS any besides VS 7

VS VS 6

DFU any 13 [2]

VX any 7

VSX-to-GPR move any fixed-point operation 4 or 5 [3]

GPR-to-VSX move any VSX operation 5

FP/VS/VMX load any 5

1. Normally permutes and VMX-simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles
after a 7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted to a 7-cycle operation to prevent a
resulting bus collision.

2. This applies to pipelined DFP operations only. It applies to only the DFP IOP of the cracked DFP instruction.
3. Latency of four cycles if VSU pipe 0(1) to FXU pipe 0(1). Otherwise five cycles.
4. See rules about back-to-back-to-back (Section 10.1.14.9 Limitations of Back-to-Back on page 219).
5. Minimum two cycles issue-to-issue. Subject to special rules: cmp and bc must be in the same dispatch group, or else the cmp

must be the most recent CR writer.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 222 of 450
Version 1.3

16 March 2016

fixed-point load (no XER dest) any 3

fixed-point load (with XER dest) any 4

store w/ update any 3

FXU 1-cycle (no XER dest) same FXU 1 [4]

FXU 1-cycle (no XER dest) other FXU, either LU / LSU 2

FXU 1-cycle (with XER) same FXU 2

FXU 1-cycle (with XER) other FXU, either LU / LSU 3

FXU 2-cycle (no XER) same FXU 2

FXU 2-cycle (no XER) other FXU, either LU / LSU 2

FXU 2-cycle (with XER) same FXU 3

FXU 2-cycle (with XER) other FXU, either LU / LSU 3

FX multiply same FXU 4

FX multiply other FXU, either LU / LSU 5

divw same FXU variable

divw other FXU, either LU / LSU above +1

mf CTR/LR/TAR/CR FXU / LU / LSU 5

cmp bc 2 [5]

mtCTR/LR/TAR/CR dependent CRQ operation 6

mtCTR/LR/TAR dependent branch 5

branch updating CTR/LR/TAR branch reading CTR/LR/TAR 3

branch updating CTR/LR/TAR mfCTR/LR/TAR 4

CR-logical CR-logical or mfCR 3

CR-logical branch 3

Table 10-13. Issue-to-Issue Latencies (Sheet 2 of 2)

From To Latency Comments

1. Normally permutes and VMX-simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles
after a 7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted to a 7-cycle operation to prevent a
resulting bus collision.

2. This applies to pipelined DFP operations only. It applies to only the DFP IOP of the cracked DFP instruction.
3. Latency of four cycles if VSU pipe 0(1) to FXU pipe 0(1). Otherwise five cycles.
4. See rules about back-to-back-to-back (Section 10.1.14.9 Limitations of Back-to-Back on page 219).
5. Minimum two cycles issue-to-issue. Subject to special rules: cmp and bc must be in the same dispatch group, or else the cmp

must be the most recent CR writer.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 223 of 450

10.1.15 Pipeline Hazards

10.1.15.1 ISU Rejects

The issue queue can reject instructions for the following types of conflicts and speculation. Reject penalties
are shown in parenthesis.

• Result bus arbitration. (5)

• Finish port arbitration. (5)

• Other resources internal to the execution units. (5)

– FX and VS dividers (5)
– DFP, crypto units (5)
– SPR bus (5)
– LSU prefetcher utilizes Agen logic (5)

• Instructions need to request the SAR bypass. (7 - 10)

• Instructions need to wait for a swap to be processed before they can issue. (7)

• Instructions were speculatively issued before their source operands were available. (6)

Conflicts Due to Write-Back Collisions and VSU/SPR Resources

The following resource conflicts result in a 5-cycle rejection loop:

FXU pipe:

• FX 2-cycle instruction followed by a 1-cycle FX instruction. The 1-cycle instruction gets rejected.

• FX 4-cycle instruction followed by one bubble followed by an FX 2-cycle instruction. The 2-cycle instruc-
tion gets rejected.

• FX 4-cycle instruction followed by two bubbles followed by an FX 1-cycle instruction. The 1-cycle instruc-
tion gets rejected. (This case is frequently, but not always, prevented by blocking 1-cycle FX instructions
within UniQ from issuing three cycles after a multiply issues. They can still be issued off the dispatch
bypass.)

• FX divide followed by another FX divide. The divide continues to issue and reject. (The next divide can
issue three cycles before WB of the first).

• The CRQ issues an mfCTR/LR/CR that has a write-back collision with an add issued in the previous
cycle on the same thread set or trying to use the same GPR write port. The add gets rejected.

• A multiply or VSU-extract collides with mfCTR/LR/CR on the same thread set or pipe: the multiply/extract
wins and mfspr is not issued.

• An mfCTR/LR/CR collides with a 2-cycle operation; mfspr has priority.

• Any 4, 6, and 10-cycle mfspr colliding with 1, 2, 4, variable-length FX operations and VSU extracts.
Depends on latency and which can be cancelled.

• A VSU extract is issued at the same time as a multiply on the same queue half. Only one can be issued.
Toggle LFSR to determine priority.

• A VSU extract is issued at the same time or up to four cycles before a FX multicycle operation. The multi-
cycle operation is rejected.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 224 of 450
Version 1.3

16 March 2016

• A VSU extract is issued causing WB collisions with FX 1- or 2-cycle operations. The FX operation is
rejected.

• In SMT-shared mode, the GPR SAR bypass must arbitrate with FX instructions.

– For 1- and 2-cycle FX instructions, priority between the issuing instruction and SAR bypass is deter-
mined by an LFSR that can be controlled to give priority to the SAR bypass 25, 50, 75, or 87% of the
time. The default recommendation is to leave this at 75%.

– For multiplies, the SAR bypass has priority if both of the following are true:

(1) The LFSR above indicates that the SAR bypass should win over the FX operation.

(2) Previous SAR bypass attempts have been killed.

Note: This means that if there are many multiplies attempting to do a SAR bypass, it takes a long
time to make forward progress because the SAR bypass must have failed once before.

– Divides always have priority over SAR bypass. The SAR bypass is killed if it collides with a divide WB.

• If two mfsprs or mtsprs are issued at the same time on any FXU or CRU issue port, one must be can-
celled. A priority LFSR determines which is cancelled. (This is an SPR bus, not a GPR write port limita-
tion.)

VSU pipe:

• Write-back contention between the following classes of pipelined instructions: 13-cycle (DFP), 7-cycle
(FD/FX/VD/VS/VX/CY), 2-cycle (XS/PM/SD/SQ).

Note: If a 2-cycle operation is issued five cycles after a 7-cycle operation, the 2-cycle operation is con-
verted to a 7-cycle operation. This means it has an issue-to-issue latency of seven cycles, and finishes at
the same time as a 7-cycle operation.

• CY issued to both pipes; one must be rejected (LFSR determines priority).

• DFP issued to both pipes; one must be rejected (LFSR determines priority).

• Swap colliding with a VSX load in SMT-shared mode. The load wins and the swap is killed. The instruc-
tion dependent on the swap will issue and request to use SAR bypass.

• For up to three cycles after issuing a multi-cycle instruction, an attempt is made to issue any ready VS
instructions and then reject them.

LSU/LU pipe:

• LU/LSU uses a pipe for the D-ERAT reload; an operation issued at the same time is rejected.

• LU/LSU pipe is used by data prefetch. (LSU sends back a “steal agen FX only” signal.) A simple-FX oper-
ation issued at the same time is canceled or rejected

• LU only: A resulting bus conflict due to L2 data coming back for a GPR or VSX load; load issued to the LU
at the same time is rejected.

• LSU sends back XER results for stcx. Conflicting instruction on the LSU pipe gets a 6-cycle reject.

• Store forwarding: (LU/LSU sends a “delay5” indication) conflicting instruction (issued five cycles after the
load/mfspr getting store forwarding) gets a reject.

• Same operation issued to both LSU and FXU (for FX->LS); no rejecting is required in this case; the LSU
issue is cancelled and the operation is issued to the FXU.

• An mtspr and mfspr issued to both LSU pipes at the same time; one must be rejected.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 225 of 450

• In SMT-shared mode, loads issued to the LSU will block swaps, causing them to be cancelled.

SAR Bypass - Related Rejects

Instructions can be issued even if they do not have valid source rtags (that is, it has a “needs rtag” indicator),
but their source operand data is in the SAR. When this happens, the instructions request a SAR bypass. Due
to the time it takes to read data out of the SAR, the instructions requesting a SAR bypass are rejected by the
issue queue and re-issued after the data as been placed in bypass latches.

• If an instruction is issued with a “needs rtag” bit for a source operand, and the GPR data mux was not
configured to use the SAR bypass, then the instruction requests a SAR bypass and gets a reject.

– If it wins arbitration of the SAR bypass, it gets an 8, 9, or 10-cycle reject, depending on if the instruc-
tion needs 1, 2, or 3 SAR bypasses.

– If the instruction does not win SAR bypass arbitration, it gets a 7-cycle reject.

• If the front end of the issue queue thinks the instruction must get data out of the SAR (that is, the instruc-
tion is issued with a “needs rtag” bit on) and the GPR SAR bypass controls was set up correctly but the
data was not read out of the SAR due to a SAR bank collision, or if the wrong data was read out of the
SAR, the instruction must get a 6-cycle reject. On the FX/LS/LU pipes, this can happen if an instruction
was flushed, and another one with the same queue position (qpos) was dispatched in its place, and a
bypass latch was reserved for that qpos. This case does not apply to the VS pipe.

• If an instruction is not issued with a “needs rtag”, but the GPR source mux had been configured to get
data from the SAR, the instruction must get a 5/6-cycle reject. Like the previous case, this one only hap-
pens if there is a false qpos match due to quick qpos reuse, and only applies to the FX, LS, and LU pipes.

• If an instruction requests SAR bypass and then successfully uses it or gets flushed, and a second instruc-
tion is dispatched into the same qpos, a false SAR bypass can be driven if the SAR bypass latch contents
are no longer valid.

• If an FX or VS instruction gets both a resource conflict and a SAR reject, it has a reject latency according
to the SAR reject (7 - 10 cycles).

• If an LS or LU instruction gets both a resource conflict and a SAR reject, it has a reject latency according
to the resource conflict (5 cycles).

AMC Castout-Related Rejects

If an instruction’s source was recently cast out of the AMC, because either a completion castout or a swap
victim castout, there is a window of time where the instruction will get rejected. This mechanism is in place
because, if a given rtag X is used in a swap, it is not possible to determine if instructions with source rtag X
are dependent on the swap victim or the swap grantee. For VRF castouts, there is a 4-cycle window where
dependents of the rtag being cast out get rejected. For GPR castouts, the window is 6 cycles.

AMC/SAR Swap-Related Rejects

The front end of the UniQ can attempt to issue instructions that are waiting for swaps if they are issued in the
disp+3, disp+4, or disp+5 cycles. These instructions must be rejected, because if they were not, they can
complete before the swap was processed. This can potentially cause errors in the AMC. Therefore, at issue
time, check to see if the issued instructions should be waiting for swaps. If so, they get a 5-cycle reject.

Architected mapper cache

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 226 of 450
Version 1.3

16 March 2016

XER ARF Related Rejects

If an instruction with an XER source has its data in the XER ARF, but the XER source rtag of that instruction
matched one of the XER destination rtags of recently issued instructions, the instruction with the XER source
will be rejected. The reason for this is that it is not known until late in the ISS+1 cycle if the XER data resides
in the ROB or the ARF. The DL bits and XER bypass controls are dependent on this information. They are
computed as if the false rtag matches are true dependences.

FPSCR Related Rejects

VS instructions reading a renamed FPSCR can get a source-not-ready reject if the FPSCR producer has not
successfully issued.

An FPSCR consumer also gets a reject if the producer completed in the window of time between when the
consumer was dispatched and issued. This is because the location of the FPSCR data (ARF or ROB) is not
known until ISS+2.

10.1.15.2 LSU Rejects

The LSU detects several internal conditions that cause it to reject an instruction on a given port. When the
LSU rejects an instruction, it causes a 10-cycle turn-around for the instruction to be re-issued. A list of condi-
tions that cause an instruction to be rejected follows:

• SRQ - load-hit-store same cycle (store is older): The younger load is rejected.

• SRQ - load-hit-store (different group, store forwarding not possible): Load is rejected if the data needed
by the load is not fully contained in the store data queue (SDQ) for the store instruction.

• SRQ - load-hit-store (data not available): Load is rejected because the data to be stored by the store
instruction is not yet available in the store data queue.

• SRQ - load-hit-sync: Load is younger and therefore rejected because sync has to complete first.

• SRQ - load-hit-DCB (dcbz, cidcbf): Load is younger and hits the cache line targeted by the DCB instruc-
tion but is rejected because the DCB instruction must complete (dcbz could have forwarded ‘0’, but the
POWER8 processor core does not do that).

• SRQ - lwarx/ldarx not next-to-complete: If a previous lwarx/ldarx instruction sets the reservation, a suc-
cessive lwarx is rejected unless it is next-to-complete. This prevents excessive loss of reservation and
still guarantees forward progress.

• Global - force reject for hang detect: When the pervasive unit sends the hang detect signal, all load/store
instructions are rejected by the LSU.

10.1.15.3 Flush Conditions

Pipeline flushes are the last and most expensive means of reordering instructions in the out-of-order section
of the processor. Instructions that have not completed are eligible to be flushed. Most flushes are a result of
late detection of an architecturally unsafe ordering of instructions. Others are rare conditions that are most
easily solved by flushing when they occur yet allow the processor to achieve higher performance under the
more frequent circumstances. Table 10-14 lists all of the flush conditions.

Architected register file

re-order buffer

Architected register file

Table 10-14. Flush Conditions

Flush Condition Special Considerations Programming Ramifications

Cache inhibited and not single instruction
group or cache inhibited per page table I bit.

Force to single instruction group and wait
until next-to-complete to make nonspecula-
tive per architecture.

Avoid in performance critical code.

Guarded storage, L1 cache miss and not
single instruction group.

Force to single instruction group and wait
until next-to-complete to make nonspecula-
tive per architecture.

Avoid in performance critical code.

Unaligned Unaligned references not handled directly in
hardware need to reference microcode.
Instruction first flushed to single instruction
group and then flushed to microcode routine
entry point.

Avoid unaligned data in performance critical
regions. See Section 10.1.16.1 Storage
Alignment on page 228 for unaligned cases
not handled directly by hardware.

ECC error on reload data Data forwarded assuming no error. Load
must be restarted.

None

Invalidate-hit-reload Store or invalidate while load miss outstand-
ing to the same address. Load must be
restarted.

Use LARX/STCX for shared data in perfor-
mance critical regions.

Load-hit-store EA alias Because EA(44:51) is different, hardare
does detect. Flush until store drains.

Avoid EA aliasing in shared memory.

Load-hit-store, same group, cannot forward Load data not contained in single-store
data-queue entry.

Code-specific optimizations. Can detect and
replace by register move if performance lim-
iting.

Store-hit-load Issued out-of-order, older store to same
address as younger load. Flush after store
to restart load.

SHL avoidance in hardware when RA fields
match. See Section 10.1.5 Store-Hit-Load
Avoidance Table on page 207.

Load-hit-load with snoop Issued out-of-order, older load to same
address after intermediate snoop after
younger load.

Use LARX/STCX for shared data in perfor-
mance critical regions.

LARX-hit-LARX Issued out-of-order, older LARX detects
younger LARX. Only one LARX per thread
can be outstanding at a time. Need to flush
younger LARX.

On a fail, software must spin on a load until
the value changes.

LRQ atomic First or second part of an LQ or LQARX
instruction has been invalidated. Architec-
turally required to be atomic.

Use LARX/STCX for shared data in perfor-
mance critical regions.

RMSC flush HV = ‘1’, DR = ‘0’, not single instruction and
ERAT miss. Force to single instruction
group and wait until next-to-complete to
make nonspeculative per architecture.

Avoid in performance critical code.

sync flush for speculative load that has a
matching snoop

Performance optimization that allows specu-
lation beyond a sync. Flush is used to
recover when speculation must be backed
out.

None.

TM load with cache line crossing where the
second address cannot be sent to the L2.

Performance optimization allowing cache
line crossings to be faster. Because both
addresses must be seen by the L2 if both
are L1 cache hits, anything blocking the sec-
ond address from making it to the L2 cache
must cause a flush.

Avoid unaligned cache line crossings in per-
formance sensitive code.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 227 of 450

Error correcting code

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 228 of 450
Version 1.3

16 March 2016

10.1.16 Level-1 Data Cache

10.1.16.1 Storage Alignment

The LSU performs most loads and stores that are unaligned with the same timing as naturally aligned loads
and stores with some exceptions (see Section 3.5.5.4 Storage Access Ordering on page 76). When these
cases occur, a misaligned flush is generated, which causes a refetch of this instruction, and the microcode
unit generates multiple instructions that will now cross the boundary without flush.

For simple loads (not string instructions), the group with the unaligned load or store is flushed and re-
executed with microcode that avoids the boundary crossing. If the load or store was the first instruction in the
group, only one flush is needed. If not the first instruction in a group, the first flush causes the instruction to
come back in a single instruction group, and a second flush is needed for the misaligned flush.

String instructions are already microcoded as single instruction groups; thus only one flush is needed.

Misaligned flushes tend to be around 30 cycles each for the best case.

Special Load Cache Line Crossing Cases

If a load instruction crosses a cache line with a data access and both cache lines are in the L1 data cache, it
is highly likely that the access will have only a 5-cycle penalty over a normal L1 cache access. In the
POWER8 core, all loads that are allowed to cross a cache line can get this treatment with any byte alignment.
The implementation saves the bytes from the first cache line access. Then five cycles later, it accesses the
second cache line and merges data from the first cache line with the data from the second cache line. When
this occurs, an issues slot is taken for the second access.

There is one hazard that exists between 16-byte VSX loads on LUx pipes and a load on an LSx pipe, where
the x’s are the same (meaning the same pipe half) when these two instructions occur in the same address
generation cycle. If the sum of the bytes from the first cache-line access of the VSX instruction and the bytes
from the first cache-line access of the load1 are greater than 15, the load in LSx is rejected. This is because
there are not enough resources to save more than 15 bytes for each pipe half.

10.1.16.2 Special Case of Store Crossing a 64-Byte Boundary

If a store crosses a 64-byte boundary, when the store drains from the store queue, a 1-cycle penalty occurs
compared to normal store drains. This is because it takes two write cycles to write across a 64-byte boundary
as compared to one write cycle for all other stores.

10.1.17 Level-1 Data ERAT

In the POWER8 core, there are two logical primary D-ERATs implemented as four physical D-ERATs. There
is one physical ERAT for each of the two load-store units and one physical ERAT for each of the two load
units. Logically, the two primary D-ERATs for LSU0 and LU0 always contain the same data and the D-ERATs
for LSU1 and LU1 always contain the same data. Each primary D-ERAT is implemented as a fully associative
48-entry array, with modified binary LRU replacement algorithm. D-ERAT entries are created for 4 KB, 64 KB,
or 16 MB pages only. 16 GB pages are broken into 16 MB pages in the D-ERAT, where the installed page
contains the referenced address. Similarly, 1 MB pages are broken into 64 KB pages where the installed
page contains the referenced address. The four individual ERATs operate in one of two modes: shared or

1. This must be an integer load and thus cannot be bigger than 7 bytes in this case.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 229 of 450

split. In single-thread mode and SMT2, the contents of all four D-ERATs are identical; this is referred to as
shared mode. But in SMT4 or SMT8 mode, two ERATs (one LSU and one LU) contain translation for half of
the active thread (two threads for SMT4 mode and four threads for SMT8 mode). In split mode, the two paired
ERATs both contain addresses that can be different from the other paired ERATs. In split mode for the
POWER8 core, the two ERAT pairs can be loaded at the same time (with different data) for the following
cases:

1. Both ERAT pairs can be loaded from the secondary ERAT.

2. One ERAT pair can be loaded from the secondary ERAT, and one ERAT pair can be loaded from the TLB.

3. One ERAT pair can be loaded from the secondary ERAT, and one ERAT pair can be loaded from memory
(tablewalk data).

The POWER8 D-ERAT supports hit-under-miss. Up to four D-ERAT misses are entered in the ERAT miss
queue (EMQ) per cycle, one per LSU pipe. There are eight total EMQ entries. These eight entries arbitrate for
access to the secondary ERAT. The secondary ERAT contains 256 entries managed in two halves, with a
round-robin LRU algorithm. An instruction that misses the primary ERAT but hits the secondary ERAT
receives a reject on its initial ERAT lookup and a hit on its second lookup. Similar to the primary ERAT, the
secondary ERATs operates in either split or shared mode. In split mode, each of the halves of the secondary
ERAT is dedicated to half of the threads. The two halves for the secondary ERATs correspond to the ERAT
pairs in the primary ERAT. The secondary ERAT can process two misses concurrently in split mode but only
one miss for shared mode. If an address misses the secondary ERAT, it is sent to the SLB and TLB. The
EMQ entries are the only eight D-ERAT misses that are sent to the TLB, others result in a reject. These eight
entries and two I-side misses arbitrate for the SLB and TLB sequentially. If there is a hit in both, the informa-
tion for the D-ERAT is returned to both the primary and secondary ERATs. TLB hits are handled specula-
tively, and the I-ERAT and D-ERAT are loaded speculatively in this case.

10.1.18 Level-2 Data ERAT

The secondary D-ERAT is the second level of non-instruction translation caching in the core. When a data
reference misses the primary ERAT, it looks up the address translation in the secondary D-ERAT. If the
translation is found in the secondary D-ERAT, it is then loaded into the primary D-ERAT. If the translation is
not found in either the primary or the secondary D-ERAT, the request then has to check the SLB and TLB.

The best-case reload time for a hit in the secondary D-ERAT is to have the translation present in the primary
D-ERAT nine cycles after the initial look-up. This best-case timing is fast enough to ensure that the translation
is installed in the primary D-ERAT before the instruction is re-issued by the issue queue, because the fastest
time that the issue queue can re-issue an instruction is greater than nine cycles. When an instruction misses
both the primary and secondary D-ERAT, the translation is installed in both. However, because the replace-
ment policies are managed independently, it is possible for a translation to be aged out of the secondary D-
ERAT while still remaining in the primary D-ERAT.

The secondary D-ERAT consists of four 64-entry fully associative CAM arrays, for a total of 256 entries. In
single thread mode, all 256 entries are available for that thread. In split SMT mode, the secondary D-ERAT is
treated as two 128-entry arrays. The secondary D-ERAT replacement policy is a simple FIFO scheme.

Content-addressable memory

first in, first out

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 230 of 450
Version 1.3

16 March 2016

10.1.19 Translation Look-Aside Buffer

The TLB has 2048 entries and is four-way associative. It uses a true LRU replacement algorithm. The TLBs
are indexed with a hashed address calculated from portions of the virtual address and the page size. Each
entry in the TLB represents a particular page size: 4 KB, 64 KB, 1 MB, 16 MB, and 16 GB (that is, all page
sizes are natively supported in the TLB). Server software does not have any plan to exploit the 1 MB page
sizes; however, to the processor, 1 MB pages are always enabled.

The real address is returned to both the primary and secondary D-ERAT on a TLB hit. The primary and
secondary ERATs have different LRU algorithms; therefore, the secondary ERAT is not guaranteed to
contain the same address translations contained in the primary ERATs. The TLB contains entries for both the
I-cache and D-cache, while the secondary ERAT only contains entries for the D-cache. The I-cache and
D-cache maintain separate primary ERATs. Therefore, the D-side ERAT contains entries only for the
D-cache, and similarly the I-side ERAT contains entries only for the I-cache. A TLB hit reloads the primary
(and secondary) ERAT after two rejects. A following ERAT lookup then hits in the primary ERAT.

If the TLB request does not hit in the TLB, a tablewalk is initiated that loads the TLB, secondary ERAT, and
primary ERAT with the translation for the instruction that generated the TLB miss. Up to four outstanding
tablewalks can be active at one time. The implementation allows tablewalks for speculative instructions but
does not update the Ts or C bit in a PTE entry unless the instruction is NTC when the PTE entry is found. The
TLB is reloaded with the corresponding PTE entry even if the instruction is speculative.

10.1.20 Load Miss Queue

The Load Miss Queue (LMQ) is a 16-deep queue that handles all data cache misses for the LSU, including
data prefetches to the L1 cache. These 16 entries are shared by all eight threads on this core. The queue is
4-ported; thus, it can take a miss from each one of the four load/store pipes, and can pass those four requests
to the L2 cache in one cycle as well. The two LU ports (load only ports) have a fast path to the L2 cache. Even
then, if two demand loads occur in the same cycle on the LUs, only one can win, and the other is placed in the
L2 queue, causing a minimum of a 3-cycle penalty. The LS ports, take a minimum 3-cycle penalty to L2
latency, because they must be queued before they can enter the L2 pipe.

Data is returned from the nest in two 64-byte beats or four 32-byte beats. The critical beat (the beat with the
requested data) is favored to return first. Normally, two 64-byte beats are returned back-to-back if the line
was in the L2 cache and two 64-byte beats from a line that was in the L3 cache, return with a bubble (cycle)
in between. If the data came from the power bus, the data returns in four 32-byte beats, with at least one
bubble in between each beat.

Merging into the LMQ is not allowed for loads. In other words, if two loads for the same line are executed, the
first gets a miss queue entry, and the second one is rejected until the second load hits the cache after the
data has been refilled from the nest. One exception is that a load can always merge with an L1 prefetch if
they are for the same line.

If a flush occurs after a load has made an L2 request, the load does not forward data, but the miss queue
remains busy until all data is returned and placed into the cache.

Cache-inhibited loads are handled by the LMQ as well. Although they do not write to the cache, they still
occupy an entry until data is returned.

If a store with the same real address as a load in the LMQ occurs after the load request but before the data is
back, the LMQ does not allow that data to be written into the cache.

page table entry

next-to-complete

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 231 of 450

If a data cache miss request finds the data in memory, a special tag is returned indicating that the ECC check
has not been done on this beat of data. The memory controller reserved the right to cancel this line on the last
beat of data if the ECC checker finds an error. This allows the memory controller to source data much earlier
because it does not have to go through the ECC checker first. The LMQ must mark any load that uses this
line as speculative when that load finishes. The global completion table logic must not complete these loads
until the LMQ indicates that the data is good.

10.1.21 Transactional Memory

The L2 cache is largely responsible for tracking the transactional memory (TM) footprint. The TM footprint
consists of 128-byte cache lines that have been accessed by either load or store instructions while the thread
is executing in the transactional state. Generally in rollback-only-transactions (ROTs), only stores are
tracked. However, due to implementation-specific reasons, a small fraction of loads in an ROT can also be
included in the tracking footprint. The footprint is tracked by four banks of 16-entry CAMs, which are shared
by all threads on a given chiplet. A footprint overflow type of transaction failure results if either the CAM or the
L2 congruence class capacity is exceeded. If either a transactional or non-transactional access initiated by
another thread conflicts with a given thread’s footprint, the transaction also fails and the appropriate type of
conflict is reported in the TEXASR per the Power ISA.

If a tlbie request from any thread in the same LPAR hits a page used in a transaction, the transaction is
required to fail. Rather than exactly comparing all TM pages to a tlbie, a bloom filter1 approach is used.

10.1.22 Store Queue and Store Forwarding

The LSU contains a 40-entry store reorder queue (SRQ) that holds real addresses and a 40-entry store data
queue (SDQ) that holds a quadword of data. These store queues are dynamically shared among the avail-
able threads (in both SMT2, SMT4, and SMT8 modes). In the POWER8 core, each SDQ entry can hold one
store operation, which can be up to 16 bytes wide (for VSX and VMX stores, or a stq, stqcx.).

Store addresses are loaded into the SRQ when the instruction is issued. These can be issued in any order.
Fixed-point data is loaded into the SDQ from the FXU after the data is accessed from the GPR (st_data is
transferred via the LU0 or LU1 RB operand bus). Floating-point data is loaded into the SDQ from a shared
16-byte data bus from the FPU after the data is accessed from the FPR. This shared 16-byte data bus also
transfers VSX/VMX store data to the SDQ from a dedicated bus from the FPU after the data is accessed from
the FPR. In the POWER8 core, there are two dedicated 16-byte data buses to transfer FPU/VSX/VMX data to
the SDQ. Stores are removed from the SRQ and SDQ and written to the cache in program order after all the
previous instructions are committed.

Loads that are issued, which hit (address match) stores in the SRQ that have not been written to the cache,
are candidates for store forwarding. A store forward can occur under the following conditions:

• The data is available in the SDQ.

• The load is completely contained within the store (load byte count is less than or equal to the store byte
count).

• The store is older than the load.

• The page-table I-bit is not set.

• No collision with an L1 reload operation (AGEN steal).

1. This can cause a transaction to fail when it did not need to, but greatly reduces the overhead of detection for what is a rare
event.

error correcting code

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 232 of 450
Version 1.3

16 March 2016

There are some exceptions to these rules; for example, see Section 10.5.1.1 Store Quadword on page 254
for more details. If the above conditions are not met, the load instruction can be either rejected or flushed. A
load that becomes a store forward operation is treated as a miss from the standpoint of the issue logic. The
latency of a store forward operation is five cycles.

In addition to stores, sync, lwsync, ptesync, eieio, dcbz, dcbf, icbi, tlbsync, and tlbie (non-local) are
installed in the SRQ. Additionally, on the POWER8 core, the following instructions will install in the SRQ:
isync, tm_begin, tm_check, tm_end, and logmpp.

10.1.22.1 Stores in Real Mode (MSR[DR] = 0)

For store instructions, the store re-order queue above the caches is used as a temporary holding spot for both
the address and the data. When the store passes the completion point, the store queue is marked to allow the
store data to be written into any of the appropriate caches. If the real-mode I-bit (located in the HID4 Register)
is set, cache misses are expected, so that the store simply works its way towards memory or memory-
mapped I/O. Note that, as a result, the store action is only observed once per store instruction.

10.1.23 Data Prefetch

The purpose of the data prefetch mechanism is to reduce the negative performance impact of increasing
memory latencies, particularly on technical workloads. These programs often access memory in regular,
sequential patterns. Their working sets are also so large that they often do not fit into the limited size L1, L2,
and L3 caches used in the POWER8 chip. For additional information, see Table 10-16 Instruction Latencies
and Throughputs on page 236.

Designed into the load-store unit, the prefetch engine can recognize sequentially increasing or decreasing
accesses to adjacent cache lines and then request anticipated lines from more distant levels of the
cache/memory hierarchy. The usefulness of these prefetches is reinforced as repeated demand references
are made along such a path or stream. The depth of prefetch is then increased until enough lines are being
brought into L1, L2, and L3 cache that much or all of the load latency can be hidden. The most urgently
needed lines are prefetched into the nearest cache levels. During stream start up, several lines ahead of the
current demand reference can be requested from the memory subsystem. After steady state is achieved,
each stream confirmation causes the engine to bring one additional line into the L1 cache, one additional line
into the L2 cache, and one additional line into the L3 cache. To effectively hide the latency of the memory
access while minimizing the potentially detrimental effects of prefetching such as cache pollution, the
requests are staged such that the line that is being brought into the L3 cache is typically several lines ahead
of the one being brought into the L1 cache. Because the L3 cache is much larger than the L1 cache, it can
tolerate the most speculative requests more easily than the L1 cache can.

A basic prefetch start-up sequence follows.

Prefetch begins by saving the effective address of the L1 D-cache misses in a 16-entry queue, offset up
or down by one line address (the initial miss to line n triggers the allocation of an entry for line n+1). This
initial allocation is managed on a pseudo-LRU basis, and causes a request for line n+1 to be brought into
the L3 cache. A subsequent demand L1 lookup for line n+1 matches the newly allocated entry (referred
to here as a confirmation). This confirmation triggers an update to the existing queue entry, which now
points to line n+2. In addition, the confirmation triggers a request for lines n+2,3,4,5 to be brought into the
L3 cache. A request is also made for line n+2 to be brought into the L1 and L2 cache. Upon the next con-
firmation (demand L1 lookup for line n+2), the queue entry is again updated, this time to point to line n+3.
This confirmation triggers requests for lines n+6,7,8,9,10 to be brought into the L3 cache. Line n+3 is also
brought into the L1 and L2 cache. A third confirmation (demand L1 lookup for line n+3) triggers requests

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 233 of 450

for lines n+11,12,13,14,15 to be brought into the L3 cache, as well as requests for lines n+4,5 to be
brought into the L1 and L2 cache.

At this point, the L3 prefetch engine is prefetching 12 lines ahead of the current demand load, The L1
prefetch engine is prefetching two lines ahead of the demand load, and the stream has reached steady
state. Subsequent confirmations do not cause the L3 engine to go any further ahead than 12 lines or the
L1 engine to go any further ahead than two lines. A fourth confirmation (demand L1 lookup for line n+4)
triggers a request for line n+16 to be brought into the L3 cache, as well as a request for line n+6 to be
brought into the L1 and L2 cache. Because the L3 prefetch engine is now in steady state, this request for
line n+16 can happen immediately or it can be queued up to take advantage of efficiencies in the memory
subsystem. Either way, each subsequent confirmation eventually triggers a request for one additional line
to be brought into the caches.

Although this description represents a typical stream ramp profile, the maximum depth of the stream and the
urgency with which the prefetch engine attains that depth are fully programmable via the Data Stream Control
Register (DSCR). The DSCR is described in Book II of the Power ISA.

The direction of the stream is always assumed to be increasing in magnitude. However, during stream start-
up, the prefetch engine simultaneously examines streams for both increasing and decreasing patterns using
a “shadow” queue. Subsequent references can either confirm the increasing direction or the decreasing
direction. If the stream is confirmed by a decreasing pattern, the direction of the stream is marked as such
from that point forward.

In addition to the stream detection described previously, the prefetch engine is augmented by a stride-N
detection engine. The purpose of the stride-N engine is to detect streams that have regular access patterns,
but which do not fetch from consecutive cache lines in memory. The hardware can detect strides up to 8 KB
in length, with a 32-byte granularity. The detection is handled in a 4-entry buffer that examines the stride
between the current cache miss and the previous four cache misses. When a pattern is detected, a stream is
created in the regular prefetch queue. From this point forward, the stream is treated just like any other stream,
with the difference being subsequent prefetch requests can fetch from nonconsecutive cache lines.

Prefetch streams are tracked by the effective address and are allowed to cross small and medium memory
page boundaries, but will be invalidated when crossing a large-page boundary. All prefetch requests must
therefore go through address translation before being sent to the memory subsystem. When address transla-
tion is not found in the ERAT for a prefetch request, the prefetch initiates an ERAT miss request. This has the
effect of prefetching not only the data that is needed by the program, but also the address translation. If any
type of exception is encountered while performing the translation lookup for the prefetch, the request is
dropped and the requesting stream is invalidated. Streams otherwise remain active until replaced with a new
address by the allocation mechanism, or until the thread that allocated the stream is no longer running on the
processor.

In all cases, a prefetch request is completed when the lines are found already resident in or have been
returned to the target cache level. If a demand miss “catches up with” an outstanding prefetch request, it is
either merged or rejected depending on the level in the cache hierarchy. If it is rejected, it is retried until it hits
in the cache.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 234 of 450
Version 1.3

16 March 2016

10.2 Chiplet

10.2.1 Level-2 Cache

Each L2 cache on the POWER8 chip is a unified cache for its respective core. The L2 cache is an 8-way
associative 512 KB cache with fast access to its own private 8 MB L3 cache region through a private low
latency bus. The L2 cache maintains full hardware coherence within the system and can supply intervention
data to the other cores on this POWER8 chip or to other cores on other POWER8 chips. Logically, the L2
cache is an in-line cache. Unlike the L1 caches, which are store-through, it is a store-in cache. It is fully inclu-
sive of the L1 D-caches and the L1 I-caches.

Each L2 cache is comprised of 512 associative sets (called congruence classes); each congruence class
contains eight 128-byte cache lines. Real address bits 48:56 are used in the 9-bit congruence class address.

The L1 D-cache is a store-through design. As such, when a cacheable store is removed from the SRQ, if it
hits in the L1 D-cache, the line is updated. In addition, all stores (hit or miss) are forwarded on to the L2
cache. If the store is a miss in the L1 D-cache, the data is not written to the D-cache and the line is not
reloaded from the L2 cache (no L1 D-cache allocate on store miss).

10.2.2 Level-3 Cache

Each L3 cache region on the POWER8 chip is a unified victim cache for its respective core/L2 cache, as well
as for other L3 caches on chip. The resident cache lines installed from the attached L2 cache are referred to
as L3.0 lines, and the resident cache lines installed from other L3s are referred to as L3.1 lines. When castout
from this L3 cache, L3.1 lines go to memory and L3.0 lines have the option of being castout to other L3
caches on chip. The L3 cache is an 8-way associative 8 MB cache. The L3 cache maintains full hardware
coherence within the system and can supply intervention data to the other cores on this POWER8 chip or to
other cores on other POWER8 chips. Logically, the L3 cache is an in-line cache. The L3 cache is a victim
cache of the L2 cache (that is, all valid lines that are victimized in the L2 cache are castout to the L3 cache).
The L3 cache is not inclusive of the L2 cache. Each L3 cache is comprised of 8192 associative sets (called
congruence classes), each congruence class contains eight 128-byte cache lines. Real address bits 44:56
are used in the 13-bit congruence class address.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 235 of 450

10.3 Latencies

10.3.1 Cache Latencies and Bandwidth

Table 10-15 lists several key bandwidth and latency values for the chip. These represent best case values
under ideal conditions. Actual values can be somewhat higher due to resource limitations or queueing effects.
Still, these value are useful in understanding system performance. The pclk in Table 10-15 is the clock rate of
the processor.

Table 10-15. Cache Latencies and Bandwidth

Description Latency Bandwidth

L2 D-cache load hit (bypass) 8.5 pclks 64 bytes/pclk

L2 I-cache load hit (bypass) 9.5 pclks 64 bytes/pclk

L3 load hit 26.5 pclks 32 bytes/pclk

L2.1 load hit 94 pclks 16 bytes/pclk

L3.1 load hit 112 pclks 16 bytes/pclk

L2.5 load hit 325 pclks

L3.5 load hit 343 pclks

Memory load chip pump 80 ns 230 GBps (2:1 read:write)

Memory load system pump 140 ns

A link 25.6 GBps (peak)

Note: Pclks represent one processor clock.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 236 of 450
Version 1.3

16 March 2016

10.3.2 Instructional Latencies and Throughputs

The fixed-point latency, when specified as x-y, is the latency where x is for two instructions on the same
thread-set side and y is for two instructions on opposite thread-set sides.

Table 10-16. Instruction Latencies and Throughputs (Sheet 1 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

ld ldx ldu ldux lwa lwax lwaux
lwz lwzx lwzu lwzux lha lhax
lhau lhaux lhz lhzx lhzu lhzux
lbz lbzx lbzu lbzux

LSU or LU,
FXU

3 cycles (RT)
2 - 4 cycles (RA)

2/cycle 1 N/A Broken into a basic load,
an exts, and an add.

lq LSU, FXU 3 (RT)
3 (RT+1)
6 (XER)

1/cycle 1 N/A

stb sth stw std LSU, LU N/A 2/cycle 1 no Stores are internally
issued twice (once as an
ea_gen operation, and
once as a data operation).
Stores put their data into
the STQ, which later writes
to the cache/memory hier-
archy (the STQ supports
forwarding for many
cases).

stbx sthx stwx stdx LSU, LU N/A 2/cycle 1 no Three source operands
are cracked to minimize
breadth or renaming facil-
ity.

stbu sthu stwu stdu LSU, LU 3 cycles for updated
register

2/cycle 1 no

stbux sthux stwux stdux LSU, LU 3 cycles for updated
register

2/cycle 1 N/A Cracked into two IOPs.

stq LSU, LU N/A 1/cycle 1 N/A Cracked into three IOPs.

lmw LSU or LU N/A 2 register
loads per
cycle after

start-up

1 N/A Number of dispatch
groups is equal to the
number of registers mod-
ulo three. The microcode
generates inline sequence
of basic loads.

stmw LSU, LU N/A 2 register
stores per
cycle after

startup

1 N/A Number of dispatch
groups is equal to the
number of registers mod-
ulo three. The microcode
generates inline sequence
of basic stores.

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 237 of 450

lswi (naturally aligned) LSU or LU N/A 2 register
loads per
cycle after

start-up

1 N/A Number of dispatch
groups is approximately
equal to number of regis-
ters modulo three. The
microcode assumes natu-
ral alignment and gener-
ates inline sequence of
basic loads.

lswx (naturally aligned) LSU or LU N/A 2 register
loads per
cycle after

start-up

1 N/A Number of dispatch
groups is approximately
equal to number of regis-
ters modulo three plus four
more for startup. The
microcode assumes natu-
ral alignment and gener-
ates inline sequence of
basic loads.

stswi (naturally aligned) LSU, LU N/A 2 register
stores per
cycle after
start-up

1 N/A Number of dispatch
groups is approximately
equal to number of regis-
ters modulo three, Micro-
code assumes natural
alignment and generates
inline sequence of basic
stores.

stswx (naturally aligned) LSU, LU N/A 2 register
stores per
cycle after
start-up

1 N/A Approximately equal to
(number of registers mod-
ulo three plus four more for
startup. The microcode
assumes natural alignment
and generates inline
sequence of basic stores.

lswi lswx stswi stswx
(unaligned)

LSU,LU N/A N/A 1 N/A String instruction is first
decoded and dispatched
as described previously. At
execute, the LSU notes
that it is unaligned and
causes a machine flush.
As the string instruction
goes through decode the
second time, it is broken
up in a way that takes the
misalignment into account.

lwarx ldarx LSU or LU N/A N/A 1 no Forced to miss data L1
cache.

Table 10-16. Instruction Latencies and Throughputs (Sheet 2 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 238 of 450
Version 1.3

16 March 2016

stwcx. stdcx. LSU, LU N/A N/A 1 no Must establish coherency
block ownership before
completing the instruction
(other stores do not have
to do this). Can take any-
where from 10 cycles to
100’s depending on the
state of the coherency
block in the memory hier-
archy.

addi addis add add. subf
subf. addic subfic adde
addme subfme subfze neg
neg. nego

FXU (or LU
or LSU for

non-dot
forms)

1 - 2 cycles (GPR)
2 cycles (XER),
5 cycles (CR)

6/cycle,
2/cycle (with
XER or CR
updates)

no

addic. adde. subfe. addme.
subfme. addze. subfze.

FXU 1 - 2 cycles (GPR,
5 - 6 cycles (CR)

1/cycle no Cracked into a basic add
(sub) and a cmp.

addo. subfo. addeo subfeo
addmeo subfmeo addzeo
subfzeo nego.

FXU 1 - 2 cycles (GPR),
2 cycles (XER),
5 cycles (CR)

1/cycle no These operations might
architecturally change the
summary overflow bit.
Summary overflow is writ-
ten at completion time. If
change is detected, every-
thing younger is flushed.

addeo. addmeo. subfmeo.
addzeo. subfzeo.

FXU 1 - 2 cycles (GPR),
2 - 3 cycles (XER),
6 - 7 cycles (CR)

2/3 cycles no These operations might
architecturally change the
summary overflow bit.
Summary overflow is writ-
ten at completion time. If
change is detected, every-
thing younger is flushed.

addo subfo FXU 1 - 2 cycles (GPR)
2 cycles (XER)

2/cycle no These operations might
architecturally change the
summary overflow bit.
Summary overflow is writ-
ten at completion time. If
change is detected, every-
thing younger is flushed.

addc subfc FXU 1 - 2 cycles (GPR) 2/cycle wait for non-
rename

scoreboard
bit to clear

Table 10-16. Instruction Latencies and Throughputs (Sheet 3 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 239 of 450

addc. addco addco. subfc.
subfco subfco.

FXU 1 - 2 cycles (GPR)
5 - 6 cycles (CR)
2 cycles (XER)

1/cycle wait for non-
ren ame

scorebo ard
bit to clear

isel FXU 5 cycles (GPR)
8 cycles (CR)

mulli FXU 4-5 cycles 2/cycle no Pipelined.

mullw mulhw mulhwu FXU 4-5 cycles 2/cycle no Pipelined.

mulld mulhd mulhdu FXU 4-5 cycles 2/cycle no Pipelined.

mullwo mulldo FXU 4-5 cycles (GPR)
5 cycles (XER)

2/cycle no Pipelined in FXU. These
operations might architec-
turally change the sum-
mary overflow bit. The first
attempted execution of
these instructions assume
that the SO-bit does not
change. If it does, the
instruction causes a flush
and then is re-executed.

mullw. mulld. mulhd. mulhw.
mulhdu. mulhwu.

FXU 4 - 5 cycles (GPR)
8 cycles (CR)

2/2cycles no Pipelined in FXU. Cracked
into baseline operation
and a cmp.

Table 10-16. Instruction Latencies and Throughputs (Sheet 4 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 240 of 450
Version 1.3

16 March 2016

mullwo. mulldo. FXU 4 - 5 cycles (GPR)
8 cycles (CR)

2/2cycles no Pipelined in FXU. Cracked
into baseline operation
and a cmp. These opera-
tions might architecturally
change the summary over-
flow bit. The first attempted
execution of these instruc-
tions assumes that the
SO-bit does not change. If
it does, the instruction
causes a flush and then is
re-executed.

divd divdu divwe divweu FXU 12 - 23 cycles
(GPR)

2/12 cycles
to

2/23 cycles

no Actual latency depends on
data. Non-divides can be
issued underneath.

divw divwu FXU 12 - 15 cycles
(GPR)

2/12 cycles
to

2/15 cycles

no Actual latency depends on
data. Non-divides can be
issued underneath.

divde divdeu FXU 14 - 41 cycles 2/14 cycles
to

2/40 cycles

no Actual latency depends on
data. Non-divides can be
issued underneath.

divd. divw. divdu. divwu.
divde. divwe. divdeu. divweu.

FXU same as above for
GPR + 6 cycles for

CR

same as
above

no Non-divides can be issued
underneath.

divdo divwo divduo divwuo
divdeo divweo divdeuo
divweuo

FXU same as above for
GPR, +1 for XER

same as
above

no These operations might
architecturally change the
summary overflow bit. The
first attempted execution
of these instructions
assumes that the SO-bit
does not change. If it does,
the instruction causes a
flush and then is re-exe-
cuted.

Table 10-16. Instruction Latencies and Throughputs (Sheet 5 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 241 of 450

divdo. divwo. divduo. divwuo.
divdeo. divweo. divdeuo.
divweuo.

FXU same as above for
GPR,

+6 cycles for CR

same as
above

 no These operations might
architecturally change the
summary overflow bit. The
first attempted execution
of these instructions
assumes that the SO-bit
does not change. If it does,
the instruction causes a
flush and then is re-exe-
cuted.

cmpi cmp cmpli cmpl FXU 5 cycles (CR) 2/cycle no

tdi twi td tw (XBI field refers to
renamed bits in XER)

FXU N/A 2/cycle no

andi. andis. ori oris xori xoris
and and. or or. xor xor. nand
nand. nor nor. eqv eqv. andc
andc. orc orc.

FXU/LSU 1 - 2 cycles (GPR)
6 cycles (CR)

6/cycle
2/cycle (with
XER or CR
destination)

no

ori 0,0,0 (preferred NOP) none 0 cycles 6/cycle no A special form of this
instruction is completed at
the same time that it is dis-
patched.

extsb extsb. extsh extsh.
extsw extsw.

FXU 1 - 2 cycles (GPR)
4 - 5 cycles (CR)

2/cycle 1 when
rc = 1

no

cntlzd cntlzd. cntlzw cntlzw. FXU 3 cycles (GPR)
6 - 7 cycles (CR)

2/cycle 1 when
rc = 1

no

rldicl rldicl. rldicr rldicr. rldic
rldic. rlwinm rlwinm. rldcl
rldcl. rldcr rldcr. rlwnm
rlwnm. rldimi rldimi.

FXU 1 - 2 cycles (GPR)
5 - 6 cycles (CR)

2/cycle
1/cycle when

rc = 1

1 when
rc = 1

no

rlwimi FXU 1 cycle (GPR) 2/cycle no

Table 10-16. Instruction Latencies and Throughputs (Sheet 6 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 242 of 450
Version 1.3

16 March 2016

rlwimi. FXU 1 - 2 cycles (GPR)
5 - 6 cycles (CR)

1/cycle no

sld sld. slw slw. srd srd. srw
srw. sradi srawi srad sraw

FXU 1 - 2 cycles (GPR)
5 - 6 cycles (CR)

1/cycle 1 when
rc = 1

no

sradi. srawi. srad. sraw. FXU 1 - 2 cycles (GPR)
5 - 6 cycles (CR)

1/cycle no

mtspr(xer) FXU (one) N/A N/A wait for non-
ren ame

scoreboard
bit to clear

Can only be done by one
of the FXU pipelines.

mtspr(lr) mtspr(ctr) FXU (one) 5 cycles 1/cycle no Can only be done by one
of the FXU pipelines.

mtspr(others) mtmsr mtmsrd Either FXU
or LSU

(depends
on SPR)

varies based on
SPR

varies based
on SPR

wait for non-
rename

scoreboard
bit to clear

Can only be done by one
of the FXU pipelines.

mfspr(xer) FXU (one) 8 cycles N/A wait for non-
rename

scoreboard
and bit to

clear

The FXU pipeline is
blocked while waiting for
SPR value.

mfspr(lr) mfspr(ctr) CRLogic 5 cycles 1/cycle no The FXU pipeline is
blocked for one cycle.

mfspr(others) mfmsr FXU (one)
LSU (one),
or CR logic

varies based on
SPR

varies based
on SPR

wait for non-
ren ame

scoreboard
bit to clear

For FXU, IFU, and perva-
sive-owned SPRs, the
FXU pipeline is blocked
while waiting for the SPR
value.

mtcrf (one field) mtocrf FXU (one) N/A 1/cycle no

mtcrf (more than one field) FXU (one) N/A N/A no

mfcr CRlogic N/A N/A no

mfcrf CR logic 3 cycles 1/cycle no

Table 10-16. Instruction Latencies and Throughputs (Sheet 7 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 243 of 450

mftb FXU (one) ~10 cycles approxi-
mately one

per 10 cycles

wait for non-
rename

scoreboard
bit to clear

Use of the FXU pipeline is
blocked while waiting
forthe SPR value.

lfs lfsx lfd lfdx
lxsdx lxvd2x lxvw4x lxvdsx

LU 5 cycles 2/cycle 1 no Instructions are executed
in the LU unit. The FPU
just arranges renames.

lfsu lfsux lfdu lfdux LU, FXU 5 cycles (FPR)
1 - 2 cycles (GPR)

2/cycle 1 no Cracked into normal load
and an FXU add.

lvebx lvehx lvewx lvx lvxl LU 5 cycles 2/cycle 1 no

stfs stfsx stfd stfdx LSU, FPU N/A 2/cycle 1 no Instructions are dispatched
to both the FPU and the
LSU units.

stfsu stfsux stfdu stfdux LSU, FPU,
FXU

3 cycles for GPR 2/cycle 1 no LSU.

stfiwx LSU, FPU N/A 2/cycle 1 no

stxsdx stxvd2x stxvw4x LSU, FPU N/A 2/cycle 1 no Instructions are dispatched
to both the FPU and the
LSU units.

stvebx stvehx stvewx stvx
stvxl

LSU, FPU,
FXU

1 - 2 cycles for GPR 2/cycle 1 no Cracked into a normal
store and a FXU add.
Normal store instructions
are dispatched to both the
FPU and the LSU units.

sync LSU N/A N/A wait until it is
next to com-
plete and for
all prior load
data to come

home

Forces previous stores to
finish into the cache/mem-
ory hierarchy (out of the
STQs).

ptesync LSU N/A N/A wait until it is
next to com-
plete and for
all prior load
data to come

home

Forces previous stores to
finish into the cache/mem-
ory hierarchy (out of the
STQs).

Table 10-16. Instruction Latencies and Throughputs (Sheet 8 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 244 of 450
Version 1.3

16 March 2016

lwsync LSU N/A N/A wait until it is
next to com-
plete and for
all prior load
data to come

home

Forces previous stores to
finish into the cache/mem-
ory hierarchy (out of the
STQs). Still broadcasts
sync transaction onto the
SMP interconnect (but
does not block).

eieio LSU N/A N/A wait until it is
next to com-
plete and for
all prior load
data to come

home

isync LSU N/A N/A wait until it is
next to com-
plete and for
all prior load
data to come

home

Causes a flush and
instruction refetch only if it
is preceded by instructions
that change the content of
the machine or icbi or pte-
sync.

icbi LSU N/A N/A After the LSU translates
the EA, the icbi drains out
of the store reorder queue
and is finished (that is, no
request is sent to the L2
cache because the L2
cache keeps the I-cache
coherent).

dcbt dbtst LSU N/A 1/cycle The lead time between a
dcbt and a subsequent
load is equal to the load-
to-use-latency of the level
of cache hierarchy the line
will be coming from.

dcbz LSU N/A 1/cycle Invalidates L1 cache line
on its way to the L2 cache.
Allocation and zero func-
tion occur at the L2 cache
(handled by the L2 cache
and treated as any other
store).

dcbst LSU N/A 1/cycle

dcbf LSU N/A 1/cycle

Table 10-16. Instruction Latencies and Throughputs (Sheet 9 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 245 of 450

slbie LSU N/A Causes index-based inval-
idate in both the I-ERAT
and the D-ERAT.

slbia LSU N/A Fully invalidates the SLB,
the I-ERAT, and D-ERAT.

tlbie LSU N/A Causes index-based inval-
idate in both the I-ERAT
and the D-ERAT. Is broad-
cast onto the SMP inter-
connect.

tlbiel LSU N/A Causes index-based inval-
idate in both the I-ERAT
and the D-ERAT. Is not
broadcast onto the SMP
interconnect.

tlbsync LSU N/A

slbmte LSU N/A wait for non-
rename

scoreboard
bit to clear

Causes selective invali-
dates out of the I-ERAT
and D-ERAT.

slbmfev slbmfee LSU N/A wait for non-
rename

scoreboard
bit to clear

mtsr mtsrin LSU wait for non-
rename

scoreboard
bit to clear

Causes selective invali-
dates out of the I-ERAT
and D-ERAT.

mfsr mfsrin LSU 3 cycles 1/cycle No

mffs mffs. mcrfs FPU 1/cycle No Alone in a dispatch group,
completion serialized.

mtfsfi. mtfsf. mtfsb0. mtfsb1. FPU 3 cycles to depen-
dent FP operation

1/cycle No Alone in a dispatch group,
completion serialized.

mtfsfi mtfsf mtfsb0 mtfsb1 FPU 3 cycles to depen-
dent FP

operation

1/cycle No Alone in a dispatch group.

Table 10-16. Instruction Latencies and Throughputs (Sheet 10 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 246 of 450
Version 1.3

16 March 2016

fabs fadd fadds fcfid fcfids
fcfidu fcfidus fcpsgn fctid
fctidu fctiduz fctidz fctiw
fctiwu fctiwuz fctiwz fmadd
fmadds fmr fmsub fmsubs
fmul fmuls fnabs fneg fnmadd
fnmadds fnmsub fnmsubs fre
fres frim frin frip friz frsp
frsqrte frsqrtes fsel fsub
fsubs

FPU 6 cycles 2/cycle No

fabs. fadd. fadds. fcfid. fcfids.
fcfidu. fcfidus. fcpsgn. fctid.
fctidu. fctiduz. fctidz. fctiw.
fctiwu. fctiwuz. fctiwz. fmadd.
fmadds. fmr. fmsub. fmsubs.
fmul. fmuls. fnabs. fneg.
fnmadd. fnmadds. fnmsub.
fnmsubs. fre. fres. frim. frin.
frip. friz. frsp. frsqrte.
frsqrtes. fsel. fsub. fsubs.

FPU 6 cycles (FPR)
9 cycles (CR)

1/cycle No Alone in a dispatch group,
completion serialized.

fdiv FPU 32 cycles 2/26 cycles No Makes use of microcoded
sequence within the float-
ing-point unit. Free FPU
slots can be interleaved
with other FPU instruc-
tions.
See Table 3-4 Latencies of
Floating-Point
Divide/Square-Root
Instructions on page 68 for
additional information.

fdivs FPU 26 cycles 2/20 cycles No

fsqrt FPU 43 cycles 2/37 cycles No

fsqrts FPU 31 cycles 2/25 cycles No

fdiv. fdivs. fsqrt. fsqrts. FPU same as non-dot
forms, +1 cycles for

CR

1/2 of non-dot
above

No Alone in a dispatch group,
completion serialized.
See Table 3-4 on page 68
for additional information.

fcmpu fcmpo ftdiv ftsqrt Vector
simple

integer unit
(XS)

4 - 9 cycles (to CR) 2/cycle No

fmrgew fmrgow Vector
permute
unit (PM)

2 cycles 2/cycle No Latency to seven cycles if
WB conflict.

Table 10-16. Instruction Latencies and Throughputs (Sheet 11 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 247 of 450

xsabsdp xsadddp xscpsgndp
xscvdpspn xscvdpsxds
xscvdpsxws xscvdpuxds
xscvdpuxws xscvspdp
xscvspdpn xscvsxddp xsc-
vuxddp xsmaddadp xsmad-
dmdp xsmsubadp
xsmsubmdp xsmuldp xsnab-
sdp xsnegdp xsnmaddadp
xsnmaddmdp xsnmsubadp
xsnmsubmdp xsrdpi xsrdpic
xsrdpim xsrdpip xsrdpiz
xsredp xsrsqrtedp xssubdp

FPU 6 cycles to FPU
(+1 cycle to other

VSU ops)

2/cycle No

xsaddsp xscvdpsp
xscvsxdsp xscvuxdsp
xsmaddasp xsmaddmsp xsm-
subasp xsmsubmsp xsmulsp
xsnmaddasp xsnmaddmsp
xsnmsubasp xsnmsubmsp
xsresp xsrsp xsrsqrtesp
xssubsp

FPU 6 cycles to FPU
(+1 cycle to other

VSU ops)

2/cycle No

xvabsdp xvadddp xvcpsgndp
xvcvdpsp xvcvdpsxds
xvcvdpsxws xvcvdpuxds
xvcvdpuxws xvcvspdp
xvcvspsxds xvcvspuxds
xvcvsxddp xvcvsxdsp
xvcvsxwdp xvcvuxddp xvc-
vuxdsp xvcvuxwdp xvmadd-
adp xvmaddmdp xvmsubadp
xvmsubmdp xvmuldp xvnab-
sdp xvnegdp xvnmaddadp
xvnmaddmdp xvnmsubadp
xvnmsubmdp xvrdpi xvrdpic
xvrdpim xvrdpip xvrdpiz
xvredp xvrsqrtedp xvsubdp

FPU 6 cycles to FPU
(+1 cycle to other

VSU ops)

2/cycle No

xvabssp xvaddsp xvcpsgnsp
xvcvspsxws xvcvspuxws
xvcvsxwsp xvcvuxwsp
xvmaddasp xvmaddmsp xvm-
subasp xvmsubmsp xvmulsp
xvnabssp xvnegsp xvnmadd-
asp xvnmaddmsp xvnmsub-
asp xvnmsubmsp xvresp
xvrspi xvrspic xvrspim xvr-
spip xvrspiz xvrsqrtesp
xvsubsp

FPU 6 cycles to FPU
(+1 cycle to other

VSU ops)

2/cycle No

Table 10-16. Instruction Latencies and Throughputs (Sheet 12 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 248 of 450
Version 1.3

16 March 2016

xsdivdp xvdivdp FPU 32 cycles 2/26 cycles No Makes use of microcoded
sequence within the float-
ing-point unit. Free FPU
slots can be interleaved
with other FPU instruc-
tions.

xvdivsp FPU 28 cycles 2/22 cycles No

xssqrtdp xvsqrtdp FPU 43 cycles 2/37 cycles No

xvsqrtsp FPU 32 cycles 2/26 cycles No

vaddfp vcfpsxws vcfpuxws
vcsxwfp vcuxwfp vexptefp
vlogefp vmaddfp vnmsubfp
vrefp vrfim vrfin vrfip vrfiz
vrsqrtefp vsubfp

FPU 6 cycles to FPU
(+1 cycle to other

VSU ops)

2/cycle

xsmaxdp xsmindp xvc-
mpeqdp xvcmpeqsp xvc-
mpgedp xvcmpgesp
xvcmpgtdp xvcmpgtsp
xvmaxdp xvmaxsp xvmindp
xvminsp

vector sim-
ple integer
unit (XS)

2 cycles to all VSU
ops

2/cycle See note 3.

xscmpodp xscmpudp xstdi-
vdp xstsqrtdp xvtdivdp xvtdi-
vsp xvtsqrtdp xvtsqrtsp

vector sim-
ple integer
unit (XS)

4..9 cycles (to CR) 2/cycle

vcmpbfp. vcmpeqfp.
vcmpequb. vcmpequh.
vcmpequw. vcmpequd.
vcmpgefp. vcmpgtfp.
vcmpgtsb. vcmpgtsh.
vcmpgtsw. vcmpgtsd. vcmpg-
tub. vcmpgtuh. vcmpgtuw.
vcmpgtud. xvcmpeqdp. xvc-
mpeqsp. xvcmpgedp. xvc-
mpgesp. xvcmpgtdp.
xvcmpgtsp.

vector sim-
ple integer
unit (XS)

2 cycles to all VSU
ops, 4..9 cycles to

CR

2/cycle See note 3.

mtvscr vector sim-
ple integer
unit (XS)

1/cycle Completion serialized.

Table 10-16. Instruction Latencies and Throughputs (Sheet 13 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 249 of 450

mfvscr vaddcuw vaddsbs
vaddshs vaddsws vaddubm
vaddubs vadduhm vadduhs
vadduwm vadduws vaddudm
vand vandc vavgsb vavgsh
vavgsw vavgub vavguh
vavguw vclzb vclzd vclzh
vclzw vcmpbfp vcmpeqfp
vcmpequb vcmpequh
vcmpequw vcmpequd
vcmpgefp vcmpgtfp
vcmpgtsb vcmpgtsh
vcmpgtsw vcmpgtsd vcmpg-
tub vcmpgtuh vcmpgtuw
vcmpgtud veqv vmaxfp
vmaxsb vmaxsh vmaxsw
vmaxsd vmaxub vmaxuh
vmaxuw vmaxud vminfp
vminsb vminsh vminsw
vminsd vminub vminuh
vminuw vminud vnand vnor
vor vorc vpopcntb vpopcnth
vpopcntw vrlb vrld vrlh vrlw
vshasigmad vshasigmaw vslb
vsld vslh vslw vsrab vsrad
vsrah vsraw vsrb vsrd vsrh
vsrw vsubcuw vsubsbs vsub-
shs vsubsws vsububm vsub-
ubs vsubuhm vsubuhs
vsubuwm vsubuws vsubudm
vxor

vector sim-
ple integer
unit (XS)

2 cycles to all VSU
ops

2/cycle See note 3.

xxland xxlandc xxleqv xxl-
nand xxlnor xxlor xxlorc
xxlxor

vector sim-
ple integer
unit (XS)

2 cycles to all VSU
ops

2/cycle See note 3.

vpopcntd vadduqm vaddcuq
vaddeuqm vaddecuq vsub-
uqm vsubcuq vsubeuqm
vsubecuq

vector sim-
ple integer
unit (XS)

4 cycles to all VSU
ops

2/2 cycles Cracked into two depen-
dent XS instructions.

Table 10-16. Instruction Latencies and Throughputs (Sheet 14 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 250 of 450
Version 1.3

16 March 2016

vbpermq vgbbd vmrgew
vmrghb vmrghh vmrghw
vmrglb vmrglh vmrglw
vmrgow vperm vpermxor
vpkpx vpksdss vpksdus
vpkshss vpkshus vpkswss
vpkswus vpkudum vpkudus
vpkuhum vpkuhus vpkuwum
vpkuwus vsel vsl vsldoi vslo
vspltb vsplth vspltisb vspltish
vspltisw vspltw vsr vsro
vupkhpx vupkhsb vupkhsh
vupkhsw vupklpx vupklsb
vupklsh vupklsw

Permute
unit (PM)

2 cycles to all VSU
ops

2/cycle See note 3.

xxmrghw xxmrglw xxpermdi
xxsel xxsldwi xxspltw

Permute
unit (PM)

2 cycles to all VSU
ops

2/cycle No See note 3.

vmhaddshs vmhraddshs
vmladduhm vmsummbm
vmsumshm vmsumshs
vmsumubm vmsumuhm
vmsumuhs vmulesb vmulesh
vmulesw vmuleub vmuleuh
vmuleuw vmulosb vmulosh
vmulosw vmuloub vmulouh
vmulouw vmuluwm
vsum2sws vsum4sbs
vsum4shs vsum4ubs vsum-
sws

VX (Vector
complex)

7 cycles to all VSU
ops

2/cycle

vcipher vcipherlast vncipher
vncipherlast vpmsumb
vpmsumd vpmsumh
vpmsumw vsbox

CY (Vec-
tor Crypto)

6 cycles, +1 to FPU
and Complex

1/cycle Crypto pipeline shared
between both VSU pipes.

mfvsrd mfvsrwz 4 or 5 cycles 1/cycle Four if on same pipe.
Five to all.

mtvsrd mtvsrwa mtvsrwz 5

bcdadd. bcdsub.
dadd dadd. dsub dsub.
dcmpo dcmpu dtstdc dtstdg
dtstex dtstsf dquai dquai.
dqua dqua. drrnd drrnd.
drintx drintx. drintn drintn.
dctdp dctdp. ddedpd ddedpd.
denbcd denbcd. dxex dxex.
dxexq dxexq. diex diex. dscli
dscli. dscri dscri. dtstdcq
dtstdgq dtstsfq

DFU 13 cycles 1/cycle DFU pipeline shared
between both VSU pipes.

Table 10-16. Instruction Latencies and Throughputs (Sheet 15 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 251 of 450

dcmpoq dcmpuq drrndq
drrndq. diexq diexq. dquaiq
dquaiq. dtstexq ddedpdq
ddedpdq. denbcdq denbcdq.
dscliq dscliq. dscriq dscriq.
dctqpq dctqpq. drintxq
drintxq. drintnq drintnq.

DFU 13 cycles +2 in VSU
= 15 cycle

1/cycle DFU pipeline shared
between both VSU .
Instruction is split in DFU
and permute intruction.

daddq daddq. dsubq dsubq.
dquaq dquaq.

DFU 2 in VSU +13 cycles
+2 in VSU
= 17 cyle

2/3 cycle DFU pipeline shared
between both VSU pipes.
Instruction is split in DFU
and two permute intruc-
tions.

drsp drsp. ddedpd ddedpd.
dctfix dctfix.

DFU 25 cycles 1/ 12 cycle DFU pipeline shared
between both VSU pipes.

 dcffix dcffix. DFU 32 cycles 1/ 19 cycle DFU pipeline shared
between both VSU pipes.

dcffixq dcffixq. DFU 32 cycles +2 in VSU

= 34 cycles

1/ 19 cycle DFU pipeline shared
between both VSU pipes.
Instruction is split in DFU
and permute intruction.

dmul dmul. DFU 24+N cycles
at least 28

=(28 to 40) cycles

 1/ 28 to 40
cycle

DFU pipeline shared
between both VSU pipes.
Every BCD digit of the
shorter operand (N)
extends the execution time
by one cycle.

Table 10-16. Instruction Latencies and Throughputs (Sheet 16 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 252 of 450
Version 1.3

16 March 2016

dmulq dmulq. DFU 20+2N cycles
at least 28

+4in VSU

=(32 to 90) cycles

1/ 28 to 86
cycle

DFU pipeline shared
between both VSU pipes.
Instruction is split in DFU
and two permute intruc-
tions.
Every BCD digit of the
shorter operand (N)
extends the execution time
by two cycles.

ddiv ddiv. DFU 32 +4Q cycles

=(32 to 96) cycles

1/32 to 96
cycle

DFU pipeline shared
between both VSU pipes.
Every BCD digit of the
quotient (Q) extends the
execution time by four
cycles.

ddivq ddivq. DFU 32 +4Q cycles

+4 in VSU

=(36 to 172) cycles

1/32 to 168
cycle

DFU pipeline shared
between both VSU pipes.
Instruction is split in DFU
and two permute intruc-
tions. Every BCD digit of
the quotient (Q) extends
the execution time by four
cycles.

Table 10-16. Instruction Latencies and Throughputs (Sheet 17 of 17)

Instruction Pipeline Latency Throughput
(IPC)

Notes
decode /
dispatch

Other
Interlocks Other Comments

1. Store_agen IOPs are issued to the LSU, and store_data IOPs are issued to the LU. Fixed-point loads that do not have an XER
destination can be issued to either the LU or the LSU. Loads with floating-point destinations can only be issued to the LU, and
loads with XER sources can only be issued to the LSU.

2. Branches can issue two cycles after a producing a cmp instruction if they were in the same dispatch group, or the cmp is the
youngest instruction writing a CR relative to the cmp. Otherwise, the issue-to-issue latency to a branch is three cycles.

3. Normally, permutes and simple operations have a latency of two cycles. However, if a 2-cycle operation is issued five cycles after a
7-cycle operation on the same VSU pipe, the 2-cycle operation is dynamically converted into a 7-cycle operation to prevent a resul-
tant bus collision (to make use of the issue slot).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 253 of 450

10.4 PCI Express Performance

10.4.1 Bandwidth

On the POWER8 processor chip, the PCIe host bridge is integrated into the chip and provides 32 lanes of
PCI Express 3.0 ports.

10.4.2 Latency

Time to first byte latency calculations are approximately 220 ns when doing a DMA read without TCEs.

10.4.3 Cluster Latency 2K Message

Sending a 2K message from one cluster to another cluster using an IB adapter is 2611 ns.

10.4.4 I/O Bandwidth

Two PCIe ×16 buses on the POWER8 chip support 28 GB/s.

10.4.5 PCIe Performance Goals

OnePCIe ×16 bus is able to achieve 87.5% efficiency thus obtaining 14 GB/s bandwidth bi-directional (14.0
GB/s DMA writes and 14.0 GB/s DMA reads).

• PCIe payload of 512 bytes on memory writes
• PCIe payload of 256 bytes on read completions
• Assume no TCE miss
• Assume no RTC cache miss
• Assume no MSI
• Assume 64K packet operation

translation control entries

infiniband

Message signalled interrupt

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 254 of 450
Version 1.3

16 March 2016

10.5 Performance Specific Instructions

10.5.1 Store Multiple and Store String

Store multiple and store string are processed much like load multiple and load string. Each of these instruc-
tions is microcoded with one store operation generated for each register. In a store string, only some bytes of
the last register can be stored. This is also handled with a single operation of 1 - 7 bytes. For store string
immediate, the first microcode group contains only NOPs. Each of the store operations results in an st-agen
issue and an st-data issue. Each operation uses one SRQ entry. The store operations can execute in any
order, although they are written from low to high address as maintained by the order of SRQ entries. When a
group consists of four store operations, two are queued for each LSU pipe. In this way, two store operations
can execute in each cycle. Many store multiple or store string instructions can require multiple groups of
internal operations. Each group completes in order, without waiting for later groups to finish. Consequently, if
the instruction is flushed, all groups including those that have completed, are redone. This means that these
stores could be seen more than once by the Nest.

Store string indexed instructions are processed like load string indexed. The first microcode group contains
an XER read and an address add. The next several microcode groups are entirely nops to fill the decode
pipeline. At this point, the length is known and the correct number of stores is generated with up to six stores
per group.

Unaligned string instructions occur when an individual store crosses a 4 KB page boundary. This causes the
entire instruction to be flushed to be decoded again to avoid the boundary crossing. Each original store now is
placed in its own group, consisting of a left shift, two stores, and a NOP. The two stores each store from 1 - 7
bytes of data left aligned in the register. The first microcode group consists of nops. For store string indexed,
the first group contains an address add. There is no need to wait for XER in the unaligned case.

10.5.1.1 Store Quadword

Store quadword (stq) is a 2-way split on the POWER8 processor core because only a single st-agen and two
st_data operations are used: store upper, store lower, nop, nop. The first store operates as a normal store;
st-gen goes through an LSU pipe, and the st_data goes through an LU pipe. The Tag bit in XER is read by
the st-agen operation of the store upper. The second store is a st_data only, and it goes through an LU pipe.
A single SRQ entry is used to hold the store quadword. After the store quadword is completed, it goes out as
a single store to the L1 cache (and updates it if necessary) and to the L2 cache.

In the POWER8 core, MSR[LE] = 0 mode stq data is allowed to store-forward to a load other than a larx, lve,
lq and lqarx. The lq or lqarx’s first doubleword always gets its data and tag bit from the cache.

An stq, however, does not store forward to any load, if any thread is running in MSR[LE] = 1 mode.

10.5.1.2 eieio

The eieio instruction is in a single instruction group. eieio is held at dispatch until the LMQ is drained and
there are no LSU instructions in the issue queues. Cache-inhibited loads are rejected when an older
PTESync is in the SRQ. The eieio is sent to the nest like a normal store.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 255 of 450

10.6 Other Topics

10.6.1 Hot/Cold Page Affinity Support

The POWER8 SMP interconnect Hot/Cold/Helper (HCA) is part of a hardware support system to enable effi-
cient isolation of activity characteristics of memory pages. By monitoring hardware access to memory, it can
gather information about the following:

• Activity rate: Enable power efficient memory management.

• Affinity information: Collect sharing pattern, enable operating-system-based page migrations.

• Long term access history: Maintain history.

Figure 10-1. Basic Building Blocks

LSU HWPTE

Timestamp Refence Logic

Via NCU

OCC

Processor Bus Hot/Cold/Affinity Helper

Activity Counters

Main Memory

Decay request sent on SCOM

Reference update sent on the processor bus
(only snooped by processor bus HCA)

Coherent processor bus

Direct counter updates
operations

LSU HWPTE sends a request on the processor bus to control the HCA. These requests are:

Reference update request. This command is only snooped by a specific HCA that has a matching value
in the Base Address Register (BAR). There is a 32-byte payload; however, only the timestamp part is
needed. The HCA then issues a reference update to the memory controller. The hpc_ref_updt operates
on a single 4-byte data field in a 128-byte cache line, aligned on an 4-byte address boundary.

OCC Send Decay Request via SCOM

The decay request contains an address, range and a delay. The HCA then issues decay updates on the
processor bus passing the address. The range indicates how many decay update commands to send.
This works on a cache line in the counter area in the memory controller.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 256 of 450
Version 1.3

16 March 2016

Activity Counters in Memory

The memory controller receives the new processor bus commands (activity update, reference update,
and decay update) and updates the counters in memory.

Processor Bus Hot/Cold/Affinity Helper

Contains logic to snoop each memory reference in the processor bus. BAR registers are used to identify
the memory location and range that belongs to this chip. The HCA contains a cache of the counter for
each 4 KB memory page. It increments these counters as it detects a memory reference. HCA only works
on 4 KB pages. Only the memory processor bus is snooped. HCA does not look at the combined
response. The cache of these counters is not the full counter, but only 12 bits. As these counters fill, an
activity update command on the processor bus is sent to the main memory to update the actual counter.
The counter cache does not contain all possible 4 KB counters for this chip. As new references are
detected, a random LRU algorithm is used to determine which line to cast out to memory to make space
for this new counter. HCA will castout assuming memory is a 4 KB page size. Even if memory is at a dif-
ferent page size, the counters are mapped at a 4 KB granularity.

The following ttypes are snooped by the HCA:

• All read groups
• rwitm
• dclaim, dcbz
• cl_dma_wr
• bsr_cp
• cp_m, cp_t, cp_tn, htm_cl_w
• cp_ig_me
• cl_w_cln
• dma_pr_w
• dcbf, dcbfl
• bkill
• armw
• armwf
• ci_pr_rd
• dma_pr_rd
• ci_pr_w
• ci_pr_ooo_w
• cl_cln
• bsr_get

The following commands are issued by the HCA:

• Activity update: operands (counter address, count value, source chip)
• Reference update: operands (counter address, PTE time)
• Decay update: operands (counter region)
• rd_go_s: to obtain HPC on chip scope.

To reduce the bandwidth requirements for these updates, there is a mode to only send the 16th or 32nd
hca.update. In such a case, the count is multiplied by 32 or 16 accordingly. However, this leads to inaccuracy
in the count because not all hca.updates have the same count.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 257 of 450

Figure 10-2 shows the HCA cache.

Figure 10-2. HCA Cache

Local BAR TAG Index 4 KB page

TAG Indx

Compare

+

V TAG Counter Src Chip

8-byte with ECC

14 23 24 42 43 51 52 63

Local BAR TAG Index 64 KB page

14 23 24 38 39 47 48 63

Processor Bus Hot/Cold/Affinity Cache

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 258 of 450
Version 1.3

16 March 2016

10.6.2 Instruction That Can Soft Patch

Table 10-17 contains the explicit list of instructions that trigger a normalization interrupt (soft patch) if any of
the operands contains scalar single-precision denormal data, as described in Section 3.2.8 Handling of
Denormal Single-Precision Values in Double-Precision Format on page 71.

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm (Sheet 1 of 11)

Mnemonic Operands Description

fcfid FRT,FRB Floating Convert From Integer Doubleword

fcfid. FRT,FRB Floating Convert From Integer Doubleword and Record

fcfids FRT,FRB Floating Convert From Integer Doubleword Single

fcfids. FRT,FRB Floating Convert From Integer Doubleword Single and Record

fcfidu FRT,FRB Floating Convert From Integer Doubleword Unsigned

fcfidu. FRT,FRB Floating Convert From Integer Doubleword Unsigned and Record

fcfidus FRT,FRB Floating Convert From Integer Doubleword Unsigned Single

fcfidus. FRT,FRB Floating Convert From Integer Doubleword Unsigned Single and Record

fcmpo BF,FRA,FRB Floating Compare Ordered

fcmpu BF,FRA,FRB Floating Compare Unordered

fmrgew FRT,FRA,FRB Floating Merge Even Word

fmrgow FRT,FRA,FRB Floating Merge Odd Word

ftdiv BF,FRA,FRB Floating Test for software Divide

ftsqrt BF,FRB Floating Test for software Square Root

mtfsf FLM,FRB,L,W Move To FPSCR Fields

mtfsf. FLM,FRB,L,W Move To FPSCR Fields and Record

dadd FRT,FRA,FRB DFP Add

dadd. FRT,FRA,FRB DFP Add and Record

daddq FRTp,FRAp,FRBp DFP Add Quad

daddq. FRTp,FRAp,FRBp DFP Add Quad and Record

dcffix FRT,FRB DFP Convert From Fixed

dcffix. FRT,FRB DFP Convert From Fixed and Record

dcffixq FRTp,FRB DFP Convert From Fixed Quad

dcffixq. FRTp,FRB DFP Convert From Fixed Quad and Record

dcmpo BF,FRA,FRB DFP Compare Ordered

dcmpoq BF,FRAp,FRBp DFP Compare Ordered Quad

dcmpu BF,FRA,FRB DFP Compare Unordered

dcmpuq BF,FRAp,FRBp DFP Compare Unordered Quad

dctdp FRT,FRB DFP Convert To 64

dctdp. FRT,FRB DFP Convert To 64 and Record

dctfix FRT,FRB DFP Convert To Fixed

dctfix. FRT,FRB DFP Convert To Fixed and Record

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 259 of 450

dctfixq FRT,FRBp DFP Convert To Fixed Quad

dctfixq. FRT,FRBp DFP Convert To Fixed Quad and Record

dctqpq FRTp,FRB DFP Convert To 128

dctqpq. FRTp,FRB DFP Convert To 128 and Record

ddedpd SP,FRT,FRB DFP Decode DPD To BCD

ddedpd. SP,FRT,FRB DFP Decode DPD To BCD and Record

ddedpdq SP,FRTp,FRBp DFP Decode DPD To BCD Quad

ddedpdq. SP,FRTp,FRBp DFP Decode DPD To BCD Quad and Record

ddiv FRT,FRA,FRB DFP Divide

ddiv. FRT,FRA,FRB DFP Divide and Record

ddivq FRTp,FRAp,FRBp DFP Divide Quad

ddivq. FRTp,FRAp,FRBp DFP Divide Quad and Record

denbcd S,FRT,FRB DFP Encode BCD To DPD

denbcd. S,FRT,FRB DFP Encode BCD To DPD and Record

denbcdq S,FRTp,FRBp DFP Encode BCD To DPD Quad

denbcdq. S,FRTp,FRBp DFP Encode BCD To DPD Quad and Record

diex FRT,FRA,FRB DFP Insert Biased Exponent

diex. FRT,FRA,FRB DFP Insert Biased Exponent and Record

diexq FRTp,FRA,FRBp DFP Insert Biased Exponent Quad

diexq. FRTp,FRA,FRBp DFP Insert Biased Exponent Quad and Record

dmul FRT,FRA,FRB DFP Multiply

dmul. FRT,FRA,FRB DFP Multiply and Record

dmulq FRTp,FRAp,FRBp DFP Multiply Quad

dmulq. FRTp,FRAp,FRBp DFP Multiply Quad and Record

dqua FRT,FRA,FRB,RMC DFP Quantize

dqua. FRT,FRA,FRB,RMC DFP Quantize and Record

dquai TE,FRT,FRB,RMC DFP Quantize Immediate

dquai. TE,FRT,FRB,RMC DFP Quantize Immediate and Record

dquaiq TE,FRTp,FRBp,RMC DFP Quantize Immediate Quad

dquaiq. TE,FRTp,FRBp,RMC DFP Quantize Immediate Quad and Record

dquaq FRTp,FRAp,FRBp,RMC DFP Quantize Quad

dquaq. FRTp,FRAp,FRBp,RMC DFP Quantize Quad and Record

drdpq FRTp,FRBp DFP Round To 64

drdpq. FRTp,FRBp DFP Round To 64 and Record

drintn R,FRT,FRB,RMC DFP Round To FP Integer Without Inexact

drintn. R,FRT,FRB,RMC DFP Round To FP Integer Without Inexact and Record

drintnq FRTp,FRBp,RMC DFP Round To FP Integer Without Inexact Quad

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm (Sheet 2 of 11)

Mnemonic Operands Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 260 of 450
Version 1.3

16 March 2016

drintnq. FRTp,FRBp,RMC DFP Round To FP Integer Without Inexact Quad and Record

drintx R,FRT,FRB,RMC DFP Round To FP Integer With Inexact

drintx. R,FRT,FRB,RMC DFP Round To FP Integer With Inexact and Record

drintxq FRTp,FRBp,RMC DFP Round To FP Integer With Inexact Quad

drintxq. FRTp,FRBp,RMC DFP Round To FP Integer With Inexact Quad and Record

drrnd FRT,FRA,FRB,RMC DFP Reround

drrnd. FRT,FRA,FRB,RMC DFP Reround and Record

drrndq FRTp,FRA,FRBp,RMC DFP Reround Quad

drrndq. FRTp,FRA,FRBp,RMC DFP Reround Quad and Record

drsp FRT,FRB DFP Round To 32

drsp. FRT,FRB DFP Round To 32 and Record

dscli FRT,FRA,SH DFP Shift Coefficient Left Immediate

dscli. FRT,FRA,SH DFP Shift Coefficient Left Immediate and Record

dscliq FRTp,FRAp,SH DFP Shift Coefficient Left Immediate Quad

dscliq. FRTp,FRAp,SH DFP Shift Coefficient Left Immediate Quad and Record

dscri FRT,FRA,SH DFP Shift Coefficient Right Immediate

dscri. FRT,FRA,SH DFP Shift Coefficient Right Immediate and Record

dscriq FRTp,FRAp,SH DFP Shift Coefficient Right Immediate Quad

dscriq. FRTp,FRAp,SH DFP Shift Coefficient Right Immediate Quad and Record

dsub FRT,FRA,FRB DFP Subtract

dsub. FRT,FRA,FRB DFP Subtract and Record

dsubq FRTp,FRAp,FRBp DFP Subtract Quad

dsubq. FRTp,FRAp,FRBp DFP Subtract Quad and Record

dtstdc BF,FRA,DCM DFP Test Data Class

dtstdcq BF,FRAp,DCM DFP Test Data Class Quad

dtstdg BF,FRA,DGM DFP Test Data Group

dtstdgq BF,FRAp,DGM DFP Test Data Group Quad

dtstex BF,FRA,FRB DFP Test Exponent

dtstexq BF,FRAp,FRBp DFP Test Exponent Quad

dtstsf BF,FRA,FRB DFP Test Significance

dtstsfq BF,FRAp,FRBp DFP Test Significance Quad

dxex FRT,FRB DFP Extract Biased Exponent

dxex. FRT,FRB DFP Extract Biased Exponent and Record

dxexq FRT,FRBp DFP Extract Biased Exponent Quad

dxexq. FRT,FRBp DFP Extract Biased Exponent Quad and Record

mfvsrd RA,XS Move From VSR Doubleword

mfvsrwz RA,XS Move From VSR Word and Zero

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm (Sheet 3 of 11)

Mnemonic Operands Description

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 261 of 450

mtvscr VB Move To VSCR

vaddcuw VT,VA,VB Vector Add and Write Carry-Out Unsigned Word

vaddfp VT,VA,VB Vector Add Single-Precision

vaddsbs VT,VA,VB Vector Add Signed Byte Saturate

vaddshs VT,VA,VB Vector Add Signed Halfword Saturate

vaddsws VT,VA,VB Vector Add Signed Word Saturate

vaddubm VT,VA,VB Vector Add Unsigned Byte Modulo

vaddubs VT,VA,VB Vector Add Unsigned Byte Saturate

vadduhm VT,VA,VB Vector Add Unsigned Halfword Modulo

vadduhs VT,VA,VB Vector Add Unsigned Halfword Saturate

vadduwm VT,VA,VB Vector Add Unsigned Word Modulo

vadduws VT,VA,VB Vector Add Unsigned Word Saturate

vaddudm VT,VA,VB Vector Add Unsigned Doubleword Modulo

vand VT,VA,VB Vector Logical AND

vandc VT,VA,VB Vector Logical AND with Complement

vavgsb VT,VA,VB Vector Average Signed Byte

vavgsh VT,VA,VB Vector Average Signed Halfword

vavgsw VT,VA,VB Vector Average Signed Word

vavgub VT,VA,VB Vector Average Unsigned Byte

vavguh VT,VA,VB Vector Average Unsigned Halfword

vavguw VT,VA,VB Vector Average Unsigned Word

vbrd VT,VB Vector Byte Reverse Doubleword (microcode)

vbrdxor VT,VA,VB Vector Byte Reverse Doubleword Xor (microcode)

vbrw VT,VB Vector Byte Reverse Word (microcode)

vbrwxor VT,VA,VB Vector Byte Reverse Word Xor (microcode)

vctsxs VT,VB,UIM Vector Convert Single-Precision to Signed Fixed-Point Word Saturate

vctuxs VT,VB,UIM Vector Convert Single-Precision to Unsigned Fixed-Point Word Saturate

vcipher VT,VA,VB Vector AES Cipher

vcipherlast VT,VA,VB Vector AES Cipher Last

vclzb VT,VB Vector Count Leading Zero Byte

vclzh VT,VB Vector Count Leading Zero Halfword

vclzw VT,VB Vector Count Leading Zero Word

vcmpbfp VT,VA,VB Vector Compare Bounds Single-Precision

vcmpbfp. VT,VA,VB Vector Compare Bounds Single-Precision and Record

vcmpeqfp VT,VA,VB Vector Compare Equal To Single-Precision

vcmpeqfp. VT,VA,VB Vector Compare Equal To Single-Precision and Record

vcmpequb VT,VA,VB Vector Compare Equal To Unsigned Byte

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm (Sheet 4 of 11)

Mnemonic Operands Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 262 of 450
Version 1.3

16 March 2016

vcmpequb. VT,VA,VB Vector Compare Equal To Unsigned Byte and Record

vcmpequh VT,VA,VB Vector Compare Equal To Unsigned Halfword

vcmpequh. VT,VA,VB Vector Compare Equal To Unsigned Halfword and Record

vcmpequw VT,VA,VB Vector Compare Equal To Unsigned Word

vcmpequw. VT,VA,VB Vector Compare Equal To Unsigned Word and Record

vcmpequd VT,VA,VB Vector Compare Equal To Unsigned Doubleword

vcmpequd. VT,VA,VB Vector Compare Equal To Unsigned Doubleword and Record

vcmpgefp VT,VA,VB Vector Compare Greater Than or Equal To Single-Precision

vcmpgefp. VT,VA,VB Vector Compare Greater Than or Equal To Single-Precision and Record

vcmpgtfp VT,VA,VB Vector Compare Greater Than Single-Precision

vcmpgtfp. VT,VA,VB Vector Compare Greater Than Single-Precision and Record

vcmpgtsb VT,VA,VB Vector Compare Greater Than Signed Byte

vcmpgtsb. VT,VA,VB Vector Compare Greater Than Signed Byte and Record

vcmpgtsh VT,VA,VB Vector Compare Greater Than Signed Halfword

vcmpgtsh. VT,VA,VB Vector Compare Greater Than Signed Halfword and Record

vcmpgtsw VT,VA,VB Vector Compare Greater Than Signed Word

vcmpgtsw. VT,VA,VB Vector Compare Greater Than Signed Word and Record

vcmpgtsd VT,VA,VB Vector Compare Greater Than Signed Doubleword

vcmpgtsd. VT,VA,VB Vector Compare Greater Than Signed Doubleword and Record

vcmpgtub VT,VA,VB Vector Compare Greater Than Unsigned Byte

vcmpgtub. VT,VA,VB Vector Compare Greater Than Unsigned Byte and Record

vcmpgtuh VT,VA,VB Vector Compare Greater Than Unsigned Halfword

vcmpgtuh. VT,VA,VB Vector Compare Greater Than Unsigned Halfword and Record

vcmpgtuw VT,VA,VB Vector Compare Greater Than Unsigned Word

vcmpgtuw. VT,VA,VB Vector Compare Greater Than Unsigned Word and Record

vcmpgtud VT,VA,VB Vector Compare Greater Than Unsigned Doubleword

vcmpgtud. VT,VA,VB Vector Compare Greater Than Unsigned Doubleword and Record

vcfsx VT,VB,UIM Vector Convert Signed Fixed-Point Word to Single-Precision

vcfux VT,VB,UIM Vector Convert Unsigned Fixed-Point Word to Single-Precision

vgbbd VT,VB Vector Gather Bits by Bytes by Doubleword

vexptefp VT,VB Vector 2 Raised to the Exponent Estimate Single-Precision

vlogefp VT,VB Vector Log Base 2 Estimate Single-Precision

vmaddfp VT,VA,VC,VB Vector Multiply-Add Single-Precision

vmaxfp VT,VA,VB Vector Maximum Single-Precision

vmaxsb VT,VA,VB Vector Maximum Signed Byte

vmaxsh VT,VA,VB Vector Maximum Signed Halfword

vmaxsw VT,VA,VB Vector Maximum Signed Word

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm (Sheet 5 of 11)

Mnemonic Operands Description

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 263 of 450

vmaxsd VT,VA,VB Vector Maximum Signed Doubleword

vmaxub VT,VA,VB Vector Maximum Unsigned Byte

vmaxuh VT,VA,VB Vector Maximum Unsigned Halfword

vmaxuw VT,VA,VB Vector Maximum Unsigned Word

vmaxud VT,VA,VB Vector Maximum Unsigned Doubleword

vmhaddshs VT,VA,VB,VC Vector Multiply-High-Add Signed Halfword Saturate

vmhraddshs VT,VA,VB,VC Vector Multiply-High-Round-Add Signed Halfword Saturate

vminfp VT,VA,VB Vector Minimum Single-Precision

vminsb VT,VA,VB Vector Minimum Signed Byte

vminsh VT,VA,VB Vector Minimum Signed Halfword

vminsw VT,VA,VB Vector Minimum Signed Word

vminsd VT,VA,VB Vector Minimum Signed Doubleword

vminub VT,VA,VB Vector Minimum Unsigned Byte

vminuh VT,VA,VB Vector Minimum Unsigned Halfword

vminuw VT,VA,VB Vector Minimum Unsigned Word

vminud VT,VA,VB Vector Minimum Unsigned Doubleword

vmladduhm VT,VA,VB,VC Vector Multiply-Low-Add Unsigned Halfword Modulo

vmrgew VT,VA,VB Vector Merge Even Word

vmrghb VT,VA,VB Vector Merge High Byte

vmrghh VT,VA,VB Vector Merge High Halfword

vmrghw VT,VA,VB Vector Merge High Word

vmrglb VT,VA,VB Vector Merge Low Byte

vmrglh VT,VA,VB Vector Merge Low Halfword

vmrglw VT,VA,VB Vector Merge Low Word

vmrgow VT,VA,VB Vector Merge Odd Word

vmsummbm VT,VA,VB,VC Vector Multiply-Sum Mixed Byte Modulo

vmsumshm VT,VA,VB,VC Vector Multiply-Sum Signed Halfword Modulo

vmsumshs VT,VA,VB,VC Vector Multiply-Sum Signed Halfword Saturate

vmsumubm VT,VA,VB,VC Vector Multiply-Sum Unsigned Byte Modulo

vmsumuhm VT,VA,VB,VC Vector Multiply-Sum Unsigned Halfword Modulo

vmsumuhs VT,VA,VB,VC Vector Multiply-Sum Unsigned Halfword Saturate

vmulesb VT,VA,VB Vector Multiply Even Signed Byte

vmulesh VT,VA,VB Vector Multiply Even Signed Halfword

vmuleub VT,VA,VB Vector Multiply Even Unsigned Byte

vmuleuh VT,VA,VB Vector Multiply Even Unsigned Halfword

vmulosb VT,VA,VB Vector Multiply Odd Signed Byte

vmulosh VT,VA,VB Vector Multiply Odd Signed Halfword

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm (Sheet 6 of 11)

Mnemonic Operands Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 264 of 450
Version 1.3

16 March 2016

vmuloub VT,VA,VB Vector Multiply Odd Unsigned Byte

vmulouh VT,VA,VB Vector Multiply Odd Unsigned Halfword

vncipher VT,VA,VB Vector AES Inverse Cipher

vncipherlast VT,VA,VB Vector AES Inverse Cipher Last

vnmsubfp VT,VA,VC,VB Vector Negative Multiply-Subtract Single-Precision

vnor VT,VA,VB Vector Logical NOR

vor VT,VA,VB Vector Logical OR

vperm VT,VA,VB,VC Vector Permute

vpermxor VT,VA,VB,VC Vector Permute Xor

vpkpx VT,VA,VB Vector Pack Pixel

vpksdss VT,VA,VB Vector Pack Signed Doubleword Signed Saturate

vpksdus VT,VA,VB Vector Pack Signed Doubleword Unsigned Saturate

vpkshss VT,VA,VB Vector Pack Signed Halfword Signed Saturate

vpkshus VT,VA,VB Vector Pack Signed Halfword Unsigned Saturate

vpkswss VT,VA,VB Vector Pack Signed Word Signed Saturate

vpkswus VT,VA,VB Vector Pack Signed Word Unsigned Saturate

vpkudum VT,VA,VB Vector Pack Unsigned Doubleword Unsigned Modulo

vpkudus VT,VA,VB Vector Pack Unsigned Doubleword Unsigned Saturate

vpkuhum VT,VA,VB Vector Pack Unsigned Halfword Unsigned Modulo

vpkuhus VT,VA,VB Vector Pack Unsigned Halfword Unsigned Saturate

vpkuwum VT,VA,VB Vector Pack Unsigned Word Unsigned Modulo

vpkuwus VT,VA,VB Vector Pack Unsigned Word Unsigned Saturate

vpmsumb VT,VA,VB Vector Polynomial Multiply-Sum Byte

vpmsumd VT,VA,VB Vector Polynomial Multiply-Sum Doubleword

vpmsumh VT,VA,VB Vector Polynomial Multiply-Sum Halfword

vpmsumw VT,VA,VB Vector Polynomial Multiply-Sum Word

vrefp VT,VB Vector Reciprocal Estimate Single-Precision

vrfim VT,VB Vector Round to Single-Precision Integer toward -Infinity

vrfin VT,VB Vector Round to Single-Precision Integer Nearest

vrfip VT,VB Vector Round to Single-Precision Integer toward +Infinity

vrfiz VT,VB Vector Round to Single-Precision Integer toward Zero

vrlb VT,VA,VB Vector Rotate Left Byte

vrld VT,VA,VB Vector Rotate Left Doubleword

vrlh VT,VA,VB Vector Rotate Left Halfword

vrlw VT,VA,VB Vector Rotate Left Word

vrsqrtefp VT,VB Vector Reciprocal Square Root Estimate Single-Precision

vsbox VT,VA Vector Sbox (AES)

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm (Sheet 7 of 11)

Mnemonic Operands Description

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 265 of 450

vsel VT,VA,VB,VC Vector Select

vshasigmad VT,VA Vector SHA-512 Sigma Doubleword

vshasigmaw VT,VA Vector SHA-256 Sigma Word

vsl VT,VA,VB Vector Shift Left

vslb VT,VA,VB Vector Shift Left Byte

vsld VT,VA,VB Vector Shift Left Doubleword

vsldoi VT,VA,VB,SHB Vector Shift Left Double by Octet Immediate

vslh VT,VA,VB Vector Shift Left Halfword

vslo VT,VA,VB Vector Shift Left by Octet

vslw VT,VA,VB Vector Shift Left Word

vspltb VT,VB,UIM Vector Splat Byte

vsplth VT,VB,UIM Vector Splat Halfword

vspltw VT,VB,UIM Vector Splat Word

vsr VT,VA,VB Vector Shift Right

vsrab VT,VA,VB Vector Shift Right Algebraic Byte

vsrad VT,VA,VB Vector Shift Right Algebraic Doubleword

vsrah VT,VA,VB Vector Shift Right Algebraic Halfword

vsraw VT,VA,VB Vector Shift Right Algebraic Word

vsrb VT,VA,VB Vector Shift Right Byte

vsrd VT,VA,VB Vector Shift Right Doubleword

vsrh VT,VA,VB Vector Shift Right Halfword

vsro VT,VA,VB Vector Shift Right by Octet

vsrw VT,VA,VB Vector Shift Right Word

vsubcuw VT,VA,VB Vector Subtract and Write Carry-Out Unsigned Word

vsubfp VT,VA,VB Vector Subtract Single-Precision

vsubsbs VT,VA,VB Vector Subtract Signed Byte Saturate

vsubshs VT,VA,VB Vector Subtract Signed Halfword Saturate

vsubsws VT,VA,VB Vector Subtract Signed Word Saturate

vsububm VT,VA,VB Vector Subtract Unsigned Byte Modulo

vsububs VT,VA,VB Vector Subtract Unsigned Byte Saturate

vsubuhm VT,VA,VB Vector Subtract Unsigned Halfword Modulo

vsubuhs VT,VA,VB Vector Subtract Unsigned Halfword Saturate

vsubuwm VT,VA,VB Vector Subtract Unsigned Word Modulo

vsubuws VT,VA,VB Vector Subtract Unsigned Word Saturate

vsubudm VT,VA,VB Vector Subtract Unsigned Doubleword Modulo

vsum2sws VT,VA,VB Vector Sum across Half Signed Word Saturate

vsum4sbs VT,VA,VB Vector Sum across Quarter Signed Byte Saturate

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm (Sheet 8 of 11)

Mnemonic Operands Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 266 of 450
Version 1.3

16 March 2016

vsum4shs VT,VA,VB Vector Sum across Quarter Signed Halfword Saturate

vsum4ubs VT,VA,VB Vector Sum across Quarter Unsigned Byte Saturate

vsumsws VT,VA,VB Vector Sum across Signed Word Saturate

vupkhpx VT,VB Vector Unpack High Pixel

vupkhsb VT,VB Vector Unpack High Signed Byte

vupkhsh VT,VB Vector Unpack High Signed Halfword

vupkhsw VT,VB Vector Unpack High Signed Word

vupklpx VT,VB Vector Unpack Low Pixel

vupklsb VT,VB Vector Unpack Low Signed Byte

vupklsh VT,VB Vector Unpack Low Signed Halfword

vupklsw VT,VB Vector Unpack Low Signed Word

vxor VT,RA,RB Vector Logical XOR

xscmpodp BF,XA,XB VSX Scalar Compare Ordered Double-Precision

xscmpudp BF,XA,XB VSX Scalar Compare Unordered Double-Precision

xscvspdp XT,XB VSX Scalar Convert Single-Precision to Double-Precision (p=1)

xscvsxddp XT,XB VSX Scalar Convert Signed Fixed-Point Doubleword to Double-Precision

xscvsxdsp XT,XB VSX Scalar Convert and Round Signed Integer Doubleword to Single-Precision Format

xscvuxddp XT,XB VSX Scalar Convert Unsigned Fixed-Point Doubleword to Double-Precision

xscvuxdsp XT,XB VSX Scalar Convert and Round Unsigned Integer Doubleword to Single-Precision For-
mat

xsmaxdp XT,XA,XB VSX Scalar Maximum Double-Precision

xsmindp XT,XA,XB VSX Scalar Minimum Double-Precision

xstdivdp BF,XA,XB VSX Scalar Test for Software Divide Double-Precision

xstsqrtdp BF,XB VSX Scalar Test for Software Square Root Double-Precision

xvabssp XT,XB VSX Vector Absolute Value Single-Precision

xvaddsp XT,XA,XB VSX Vector Add Single-Precision

xvcmpeqdp XT,XA,XB VSX Vector Compare Equal To Double-Precision

xvcmpeqdp. XT,XA,XB VSX Vector Compare Equal To Double-Precision and Record

xvcmpeqsp XT,XA,XB VSX Vector Compare Equal To Single-Precision

xvcmpeqsp. XT,XA,XB VSX Vector Compare Equal To Single-Precision and Record

xvcmpgedp XT,XA,XB VSX Vector Compare Greater Than or Equal To Double-Precision

xvcmpgedp. XT,XA,XB VSX Vector Compare Greater Than or Equal To Double-Precision and Record

xvcmpgesp XT,XA,XB VSX Vector Compare Greater Than or Equal To Single-Precision

xvcmpgesp. XT,XA,XB VSX Vector Compare Greater Than or Equal To Single-Precision and Record

xvcmpgtdp XT,XA,XB VSX Vector Compare Greater Than Double-Precision

xvcmpgtdp. XT,XA,XB VSX Vector Compare Greater Than Double-Precision and Record

xvcmpgtsp XT,XA,XB VSX Vector Compare Greater Than Single-Precision

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm (Sheet 9 of 11)

Mnemonic Operands Description

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Profile

Page 267 of 450

xvcmpgtsp. XT,XA,XB VSX Vector Compare Greater Than Single-Precision and Record

xvcpsgnsp XT,XA,XB VSX Vector Copy Sign Single-Precision

xvcvspdp XT,XB VSX Vector Convert Single-Precision to Double-Precision (p=1)

xvcvspsxds XT,XB VSX Vector Convert Single-Precision to Signed Fixed-Point Doubleword Saturate

xvcvspsxws XT,XB VSX Vector Convert Single-Precision to Signed Fixed-Point Word Saturate

xvcvspuxds XT,XB VSX Vector Convert Single-Precision to Unsigned Fixed-Point Doubleword Saturate

xvcvspuxws XT,XB VSX Vector Convert Single-Precision to Unsigned Fixed-Point Word Saturate

xvcvsxddp XT,XB VSX Vector Convert Signed Fixed-Point Doubleword to Double-Precision

xvcvsxdsp XT,XB VSX Vector Convert Signed Fixed-Point Doubleword to Single-Precision

xvcvsxwdp XT,XB VSX Vector Convert Signed Fixed-Point Word to Double-Precision

xvcvsxwsp XT,XB VSX Vector Convert Signed Fixed-Point Word to Single-Precision

xvcvuxddp XT,XB VSX Vector Convert Unsigned Fixed-Point Doubleword to Double-Precision

xvcvuxdsp XT,XB VSX Vector Convert Unsigned Fixed-Point Doubleword to Single-Precision

xvcvuxwdp XT,XB VSX Vector Convert Unsigned Fixed-Point Word to Double-Precision

xvcvuxwsp XT,XB VSX Vector Convert Unsigned Fixed-Point Word to Single-Precision

xvdivsp XT,XA,XB VSX Vector Divide Single-Precision

xvmaddasp XT,XA,XB VSX Vector Multiply-Add Type-A Single-Precision

xvmaddmsp XT,XA,XB VSX Vector Multiply-Add Type-M Single-Precision

xvmaxdp XT,XA,XB VSX Vector Maximum Double-Precision

xvmaxsp XT,XA,XB VSX Vector Maximum Single-Precision

xvmindp XT,XA,XB VSX Vector Minimum Double-Precision

xvminsp XT,XA,XB VSX Vector Minimum Single-Precision

xvmsubasp XT,XA,XB VSX Vector Multiply-Subtract Type-A Single-Precision

xvmsubmsp XT,XA,XB VSX Vector Multiply-Subtract Type-M Single-Precision

xvmulsp XT,XA,XB VSX Vector Multiply Single-Precision

xvnabssp XT,XB VSX Vector Negative Absolute Value Single-Precision

xvnegsp XT,XB VSX Vector Negate Single-Precision

xvnmaddasp XT,XA,XB VSX Vector Negative Multiply-Add Type-A Single-Precision

xvnmaddmsp XT,XA,XB VSX Vector Negative Multiply-Add Type-M Single-Precision

xvnmsubasp XT,XA,XB VSX Vector Negative Multiply-Subtract Type-A Single-Precision

xvnmsubmsp XT,XA,XB VSX Vector Negative Multiply-Subtract Type-M Single-Precision

xvresp XT,XB VSX Vector Reciprocal Estimate Single-Precision

xvrspi XT,XB VSX Vector Round to Single-Precision Integer

xvrspic XT,XB VSX Vector Round to Single-Precision Integer using Current rounding mode

xvrspim XT,XB VSX Vector Round to Single-Precision Integer toward -Infinity

xvrspip XT,XB VSX Vector Round to Single-Precision Integer toward +Infinity

xvrspiz XT,XB VSX Vector Round to Single-Precision Integer toward Zero

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm (Sheet 10 of 11)

Mnemonic Operands Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Profile

Page 268 of 450
Version 1.3

16 March 2016

Table 10-18 lists BFP and VSX store instructions that cause a soft patch request if the address is unaligned
and LSU flushes to microcode. For example, a store crosses 4K or the address crosses an 8-byte boundary
for doubleword (or smaller) operations and a 16-byte boundary for quadword operations in DAWR mode
(DWARX0 for the POWER8 core).

Table 10-18. Soft Patch Instruction on Unaligned Stores

Mnemonic Operands Description

stfd FRS,D(RA) Store Float Double

stfdu FRS,D(RA) Store Float Double with Update

stfdux FRS,RA,RB Store Float Double with Update Indexed

stfdx FRS,RA,RB Store Float Double Indexed

stfiwx FRS,RA,RB Store Float as Integer Word Indexed

stxsdx XS,RA,RB Store VSR Scalar Doubleword Indexed

stxsiwx XS,RA,RB Store VSX Scalar Integer Word Indexed

stxvd2x XS,RA,RB Store VSR Vector Doubleword*2 Indexed (only in LE mode)

stxvw4x XS,RA,RB Store VSR Vector Word*4 Indexed (only in LE mode)

xvrsqrtesp XT,XB VSX Vector Reciprocal Square Root Estimate Single-Precision

xvsqrtsp XT,XB VSX Vector Square Root Single-Precision

xvsubsp XT,XA,XB VSX Vector Subtract Single-Precision

xvtdivdp BF,XA,XB VSX Vector Test for software Divide Double-Precision

xvtdivsp BF,XA,XB VSX Vector Test for software Divide Single-Precision

xvtsqrtdp BF,XB VSX Vector Test for software Square Root Double-Precision

xvtsqrtsp BF,XB VSX Vector Test for software Square Root Single-Precision

xxland XT,XA,XB VSX Logical AND

xxlandc XT,XA,XB VSX Logical AND with Complement

xxlnor XT,XA,XB VSX Logical NOR

xxlor XT,XA,XB VSX Logical OR

xxlxor XT,XA,XB VSX Logical XOR

xxmrghw XT,XA,XB VSX Merge High Word

xxmrglw XT,XA,XB VSX Merge Low Word

xxpermdi XT,XA,XB,DM VSX Permute Doubleword Immediate

xxsel XT,XA,XB,XC VSX Select

xxsldwi XT,XA,XB,SHW VSX Shift Left Double by Word Immediate

xxspltd XT,XA VSX Splat Doubleword (microcode)

xxspltw XT,XB,UIM VSX Splat Word

Table 10-17. Instructions that Trigger an Exception on Consumption of a Scalar SP Denorm (Sheet 11 of 11)

Mnemonic Operands Description

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 269 of 523

11. Performance Monitor

The POWER8 processor has built-in features for monitoring and collecting data for performance analysis.
Collectively, the features are referred to as instrumentation. Performance instrumentation is divided into two
broad categories: the performance monitor and the trace facilities.

11.1 Performance Monitor Overview

Each POWER8 core has four core-level hypervisor performance monitor counters (HPMCs), 48 thread-level
performance monitor counters (PMCs), and 16 thread-level supervisor-level performance monitor counters
(SPMCs).

Each HPMC is 64 bits wide. These counters can only be read or written in hypervisor mode.

• HPMC1 and HPMC2 are programmable.

• HPMC3 is a dedicated counter for run instructions. Run instructions are completed PowerPC instructions
gated by the run latch.

• HPMC4 is a dedicated counter for run cycles. It counts cycles when any thread’s run latch is set.

• MMCRH is a hypervisor resource that controls the hypervisor-specific performance monitor features.

Each thread has six PMCs. Each PMC is 32 bits wide. By connecting adjacent PMCs, PMC1 - 4 can be used
as 32 × N (N = 1 - 4) bit counters.

• PMC1 - 4 are programmable.

• PMC5 is a dedicated counter for run instructions. Run instructions are completed PowerPC instructions
gated by the run latch.

• PMC6 is a dedicated counter for run cycles. Run cycles are cycles that are gated by the run latch.

Each thread has two supervisor performance monitor counters (SPMCs). Each SPMC is 32 bits wide.

• SPMC1 and SPMC2 are programmable.

• MMCRS is a supervisor resource that controls the SPMCs.

The performance monitor is configured and controlled through the following registers, buffer, and interrupt:

• Monitor Mode Control Register 0 (MMCR0) is a hardware thread that controls basic operation
(start/stop/freeze) of the performance monitor.

• Monitor Mode Control Register 1 (MMCR1) is a hardware-thread resource that controls what to count.

• Monitor Mode Control Register 2 (MMCR2) is a hardware-thread resource that controls the basic opera-
tion of each PMC individually.

• Monitor Mode Control Register A (MMCRA)is a hardware-thread resource that includes indicator bits for
feedback between the hardware, software, and configuration fields for special features of the perfor-
mance monitor.

• Sampled Instruction Address Register (SIAR) is a 64-bit register.

• Sampled Data Address Register (SDAR) is a 64-bit register.

• Sampled Instruction Event Register (SIER) is a 64-bit register.

• Branch history rolling buffer (BHRB) is a buffer that contains the target addresses of most recent branch
instructions for which the branch was taken.

Monitor Mode Control Register H

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 270 of 523
Version 1.3

16 March 2016

• Performance monitor interrupt (PMI) is caused by monitored conditions and events.

11.2 Performance Monitor Functions

The POWER8 performance monitor includes the following functions:

• Counts instructions completed and cycles gated or not gated (according to the value of MMCR0[55]) by
the run latch in individual (dedicated) 32-bit counters. The counting of these events can be enabled by
software under several conditions such as problem or supervisor state.

• Counts up to four concurrent software selected events in individual 32-bit counters. The counting of these
events can be enabled by software under several conditions such as problem or supervisor state, run, or
wait state.

• Generates a maskable interrupt when an event counter overflows.

• Freezes the contents of the event counters until a selected event or condition occurs and then begins
counting (triggering).

• Increments the event counters until a selected event or condition occurs and then freezes counting.

• Monitors classes of instructions selected by the instruction matching facility.

• Chooses an instruction for detailed monitoring (sampling).

• Counts start/stop event pairs that exceed a selected timeout value (thresholding).

11.2.1 Performance Monitor Event Selection

One event per counter can be selected for monitoring at a given time. The event to be monitored is selected
by setting the appropriate value into the MMCR1 event selection field for that counter. The event counted can
be the number of cycles when the event is active or the number of occurrences of the event depending on the
particular event selected.

11.2.2 Machine States and Enabling the Performance Monitor Counters

The performance monitor counting can be enabled or disabled under several machine states that are
selected using control bit fields in the MMCRs and the state bits in other special purpose registers (SPRs).

11.2.3 Trigger Events and Enabling the Performance Monitor Counters

Certain conditions and events, called trigger events, control performance monitor activities, such as starting
and stopping the counters and causing performance monitor exceptions. These scenarios are selected using
the condition or event enable bit fields and the exception enable bits of the MMCRs in conjunction with the
control bits in other SPRs.

11.2.4 Performance Monitor Exceptions, Alerts, and Interrupts

Trigger events can cause performance monitor exceptions to occur based on the values of the exception
enable bits in the MMCRs. An enabled exception causes the Performance Monitor Alert Occurred (PMAO)
indicator bit to be set in the MMCR0 Register. This bit can only be reset by software. When running in a
thread-level environment, the operating system can be swapped out while a performance monitor exception

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 271 of 523

alert is pending. The hypervisor preserves the value of MMCR0 across the thread swap. When the operating
system is redispatched, the alert is still pending. When enabled for external interrupts, a performance monitor
alert causes a performance monitor interrupt to occur.

11.2.5 Sampling

The POWER8 processor can be configured to sample instructions for detailed monitoring. POWER8 instru-
mentation supports setting mask values for matching particular instructions or types of instructions that are
then eligible to be sampled. The performance monitor includes events for counting sampled instructions at
each stage of the pipeline and in certain other situations. Instruction sampling is a useful facility for gathering
both detailed and statistical information for particular instructions.

11.2.6 Thresholding

The POWER8 processor monitors the pipeline stage progression of sampled instructions and can detect
when the stage-to-stage cycle count for a selected start/stop pair of pipeline stages exceeds a specified
threshold value. The threshold value can also be used to detect sampled loads whose latency exceeds the
threshold value or simply to count the occurrence of any event between the start/stop pair.

11.2.7 Trace Support Facilities

The POWER8 processor supports both the single-step and the branch-trace modes as defined by the Power
ISA.

11.3 Special Purpose Registers and Fields Associated with Instrumentation

The POWER8 processor instrumentation facilities and associated POWER8 components include several
SPRs used for or associated with performance monitoring, instruction matching, instruction sampling, and
tracing. Unless noted otherwise, the special purpose registers described can be read in problem and super-
visor state by using the mfspr instruction and written in supervisor state by using the mtspr instruction. The
MSR register is read by the mfmsr instruction and written by the mtmsr instruction.

The POWER8 processor instrumentation facilities include the following special purpose registers and register
bit fields:

• Performance Monitor Mode Control Registers (MMCRx). These registers include both counting control
and event select bit fields.

• Performance Monitor Counter Registers (PMCx). These registers increment for each time (or cycle,
depending on the selected event) that an event occurs while the counter is enabled. These registers also
have the control function for the counter overflow condition.

• Machine State Register [EE] (MSR[EE]). This register bit is used to enable or disable the external inter-
rupt. The performance monitor interrupt is considered an external interrupt.

• Machine State Register [PMM] (MSR[PMM]). This register bit is used to enable or disable performance
monitor activity controlled by the Process Mark bit.

• Machine State Register [PR] (MSR[PR]). This register bit is used to establish problem/supervisor mode
and the performance monitor counting activity controlled by this bit.

• Machine State Register [SE] (MSR[SE]). This register bit is used to enable or disable a trace interrupt
after each instruction is completed.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 272 of 523
Version 1.3

16 March 2016

• Machine State Register [BE] (MSR[BE]). This register bit is used to enable or disable a trace interrupt
after a branch instruction is completed.

• Control Register [31]. This register bit is used by operating systems to indicate idle/run state. The perfor-
mance monitor can use this bit to avoid counting events during idle periods. This bit is commonly called
the Run Latch.

• Instruction Match CAM Register (IMC). The IMC SPR is used to access the IMC array, which contains tag
bits and mask values used for instruction matching. The mtimc and mfimc instructions can be executed
only in supervisor mode.

• Timebase Register [47, 51, 55, 63]. These register bits are used for time-based events. Most perfor-
mance monitor events are cycle based; that is, they count based on processor cycles. The Timebase
Register is used to maintain time-of-day and can be used by the performance monitor to count time inter-
vals.

• Sample Address Registers (SxAR). The Sampled Instruction Address Register (SIAR) contains the
instruction address relating to a sampled instruction. The Sampled Data Address Register (SDAR) con-
tains the data address relating to a sampled instruction. These registers can only be updated when per-
formance monitor exceptions are enabled. This protects the contents from change until software can read
them. The values written to these registers by the hardware depend on the processing state and on the
kind of instruction that is being sampled.

• Machine Status Save/Restore Register (SRRO, SRR1). These registers are used to save machine status
during interrupts.

11.4 Enhanced Sampling Support

Profiling or sampling is a common approach to associate expensive performance events in a processor to
instruction and data addresses. Profiling enables the identification of hot spots in code and data, perfor-
mance-sensitive areas, and problem instructions, data areas, or both. Profiling is commonly achieved by
identifying a particular instruction and collecting detailed information about that instruction (instruction
sampling).

The Power ISA provides two SPRs to identify sampled instructions. The SIAR captures the effective address
of the sampled instruction. The SDAR captures the effective address of the sampled instruction's data
operand, if any. Each of these registers has a Valid bit in the Sampled Instruction Event Register (SIER). The
SIAR and SDAR are not cleared when a new sampled instruction is selected, but the indicator bits are
cleared. Therefore, the indicator bits are required to show that the addresses housed in the SIAR or SDAR
are not for a previous (executed or cancelled) sampled instruction. The sampled registers can only be
updated by the processor when performance monitor exceptions are enabled. Performance monitor excep-
tions clear the enable bit, which locks the contents of the sampled registers.

The POWER8 processor supports three sampling modes:

• Random Instruction Sampling (RIS). Random instruction sampling selects (or marks) one instruction at a
time and tracks its execution through the processor pipeline from decode to completion. Events that can
be attributed to a sampled instruction are called marked events. By profiling on marked events it is possi-
ble to uniquely identify which instruction caused a particular event.

• Random Event Sampling (RES). Random event sampling selects or marks an instruction after an event
has happened to an instruction. This was specifically added for improved sampling rates for important
performance-sensitive events such as cache misses or branch mispredicts.

content-addressable memory

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 273 of 523

• Continuous Sampling (CS). Continuous sampling that updates the SIAR and SDAR on every instruction’s
completion and data access. Continuous sampling is useful for profiling on execution frequency or cache-
line accesses.

The POWER8 processor has the ability to associate multiple performance events to the same instruction or
data address. This is accomplished by recording up to 64 bits of information pertaining to a marked instruc-
tion during its lifetime in the pipeline. These 64 bits are accessible by using a software-accessible SIER. This
enables collection of multiple events with a single pass.

11.5 POWER8 Performance Monitor Event Selection

For each of the four programmable thread-level counters, one event can be selected for monitoring at a given
time. The event to be monitored is selected among the available event sources by setting the corresponding
MMCR1[PMCxUNIT] and MMCR1[PMCxSEL] bits to the appropriate values. The remaining MMCR bits
control additional details for certain events. The quantities counted indicate the number of cycles that the
event is active or the number of occurrences of the event, depending on the setting of MMCR1[PMCxSEL(7)].

The POWER8 events are listed in Appendix D Performance Monitoring Events on page 387.

11.5.1 Event Bus Events and Event Bus Ramp

Some of the events available on the POWER8 core are routed from the units to the PMU using an event bus.
The event bus carries one pair of events per PMC. The event pair is selected from all available events on the
unit side. On the PMU side, the PMC can be set to count either event in the pair, the sum of both paired
events, or cycles in which both events in the pair are active according to MMCR1[PMCxSEL(6) and
PMCxCOMB].

11.5.2 Direct Events

Direct events are provided as dedicated signals from the units to the PMU. In particular, they are fully inde-
pendent of the event bus and can be monitored at any time. A subset of direct events belong to the compati-
bility section for the thread-level counters and feed the hypervisor counters.

performance monitor unit

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 274 of 523
Version 1.3

16 March 2016

11.6 Performance Monitor Facility

Performance monitor operation is summarized by the following hierarchy, starting at the lowest level:

• A counter negative condition exists when the value in a PMC is negative (that is, when bit 0 of the
PMC = ‘1’). A time-base transition event occurs when a selected bit of the Timebase changes from ‘0’ to
‘1’ (the bit is selected by a field in MMCR0). The term “condition” or “event” is used as an abbreviation for
a counter negative condition or time-base transition event. A condition or event can be caused implicitly
by the hardware (for example, incrementing a PMC) or explicitly by software (mtspr).

• A condition or event is enabled if the corresponding enable bit MMCR0[PMAE] is set. The occurrence of
an enabled condition or event can have effects within the performance monitor, such as causing the
PMCs to cease counting if MMCR0[FCECE] is set.

• An enabled condition or event causes a performance monitor alert if performance monitor alerts are
enabled by MMCR0[PMAE]. A single performance monitor alert can reflect multiple enabled conditions
and events.

• A performance monitor alert causes a performance monitor exception.

• When a performance monitor exception occurs, MMCR0[PMAO] is set to ‘1’ within a reasonable period of
time, but no later than the completion of the next context-synchronizing instruction or event. Even without
software synchronization, the new contents of MMCR0[PMAO] is set to ‘1’ sufficiently soon that the per-
formance monitor facility is useful to software for its intended purposes.

• A performance monitor exception causes one of the following:

– If MSR[EE] = ‘1’ and MMCR0[EBE] = ‘0’, an interrupt occurs.

– If MSR[PR] = ‘1’ and MMCR0[EBE] = ‘1’, a performance monitor event-based exception occurs if
BESCR[PME] = ‘1’.

Note: The performance monitor can be effectively disabled (that is, put into a state in which the performance
monitor SPRs are not altered and performance monitor exceptions do not occur) by setting
MMCR0 = x‘0000_0000_8000_0000’.

11.6.1 Performance Monitor Facility Registers

The performance monitor registers count events, control the operation of the performance monitor, and
provide associated information.

11.6.1.1 Performance Monitor Counters (PMC1 - 6)

The six performance monitor counters, PMC1 - PMC6, are 32-bit registers that count events. PMC1 - PMC4
are referred to as “programmable” counters because the events that can be counted can be specified by soft-
ware. The codes that identify the events that are counted are selected by specifying the appropriate code in
the PMCxSEL event select fields in MMCR1[32:63]. Chaining two or more counters can be accomplished by
setting PMCxSEL to select an event for counting defined as the overflow (msb going to ‘1’) of a chained
counter. The lower bit, PMCxSEL(7), controls counting the occurrences of the event or counting the cycles
the event is active. Some events are documented as multi-bit events, where a multi-bit count (a count of 1 - 8)
can be counted per cycle. When PMCxSEL(7) = ‘1’, the falling edges of the event are counted (a count of one
per cycle whether it is a multi-bit event or not). Some events can include operations that are performed out-of-
order and speculatively.

most-significant bit

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 275 of 523

When MMCR0[37] is set, PMU interrupts are enabled including counter negative and BHRB interrupts. A
counter negative interrupt is generated when the MMCR0[48:49], PMCxCE, condition enable is set and the
associated PMCx most-significant bit transitions from ‘0’ to ‘1’. The source of the interrupt can be determined
by examination of MMCR0[52], MMCR0[54], and the PMC or PMCs with negative conditions. See Table 11-2
on page 276 for a description of the MMCR0 Register

PMC5 and PMC6 are not programmable. PMC5 counts completed instructions and PMC6 counts cycles.
MMCR0[55] controls whether PMC5 and PMC6 are gated by the run latch. MMCR0[PMCC] controls whether
PMC5 and PMC6 are under the control of various other bits in MMCR0 and MMCR2. When PMC5 and PMC6
are not under the control of these bits, PMC5 and PMC6 do not cause performance monitor events (PMC
interrupts). When MMCR0[PMCC] = ‘11’, PMC5 and PMC6 are allocated to supervisor control. In this case,
the freeze conditions in MMCRS apply to PMC5 and PMC6 rather than the freeze conditions in MMCR0 and
MMCR2.

Table 11-1. Performance Monitor Counter Register

Bits Field Name Description

0 CTR_NEG Counter negative bit. When an adjacent PMC uses overflow counting, this becomes count data.

1:31 CTRDATA Counter data.

Note: PMC5 and PMC6 facilitate calculating basic performance metrics such as cycles per instruction (CPI).

11.6.1.2 Monitor Control Register 0 (MMCR0)

Monitor Mode Control Register 0 (MMCR0) is a 64-bit register. This register, along with MMCR1 and
MMCRA, controls the operation of the performance monitor.

Some MMCR0 bits are altered by the hardware when various events occur and some bits are altered by soft-
ware.

The following notation is used:

When MMCR0[PMCC] = ‘11’:

• PMCs refers to PMC1 - 4; PMCj or

• PMCjCE refers to PMCj or PMCjCE, respectively, where j = 2 - 4;

Otherwise:

• PMCs refers to PMC1 - 6 and PMCj or

• PMCjCE refers to PMCj or PMCjCE, respectively, where j = 2 - 6.

When MMCR0[PMCC] = ‘10’ or ‘11’, read/write access is provided to problem-state programs. Only FC,
PMAE, and PMAO can be accessed. When mtspr is executed in problem state, all other bits are unchanged
and any read or write attempt to these bits results in a facility unavailable interrupt.

The MMCR0 Register bits are defined in Table 11-2 on page 276.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 276 of 523
Version 1.3

16 March 2016

Table 11-2. MMCR0 Register (Sheet 1 of 4)

Bits Field Name Description

0:31 Reserved Reserved.

32 FC Freeze counters.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented.
The hardware sets this bit to ‘1’ when an enabled condition or event occurs and
MMCR0[FCECE] = ‘1’.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

33 FCS Freeze counters and BHRB in privileged state (FCS).
0 The PMCs are incremented (if permitted by other MMCR bits) and entries are written into

the BHRB (if permitted by the BHRB Instruction Filtering Mode field in the MMCRA).
1 The PMCs are not incremented and entries are not written into the BHRB if

MSR[HV, PR] = ‘00’.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

34 FCP Conditionally freeze counters and BHRB in problem state (FCP).
If FCPC = ‘0’ (the value of bit 51), this field has the following meaning:
0 The PMCs are incremented (if permitted by other MMCR bits) and entries are written into

the BHRB (if permitted by the BHRB Instruction Filtering Mode field in the MMCRA).
1 The PMCs are not incremented and entries are not written into the BHRB if MSR[PR] = ‘1’.
If FCPC = ‘1’, this field has the following meaning:
0 The PMCs are not incremented and entries are not written into the BHRB if

MSR[HV, PR] = ‘01’.
1 The PMCs are not incremented and the BHRB entries are not written if

MSR[HV, PR] = ‘11’.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

35 FCM1 Freeze counters when MSR[PMM] = ‘1’.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = ‘1’.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

36 FCM0 Freeze counters when MSR[PMM] = ‘0’.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if MSR[PMM] = ‘0’.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

37 PMAE Performance monitor alert enable.
0 Performance monitor alerts are disabled.
1 Performance monitor alerts are enabled until a performance monitor alert occurs, at which

time:
MMCR0[PMAE] is set to ‘0’
MMCR0[PMAO] is set to ‘1’

Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

Note: Software can set this bit and MMCR0[PMAO] to ‘0’ to prevent performance monitor excep-
tions. Software can set this bit to ‘1’ and then poll the bit to determine whether an enabled condition
or event has occurred. This is especially useful for software that runs with MSR[EE] = ‘0’. In previ-
ous versions of the architecture that lacked the concept of performance monitor alerts, this bit was
called Performance Monitor Exception Enable (PMXE).

38 FCECE Freeze counters on enabled condition or event.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are incremented (if permitted by other MMCR bits) until an enabled condition or

event occurs when MMCR0[TRIGGER] = ‘0’, at which time MMCR0[FC] is set to ‘1’. If the
enabled condition or event occurs when MMCR0[TRIGGER] = ‘1’, the FCECE bit is treated
as if it were ‘0’.

Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 277 of 523

39:40 TBSEL Time-base selector. This field selects the Time-Base bit that can cause a time-base transition event
(the event occurs when the selected bit changes from ‘0’ to ‘1’).
00 Time-Base bit 47 is selected.
01 Time-Base bit 51 is selected.
10 Time-Base bit 55 is selected.
11 Time-Base bit 63 is selected.
When the selected time base transitions from ‘0’ to ‘1’, and the time-base event is enabled
(MMCR0[TBEE] = ‘1’), and the performance monitor interrupt is enabled, a performance monitor
interrupt occurs and the performance monitor interrupt is disabled (MMRC0[PMAE] = ‘0’). In multi-
ple processor systems with the time-base registers synchronized among the processors, time-base
transition events can be used to correlate the performance monitor data obtained by several pro-
cessors if software has specified the same TBSEL value for all of the processors in the system.
Even with multi-LPAR support, LPAR0 time-base bits are used so that all threads count events over
the same periods and throw alerts at the same time.

41 TBEE Time-base event enable.
0 Time-base transition events are disabled.
1 Time-base transition events are enabled.

42 BHRBA This field controls whether the BHRB instructions are available in problem state. If an attempt is
made to execute a BHRB instruction in problem state when the BHRB instructions are not available,
a facility unavailable interrupt occurs.
0 Instructions mfbhrb and clrbhrb are not available in problem state.
1 Instructions mfbhrb and clrbhrb are available in problem state.

43 EBE Performance monitor event-based branch enable. This field controls whether performance monitor
event-based branches are enabled.
0 Performance Monitor event-based branches are disabled.
1 Performance Monitor event-based branches are enabled.
Note: Enabling event-based branches gives problem-state programs visibility to and control of
MMCR0[PMAE] and MMCR0[PMAO]. This enables problem-state programs to recognize when per-
formance monitor event-based exceptions have occurred and to re-enable performance monitor
event-based exceptions. To enable a problem-state program to use the event-based branch facility
for performance monitor events, software first initializes the performance monitor registers to values
appropriate to the program, sets MMCR0[PMAE] and MMCR0[PMAO] to ‘0’, sets BESCR to ‘0’, and
sets MMCR0[EBE] to ‘1’. MMCR0[PMCC] must also be set to ‘10’ or ‘11’ to give problem-state pro-
grams write access to the PMCs. If the event-based branch facility has not been enabled in the
FSCR and HFSCR, it must be enabled in these registers as well.

Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

44:45 PMCC PMC control. This field controls the number of counters that are included in the performance moni-
tor and the set of registers that are available to be read and written in problem state. In problem
state, if an attempt to read a register that is unavailable to be read, or an attempt is made to write a
register that is unavailable to be written, a facility unavailable interrupt occurs.
00 PMC1 - 6 are included in the performance monitor, and SPRs 768 - 782 are available to be

read in problem state but not available to be written in problem state.
01 PMC1 - 6 are included in the performance monitor, but SPRs 768 - 782 are not available to

be read or written in problem state.
10 PMC1 - 6 are included in the performance monitor. Selected fields of MMCR0, MMCR2,

MMCRA, and all bits of PMC1 - 6 are available to be read and written in problem state, and
SIER, SDAR, and SIAR are read-only in problem state; all other SPRs in the range of
768 - 782 are not available to be read or written in problem state.

11 PMC1 - 4 are included in the performance monitor. Selected fields of MMCR0, MMCR2,
MMCRA, and all bits of PMC1 - 4 are available to be read and written in problem state, and
SIER, SDAR, SIAR are read-only in problem state; all other SPRs in the range of 768 - 782
are unavailable to be read or written in problem state.

Note: When PMC5 and PMC6 are not part of the performance monitor (that is, when PMCC = ’11’),
they are controlled by bits in MMCRS, rather than MMCR0 and MMCR2. Counter negative condi-
tions in PMC5 and PMC6 do not result in performance monitor alerts or exceptions and do not result
in performance monitor interrupts.

Table 11-2. MMCR0 Register (Sheet 2 of 4)

Bits Field Name Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 278 of 523
Version 1.3

16 March 2016

46 FCTM Freeze counters when transactional memory is in the transactional state (MSR[TS] = ‘10’).
0 PMCs are incremented.
1 PMCs are not incremented when TM is in a transactional state.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

47 FCNTS Freeze counters transactional memory is in a nontransactional state (MSR[TS] = ‘00’).
0 PMCs are incremented (if permitted by other MMCR bits).
1 PMCs are not incremented when TM is in a nontransactional state.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

48 PMC1CE PMC1 condition enable. This bit determines whether the counter negative condition due to a nega-
tive value in PMC1 is enabled.
0 Disable PMC1 counter negative condition.
1 Enable PMC1 counter negative condition.

49 PMCjCE PMCj condition enable. This bit determines whether the counter negative condition due to a nega-
tive value in PMCj (2 ≤ j) is enabled.
0 Disable PMCj (2 ≤ j) counter negative condition.
1 Enable PMCj (2 ≤ j) counter negative condition.
Note: The following notation is used. When MMCR0PMCC = ‘11’, PMCs refers to PMC1 - 4 and
PMCj or PMCjCE refers to PMCj or PMCjCE, respectively, where j = 2 - 4; otherwise, PMCs refers
to PMC1 - 6 and PMCj or PMCjCE refers to PMCj or PMCjCE, respectively, where j = 2 - 6.

Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC2 - 4; otherwise, it controls PMC2 - 6.

50 TRIGGER Trigger enable.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 PMC1 is incremented (if permitted by other MMCR bits). The PMCjs are not incremented

until PMC1 is negative or an enabled condition or event occurs; at which time, the PMCjs
resume incrementing (if permitted by other MMCR bits) and MMCR0[TRIGGER] is set to
‘0’.

See the description of the FCECE bit, regarding the interaction between TRIGGER and FCECE.
Case 1: Resume counting in the PMCjs when PMC1 becomes negative without causing a perfor-
mance monitor interrupt. Then freeze all PMCs (and optionally cause a performance monitor inter-
rupt) when a PMCj becomes negative. The PMCjs then reflect the events that occurred between the
time when PMC1 became negative and the time a PMCj becomes negative. This use requires the
following MMCR0 bit settings.

• TRIGGER = ‘1’
• PMC1CE = ‘0’
• PMCjCE = ‘1’
• TBEE = ‘0’
• FCECE = ‘1’
• PMAE = ‘1 (if a performance monitor interrupt is required)

Case 2: Resume counting in the PMCjs when PMC1 becomes negative and causes a performance
monitor interrupt without freezing any PMCs. The PMCjs then reflect the events that occurred
between the time PMC1 became negative and the time the interrupt handler reads them. This use
requires the following MMCR0 bit settings.

• TRIGGER = ‘1’
• PMC1CE = ‘1’
• TBEE = ‘0’
• FCECE = ‘0’
• PMAE = ‘1’

Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

51 FCPC Freeze counters and BHRB in a problem-state condition. This bit controls the operation of bit 34
(FCP).
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise. it controls PMC1 - 6.

52 PMAOQ 0 PMU interrupt is asynchronous.
1 PMU interrupt is synchronous.

Table 11-2. MMCR0 Register (Sheet 3 of 4)

Bits Field Name Description

Transactional memory

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 279 of 523

53 Reserved Reserved.

54 PMAOQ_TRC Qualifier for BHRB trace mode interrupt.

55 CC56WAIT Freeze counters 5 and 6 in wait state.
When MMCR0[PMCC] = ‘11’, the setting of this bit has no effect; otherwise, it is defined as follows:
0 PMC5 and PMC6 are incremented only when CTRL[RUN] = ‘1’, if permitted by other

MMCR bits. Software is expected to set CTRL[RUN] = ‘0’ when it is in a wait state. For
example, when there is no process ready to run.

1 PMC5 and PMC6 are incremented regardless of the state of CTRL[RUN].

56 PMAO Performance monitor alert has occurred.
0 A performance monitor event has not occurred since the last time software set this bit to

‘0’.
1 A performance monitor event has occurred since the last time software set this bit to ‘0’.
This bit is set to ‘1’ by the processor when a performance monitor event occurs. This bit can be set
to ‘0’ only by the mtspr instruction. When MMCR0[EBE] = ‘1’, setting BESCR[PME0] = ‘0’ or ‘1’ sets
PMA0 to ‘0’ or ‘1’, respectively.
Software can set this bit to ‘1’ to simulate the occurrence of a performance monitor event.
Software should set this bit to ‘0’ after handling the performance monitor event.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

57 FCSS Freeze counters when transactional memory is in a suspended state. MSR[TS] = ‘01’.
0 PMCs are incremented (if permitted by other MMCR bits).
1 PMCs are not incremented when transactional memory is in suspended state.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

58 FC1-4 Freeze counters 1 - 4.
0 PMC1 - PMC4 are incremented (if permitted by other MMCR bits).
1 PMC1 - PMC4 are not incremented.

59 FC5-6 Freeze counters 5 - 6.
0 PMC5 and PMC6 are incremented (if permitted by other MMCR bits).
1 PMC5 and PMC6 are not incremented.

60:61 Reserved Reserved.

62 FCWAIT Freeze counters in wait state.
0 The PMCs are incremented (if permitted by other MMCR bits).
1 The PMCs are not incremented if CTRL[RUN] = 0. Software is expected to set

CTRL[RUN] = 0 when it is in a wait state; that is, when there is no process ready to run.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

Note: PM_CYC counts cycles regardless of the run latch.

63 FCH Freeze counters and BHRB in hypervisor state.
0 The PMCs are incremented (if permitted by other MMCR bits) and BHRB entries are writ-

ten (if permitted by MMCRA bits).
1 The PMCs are not incremented and BHRB entries are not written if MSR[HV, PR] = ‘10’.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6.

Table 11-2. MMCR0 Register (Sheet 4 of 4)

Bits Field Name Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 280 of 523
Version 1.3

16 March 2016

11.6.1.3 Monitor Mode Control Register 1 (MMCR1)

Monitor Mode Control Register 1 (MMCR1) is a 64-bit register.

Events due to randomly sampled instructions only occur if random sampling is enabled (MMCRA[SE] = ‘1’);
all other events occur whenever the event specification is met regardless of the value of MMCR0[SE].

Table 11-3. MMCR1 Register (Sheet 1 of 2)

Bits Field Name Description

0:3 PMC1UNIT 0000 Reserved
0001 Reserved
0010 ISU0
0011 ISU1
0100 IFU0
0101 IFU1
0110 L2 Bus0
0111 L2 Bus1
1000 L3 Bus0
1001 L3 Bus1
1010 VSU0
1011 VSU1
1100 LSU0
1101 LSU1
1110 LSU2
1111 LSU3

4:7 PMC2UNIT PMC2 events unit selector (same encoding as PMC1UNIT).

8:11 PMC3UNIT PMC3 events unit selector (same encoding as PMC1UNIT).

12:15 PMC4UNIT PMC4 events unit selector (same encoding as PMC1UNIT).

16 DC_RLD_QUAL Bit defines data cache reload qualifier.
0 Counts only demand reloads to the L1 data cache.
1 Counts all reloads to the L1 data cache (demand and prefetch).
Applies to all PM_DATA_FROM_* events. See Appendix D Performance Monitoring Events on
page 387.

17 IC_RLD_QUAL Bit defines instruction cache reload qualifier.
0 Counts only demand reloads to the L1 instruction cache.
1 Counts all reloads to the L1 instruction cache (demand and prefetch).
Applies to all PM_INST_FROM_* events. See Appendix D Performance Monitoring Events on
page 387.

18:19 Reserved Reserved.

20:24 FAB_CRESP_MATCH Bits to match a specific combined response from the fabric.

25:27 FAB_TYPE_MATCH Bits to match on a specific ttype group from the fabric.

28 PMC1COMB PMC1 event-pair combination.
When counting event-bus events in PMC1, this bit enables the event-pair combination circuitry.
0 Individual event (PMC1SEL[6] low selects bit 0 of the pair, high selects bit 1 of the pair).
1 Combined event (PMC1SEL[6] low selects to ADD the pair, high selects to AND the pair).

29 PMC2COMB PMC2 event-pair combination.
When counting event-bus events in PMC2, this bit enables the event-pair combination circuitry.
0 Individual event (PMC2SEL[6] low selects bit 0 of the pair, high selects bit 1 of the pair).
1 Combined event (PMC2SEL[6] low selects to ADD the pair, high selects to AND the pair).

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 281 of 523

Note: To avoid a spurious or phantom count during the transition, event counting on PMC1 - 4 suspends
counting for one cycle during SPR writes to MMCR1.

30 PMC3COMB PMC3 event-pair combination. When counting event-bus events in PMC3, this bit enables the
event-pair combination circuitry.
0 Individual event (PMC3SEL[6] low selects bit 0 of the pair, high selects bit 1 of the pair).
1 Combined event (PMC3SEL[6] low selects to ADD the pair, high selects to AND the pair).

31 PMC4COMB PMC4 event-pair combination. When counting event-bus events in PMC4, this bit enables the
event-pair combination circuitry.
0 Individual event (PMC4SEL[6] low selects bit 0 of the pair, high selects bit 1 of the pair).
1 Combined event (PMC4SEL[6] low selects to ADD the pair, high selects to AND the pair).

32:39 PMC1SEL PMC1 event selector. The value in this bit field combined with MMCR1[0:31] determines which
event is counted.
x‘10’ PMC1 counts PMC4 overflows.
x‘24’ PMC1 counts PMC5 overflows.
When counting overflows, freeze conditions for both counters must be identical.
Note: PMCxSEL(0:1) = ‘10’ selects event-bus events, PMCxSEL(0:2) = ‘111’ for compatibility
direct events, PMCxSEL(0) = ‘0’ for other direct events. When PMCxSEL(7) is high, the falling
edges of an event are counted rather than the event itself. Changes from nonzero-to-zero is the
edge for event-bus events.

40:47 PMC2SEL PMC2 event selector. The value in this bit field combined with MMCR1[0:31] determines which
event is counted.
x‘10’ PMC2 counts PMC1 overflows.
When counting overflows, freeze conditions for both counters must be identical.
Note: PMCxSEL(0:1) = ‘10’ selects event-bus events, PMCxSEL(0:2) = ‘111’ for compatibility
direct events, PMCxSEL(0) = ‘0’ for other direct events. When PMCxSEL(7) is high, the falling
edges of an event are counted rather than the event itself. Changes from nonzero-to-zero is the
edge for event-bus events.

48:55 PMC3SEL PMC3 event selector. The value in this bit field combined with MMCR1[0:31] determines which
event is counted.
x‘10’ PMC3 counts PMC2 overflows.
x‘24’ PMC3 counts PMC6 overflows.
When counting overflows, freeze conditions for both counters must be identical.
Note: PMCxSEL(0:1) = ‘10’ selects event-bus events, PMCxSEL(0:2) = ‘111’ for compatibility
direct events, PMCxSEL(0) = ‘0’ for other direct events. When PMCxSEL(7) is high, the falling
edges of an event are counted rather than the event itself. Changes from nonzero-to-zero is the
edge for event-bus events.

56:63 PMC4SEL PMC4 event selector. The value in this bit field combined with MMCR1[0:31] determines which
event is counted.
x‘10’ PMC4 counts PMC3 overflows.
When counting overflows, freeze conditions for both counters must be identical.
Note: PMCxSEL(0:1) = ‘10’ selects event-bus events, PMCxSEL(0:2) = ‘111’ for compatibility
direct events, PMCxSEL(0) = ‘0’ for other direct events, When PMCxSEL(7) is high, the falling
edges of an event are counted rather than the event itself. Changes from nonzero-to-zero is the
edge for event-bus events.

Table 11-3. MMCR1 Register (Sheet 2 of 2)

Bits Field Name Description

Table 11-4. MMCR1 PMCxSEL Selection of Direct Events versus Event-Bus Events

PMCxSEL(0:3) Event Type

0000

Direct Events

0001

0010

0011

0100

0101

0110

0111

1000

Event Bus Events
1001

1010

1011

1100
Reserved

1101

1110
Compatibility Direct Events

1111

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 282 of 523
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 283 of 523

11.6.1.4 Monitor Mode Control Register 2 (MMCR2)

Monitor Mode Control Register 2 (MMCR2) is a 64-bit register that contains 9-bit fields for controlling the
operation of PMC1 - PMC6.

A single bit in each Cn field of MMCR2 is described in the following bit description table. When
MMCR0[PMCC] = ‘11’, fields C1 - C4 control the operation of PMC1 - PMC4, respectively, and fields C5 and
C6 are meaningless; otherwise, fields C1 - C6 control the operation of PMC1 - PMC6, respectively. The bit
definitions of each Cn field are as follows, where n = 1 - 6.

C1 C2 C3 C4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

C4 C5 C6 Reserved

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

Table 11-5. MMCR2 Register

Bits Field Name Description

0 FCnS Freeze counter n in privileged state (FCnS).
0 PMCn is incremented (if permitted by other MMCR bits).
1 PMCn is not incremented if MSR[HV, PR] = ‘00’.

1 FC1nP Freeze counter n in problem state (FCnP).
0 PMCn is incremented (if permitted by other MMCR bits).
1 If FCnPC = ‘0’, PMCn is not incremented if MSR[PR] = ‘1’.

2 FCnPC Freeze counter in either problem or an adjunct state (FCnPC).
FCnP FCnPC
 0 0 PMCn is incremented (if permitted by other MMCR bits).
 1 0 Freeze when MSR[HV] = X, MSR[PR] = 1 (problem state or adjunct).
 0 1 Freeze when MSR[HV] = 0, MSR[PR] = 1 (“true” problem state).
 1 1 Freeze when MSR[HV] = 1, MSR[PR] = 1 (adjunct).

3 FCnM1 Freeze counter n while Mark = ‘1’ (FCnM1).
0 PMCn is incremented (if permitted by other MMCR bits).
1 PMCn is not incremented if MSR[PMM] = ‘1’.

4 FCnM0 Freeze counter n while Mark = ‘0’ (FCnM0).
0 PMCn is incremented (if permitted by other MMCR bits).
1 PMCn is not incremented if MSR[PMM] = ‘0’.

5 FCnWAIT Freeze counter n in wait state (FCnWAIT).
0 PMCn is incremented (if permitted by other MMCR bits).
1 PMCn is not incremented if CTRL[RUN] = ‘0’. Software is expected to set CTRL[RUN] = ‘0’

when it is in a wait state; that is, when there is no process ready to run.
Note: PM_CYC counts cycles regardless of the run latch.

6 FCnH Freeze counter n in hypervisor state (FCnH).
0 PMCn is incremented (if permitted by other MMCR bits).
1 PMCn is not incremented if MSR[HV, PR] = ‘10’.

7:8 Reserved Reserved.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 284 of 523
Version 1.3

16 March 2016

11.6.1.5 Monitor Mode Control Register A (MMCRA)

Monitor Mode Control Register A (MMCRA) is a 64-bit register. MMCRA gives privileged programs the ability to control
the sampling process and threshold events.

Table 11-6. MMCRA Register (Sheet 1 of 2)

Bits Field Name Description

0:15 Reserved Reserved.

16 SIER_CTRL When this bit is set to ‘1’, SIER bits 16:28 are changed to data real address bits 44:56.

17:19 Reserved Reserved.

20:21 SDAR_MODE Continuous sampling. These bits specify how the SDAR should be updated in continuous-sampling
mode.
00 No updates.
01 Continuous-sampling mode updates SDAR on a TLB miss.
10 Continuous-sampling mode updates SDAR on a D-cache miss.
11 Continuous-sampling mode updates SDAR on a store issue.

22:24 THRESH_CMP_EXP Three-bit exponent portion of a threshold compare floating point.

25:31 THRESH_CMP_
MANTISSA

Seven-bit mantissa portion of a threshold compare floating point.
Note: The mantissa upper two bits should never be zero unless the exponent being written is also
zero. This is an artifact of the “power of 4” floating-point counter. The floating-point mantissa starts
counting events starting from ‘000000’ and when it reaches ‘1111111’, it rolls over to ‘010000000’
where the exponent is incremented by 1.

32:33 BHRB_FILTER BHRB instruction filtering mode (IFM). This field controls the filter criterion used by hardware when
recording branch instructions that satisfy the BHRB privilege filtering mode requirements into the
BHRB.
00 No filtering.
01 Record only bl, bcl, bclrl, bctrl, and bctarl instructions.
10 Do not record the b, bl, bc, and bcl instructions for which the BO field indicates “branch

always.” For the bclr, bclrl, bctr, bctrl, bctar, and bctarl instructions for which the BO
field indicates “branch always,” record only one entry containing the branch target address.

11 Filter and enter BHRB entries as for mode ‘10’, but do not record branch instructions for
which BO0 = ‘1’, or for which the “a” bit in the BO field is set to ‘1’.

Note: The filters provided by the IFM field can be restated in terms of the operation performed as
follows:

01 Record only branch instructions that have the link bit set.
10 Record only the target addresses of conditional branch instructions and XL-form uncondi-

tional branch instructions.
11 Filter as for encoding ‘10’, but do not record instructions that provide a hint or that do not

depend on the value of CRBI.

34:36 THRESH_CTR_EXP Three-bit exponent portion of thr threshold floating-point counter.

37 Reserved Reserved.

38:44 THRESH_CTR_
MANTISSA

Seven-bit mantissa portion of the threshold floating-point counter.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 285 of 523

45:47 THRESH_EVENT_SEL Selection for an event specified for threshold counting. PMC1 - 4 event counting, selected as
shown, adheres to possible freeze conditions set up in the MMCR0, MMCR2, and MMCRC Regis-
ters.
000 Do not count, disable thresholding.
001 Counts number of cycles that the CTRL run latch is set (does not depend on freeze condi-

tions).
010 Instructions completed while the CTRL run latch is set (does not depend on freeze condi-

tions).
011 Reserved.
100 Event configured in PMC1 (depends on freeze conditions).
101 Event configured in PMC2 (depends on freeze conditions).
110 Event configured in PMC3 (depends on freeze conditions).
111 Event configured in PMC4 (depends on freeze conditions).

48:51 THRESH_START Threshold start event. See Table 11-7 on page 285 for details.

52:55 THRESH_END Threshold end events. See Table 11-7 on page 285 for details.

56 Reserved Reserved.

57:59 RAND_SAMP_ELIG Eligibility criteria. See Table 11-8 on page 286 for details.

60 SAMPLE_RESET Any time this bit is set to ‘1’, the sampling state machine is forced from the start state into the idle
state. If the state machine is not in the start state when this bit is set, it has no effect.

61:62 RAND_SAMP_MODE Random sampling mode (SM).
00 Random instruction sampling (RIS): Instructions that meet the criterion specified in the

RAND_SAMP_ELIG field for random instruction sampling are randomly selected and sam-
pled. See Table 11-8 on page 286 for details.

01 Random load/store sampling (LSS): Events that meet the criterion specified in the
RAND_SAMP_ELIG field for random load/store sampling are randomly selected for sam-
pling. See Table 11-8 on page 286 for details.

10 Random branch facility sampling (BFS): Events that meet the criterion specified in the
RAND_SAMP_ELIG field for random branch facility sampling are randomly selected for
sampling. See Table 11-8 on page 286 for details.

11 Reserved.

63 SAMPLE_ENABLE 0 Continuous sampling.
1 Random sampling.

Table 11-7. Threshold Start/Stop Event Selection

MMCRA[48]
MMCRA[52]

MMCRA[49:51]
MMCRA[53:55] Description Architected

0 000 Reserved. Yes

0 001 Sampled instruction decoded. Yes

0 010 Sampled instruction dispatched. Yes

0 011 Sampled instruction issued. Yes

0 100 Sampled instruction finished. Yes

0 101 Sampled instruction completed. Yes

0 110 Sampled instruction L1 load miss. Yes

0 111 Sampled instruction L1 reload valid Yes

1 000 Event selected in MMCR1 for PMC1 counting. No

1 001 Event selected in MMCR1 for PMC2 counting. No

Table 11-6. MMCRA Register (Sheet 2 of 2)

Bits Field Name Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 286 of 523
Version 1.3

16 March 2016

1 010 Event selected in MMCR1 for PMC3 counting. No

1 011 Event selected in MMCR1 for PMC4 counting. No

1 100 Sampled group next to complete. No

1 101 RC machine dispatched for sampled instruction. No

1 110 RC machine done for sampled instruction. No

1 111 Reserved. No

Table 11-8. Random Sampling Eligibility Criteria

MMCRA[63] MMCRA[61:62] MMCRA[57] MMCRA[58:59] Eligibility Criteria Architected

Random Instruction Sampling

1 00 0 00 Random. Yes

1 00 0 01 Load/store. Any operation that gets
routed to the LSU (for example, load,
store, move from/to LSU SPR).

Yes

1 00 0 10 Probe NOP. Yes

1 00 0 11 Reserved. Yes

1 00 1 00 IMC. No

1 00 1 01 IMC + random. No

1 00 1 10 Long latency operation (div, sqrt, mul,
mtctr, brLK = ‘1’).

No

1 00 1 11 Reserved. No

Random Event Sampling (LSU)

1 01 0 00 Load misses. Yes

1 01 0 01 Reserved. Yes

1 01 0 10 Reserved. Yes

1 01 0 11 Reserved. Yes

1 01 1 00 Larx/stcx. No

1 01 1 01 Prefetch target tracker. Mark loads
that match prefetch effective address
currently being tracked.

No

1 01 1 10 Reserved. No

1 01 1 11 Reserved. No

Random Event Sampling (BRU)

1 10 0 00 Branch mispredicts. Yes

1 10 0 01 Branch mispredicts (CR). Yes

1 10 0 10 Reserved. Yes

1 10 0 11 Taken branches. Yes

1 10 1 00 Nonrepeating branches. No

Table 11-7. Threshold Start/Stop Event Selection

MMCRA[48]
MMCRA[52]

MMCRA[49:51]
MMCRA[53:55] Description Architected

Condition Register

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 287 of 523

1 10 1 01 All branches that require prediction. No

1 10 1 10 Reserved. No

1 10 1 11 Reserved. No

Table 11-8. Random Sampling Eligibility Criteria

MMCRA[63] MMCRA[61:62] MMCRA[57] MMCRA[58:59] Eligibility Criteria Architected

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 288 of 523
Version 1.3

16 March 2016

11.6.1.6 Core Monitor Mode Control Register (MMCRC)

This SPR is not replicated on a per split-core basis. This is a core-level SPR (hypervisor access only) that is
used for a variety of purposes.

Table 11-9. MMCRC Register (Sheet 1 of 2)

Bits Field Name Description

0:42 Reserved Reserved.

43:45 BHRB_TID

Thread ID for BHRB_MODE. When MMCRC[BHRB_MODE] is set to private mode, this field speci-
fies the thread that owns the BHRB. All other threads do not write the BHRB and their move-from-
BHRB entry instructions always return 0’s.
In split-core mode, physical thread IDs map to LPARs as follows:
LPAR0: T0/T1
LPAR1: T2/T3
LPAR2: T4/T5
LPAR3: T6/T7

46 BHRB_MODE

0 Shared mode: All threads write to the BHRB. The BHRB entries are split among the num-
ber of threads specified by the SMT mode. (ST = 32 entries, SMT2 = 16 entries per thread,
SMT4 = 8 entries per thread, and SMT8 = 4 entries per thread).

1 Private mode: Only the thread specified by MMCRC[BHRB_Thread] can write to the
BHRB. All other threads do not write to the BHRB and their move-from BHRB entry instruc-
tions always return ‘0’.

47:49 L3EVENT_SEL0 Event Bus0 control.

50:51 L3EVENT_SEL1 Event Bus1 control.

52 INT_MODE

An L2 control that changes S versus T to early versus late.
When this bit is enabled, the events that are called PM_DATA_FROM_*_SHR are interpreted as
PM_DATA_FROM_*_EARLY and events called PM_DATA_FROM_*_MOD are interpreted as
PM_DATA_FROM_*_LATE.

53:55 L2EVENT_SEL L2 bus event control.

56 GLOB_FRZ_SPMC_01
Global freeze for SPMC T0/T1.
Note: When MMCR0[PMCC] = ‘11’, this bit also affects PMC5 - 6. In 4 LPAR mode, this maps to
LPAR0. In 2 LPAR mode, this maps to LPAR0.

57 GLOB_FRZ_SPMC_23
Global freeze for SPMC T2/T3.
Note: When MMCR0[PMCC] = ‘11’, this bit also affects PMC5 - 6. In 4 LPAR mode, this maps to
LPAR1. In 2 LPAR mode, this maps to LPAR0.

58 GLOB_FRZ_SPMC_45
Global freeze for SPMC T4/T5.
Note: When MMCR0[PMCC] = ‘11’, this bit also affects PMC5 - 6. In 4 LPAR mode, this maps to
LPAR2. In 2 LPAR mode, this maps to LPAR1.

59 GLOB_FRZ_SPMC_67
Global freeze for SPMC T6/T7.
Note: When MMCR0[PMCC] = ‘11’, this bit also affects PMC5 - 6. In 4 LPAR mode, this maps to
LPAR3. In 2 LPAR mode, this maps to LPAR1.

60 GLOB_FRZ_PMC_01
Global freeze for thread level PMCs T0/T1.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6. In
4 LPAR mode, this maps to LPAR0. In 2 LPAR mode, this maps to LPAR0.

61 GLOB_FRZ_PMC_23
Global freeze for thread level PMCs T2/T3.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6. In
4 LPAR mode, this maps to LPAR1. In 2 LPAR mode, this maps to LPAR0.

62 GLOB_FRZ_PMC_45
Global freeze for thread level PMCs T4/T5.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6. In
4 LPAR mode, this maps to LPAR2. In 2 LPAR mode, this maps to LPAR1.

Single thread

Simultaneous multithreading

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 289 of 523

11.7 Hypervisor Performance Monitor

The POWER8 core has four dedicated 64-bit hypervisor performance counters, HPMC1 - HPMC4, that are
shared between all threads. These counters are only available for use by the hypervisor. The hypervisor
performance monitor is controlled through MMCRH. The configuration and operation of the hypervisor perfor-
mance monitor is similar to that of the thread-level counters, PMC1 - PMC6, with the following differences:

• HPMC1 - HPMC4, and MMCRH are hypervisor-only resources. They can only be accessed in hypervisor
mode (MSR[HV, PR] = ‘10’). Any attempt to read or write to these SPRs when not in hypervisor mode
results in an exception.

• The hypervisor performance monitor has access to a limited subset of events. In particular, there is no
access to event-bus events.

• HPMC1 counts events selected by MMCRH[HPMC1SEL] and HPMC2 counts events selected by
MMCRH[HPMC2SEL]. Counting is enabled on HPMC1 and HPMC2 when MMCRH[HVFC], the freeze
bit, is low and the other MMCRH enable counter conditions are met.

• HPMC3 counts instructions completed for threads when the CTRL Register run latch bits are set, the
LPCR[ONL] bits are set, and the MMCRH[HVECLP] LPAR conditions are met. No MMCRH freeze or
enable counter bits affect HPMC3 counting other than MMCRH[HVECLP].

• HPMC4 counts cycles for threads when the CTRL Register run latch bits are set, the LPCR[ONL] bit is
set, and the MMCRH[HVECLP] LPAR conditions are met. No MMCRH freeze or enable counter bits
affect HPMC4 counting other than MMCRH[HVECLP].

• There is no hypervisor performance monitor interrupt. Hypervisor performance monitor alerts can be
enabled through the appropriate controls in MMCRH. Hypervisor performance monitor alerts behave sim-
ilarly to the performance monitor (PMAO) alert, which is enabled through the thread-level performance
monitor (using MMCR0), except that no interrupt is generated.

63 GLOB_FRZ_PMC_67
Global freeze for thread level PMCs T6/T7.
Note: When MMCR0[PMCC] = ‘11’, this bit affects PMC1 - 4; otherwise, it controls PMC1 - 6. In
4 LPAR mode, this maps to LPAR3. In 2 LPAR mode, this maps to LPAR1.

Table 11-9. MMCRC Register (Sheet 2 of 2)

Bits Field Name Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 290 of 523
Version 1.3

16 March 2016

11.7.1 Hypervisor Performance Monitor Counters (HPMC1 - 4)

The Hypervisor Performance Monitor Counter Registers are defined in Table 11-10.

Table 11-10. Hypervisor Performance Monitor Counter Register

Bits Field Name Description

0 CTR_NEG Counter negative bit.

1:63 CTRDATA Counter data.

11.7.2 Monitor Mode Control Register H (MMCRH)

For HPMC1 or HPMC2 to count the selected event, the HVFC freeze bit must be low and at least one
counter-enable bit must be high. Table 11-11 describes the MMCRH Register.

Table 11-11. Monitor Mode Control Register H Register (Sheet 1 of 2)

Bits Field Name Description

0:31 Reserved Reserved.

32 HVFC Hypervisor freeze counters.
0 The HPMCs are incremented if not inhibited by another condition.
1 The HPMCs are not incremented.
Note: This bit resets to ‘1’, such that counters are always frozen after POR. See HVFCECE, bit 47,
for additional information.

33 HVPMAE Hypervisor performance monitor alert enable.
0 Hypervisor performance monitor alerts are disabled.
1 Hypervisor performance monitor alerts are enabled until a hypervisor performance monitor

alert occurs, at which time the hardware disables the hypervisor performance monitor alert
(MMRCH[HVPMAE] is set to ‘0’).

Note: Software can set PMAE to ‘1’ and then poll the bit to determine whether an enabled condition
or event has occurred.

34 HVPMAO Hypervisor performance monitor alert has occurred.
0 A hypervisor performance monitor alert has not occurred since the last time software set

this bit to ‘0’.
1 A hypervisor performance monitor alert has occurred since the last time software set this

bit to ‘0’.
This bit is set to ‘1’ by the hardware when a hypervisor performance monitor alert occurs and
MMCRH[HVPMAE] = ‘1’. It can be set to ‘0’ only by the mtspr instruction. Software should set this
bit to ‘0’ after handling a performance monitor alert.
Note: Software can set this bit to ‘1’ to simulate the occurrence of a performance monitor alert.

35 HVECONL Enable hypervisor counters according to the T[0:7]_LPCR Register ONL bits.
0 The HPMCs are enabled (unless inhibited by another MMCRH condition).
1 The HPMCs are enabled for counting for threads with the ONL bits set (unless inhibited by

another MMCRH condition).

36 HVECRL Enable hypervisor counters according to the CTRL Register run latch bits.
0 The HPMCs are enabled (unless inhibited by another MMCRH condition).
1 The HPMCs are enabled for counting for threads with the run latch bits set (unless inhibited

by another MMCRH condition).

power-on reset

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 291 of 523

37:38 HVECLP Enable hypervisor counters in 4 LPAR mode according to the following bits:
00 The HPMCs are enabled for events on threads 0 and 1 (see note).
01 The HPMCs are enabled for events on threads 2 and 3 (see note).
10 The HPMCs are enabled for events on threads 4 and 5 (see note).
11 The HPMCs are enabled for events on threads 6 and 7 (see note).
Enable hypervisor counters in 2 LPAR mode according to the following bits:
0X The HPMCs are enabled for events on threads 0 - 3 (see note).
1X The HPMCs are enabled for events on threads 4 - 7 (see note).
Note: Unless inhibited by another MMCRH condition.

39 HVECH Enable hypervisor counters when in hypervisor state.
0 The HPMCs are enabled (see note).
1 The HPMCs are enabled for counting for threads with MSR[HV, PR] = ‘10’ (see note).
Note: If multiple MMCRH[HVECH, HVECP, HVECS, or HVECA] bits are set, counting is enabled
when any of these conditions being selected are met, unless inhibited by another MMCRH condi-
tion.

40 HVECP Enable hypervisor counters when in problem state.
0 The HPMCs are enabled (see note).
1 The HPMCs are enabled for counting for threads with MSR[HV, PR] = ‘01’ (see note).
Note: If multiple MMCRH[HVECH, HVECP, HVECS, or HVECA] bits are set, counting is enabled
when any of these conditions being selected are met, unless inhibited by another MMCRH condi-
tion.

41 HVEC Enable hypervisor counters when in supervisor state.
0 The HPMCs are enabled (see note).
1 The HPMCs are enabled for counting for threads with MSR[HV, PR] = ‘00’ (see note).
Note: If multiple MMCRH[HVECH, HVECP, HVECS, or HVECA] bits are set, counting is enabled
when any of these conditions being selected are met, unless inhibited by another MMCRH condi-
tion.

42 HVECA Enable hypervisor counters when in the adjunct state.
0 The HPMCs are enabled (see note).
1 The HPMCs are enabled for counting for threads with MSR[HV, PR] = ‘11’ (see note).
Note: If multiple MMCRH[HVECH, HVECP, HVECS, or HVECA] bits are set, counting is enabled
when any of these conditions being selected are met, unless inhibited by another MMCRH condi-
tion.

43:44 Reserved Reserved.

45:46 HVECUS Enable hypervisor counters correlate to the user state, MSR[US].
00 The HPMCs are enabled (see note).
01 The HPMCs are enabled in user state, MSR[US] = ‘1’ (see note).
10 The HPMCs are enabled when not in user state, MSR[US] = ‘0’ (see note).
11 Reserved.
Note: Unless inhibited by another MMCRH condition.

47 HVFCECE Freeze counters on enabled condition or event.
0 The HPMCs are incremented (if permitted by other MMCRH bits).
1 The HPMCs are incremented (if permitted by other MMCRH bits) until an enabled condition

or event occurs at which time MMCRH[HVFC] is set to ‘1’.

48:56 HPMC1SEL HPMC1 event selector. The value in this bit field determines which event is counted by HPMC1.
HVFC must be set at least one cycle before and held for at least two cycles after setting a new
HPMC1SEL.

56:63 HPMC2SEL HPMC2 event selector. The value in this bit field determines which event is counted by HPMC2.
HVFC must be set at least one cycle before and held for at least two cycles after setting a new
HPMC2SEL.

Table 11-11. Monitor Mode Control Register H Register (Sheet 2 of 2)

Bits Field Name Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 292 of 523
Version 1.3

16 March 2016

11.8 Supervisor Performance Monitor

To support dynamic optimization efforts, the operating system (AIX/Linux/i5OS) might require a dedicated
facility for performance monitoring because the regular PMU can be used by user-level programs such as
JITs or static compilers. The SPMCs, like the PMCs, are thread-level counters. However, SPMCs are only
accessible to privileged code. Any attempt to read or write the SPMCs or MMCRS Register in problem state
results in an exception.

The following SPRs per thread are available:

• SPMC1: a 32-bit counter

• SPMC2: a 32-bit counter

• MMCRS: a 16-bit configuration register

The SPMCs can select from all the compatibility events and a selected set of events to be used for dynamic
optimization. Freeze conditions in MMCRS apply to the counting of SPMC1 - 2. When MMCR0[PMCC] = ‘11’,
PMC5 - 6 are allocated to supervisor control and conditions in MMCRS (rather than conditions MMCR0 or
MMCR2) apply to PMC5 - 6.

11.8.1 Supervisor Performance Monitor Counters (SPMC1 - 2)

The Supervisor Performance Monitor Counters are defined in Table 11-12.

Table 11-12. Supervisor Performance Monitor Counter

Bits Field Name Description

32 CTR_NEG Counter negative bit.

33:63 CTRDATA Counter data.

11.8.2 Monitor Mode Control Register S (MMCRS) Register

The Monitor Mode Control Register S (MMCRS) Register is defined in Table 11-13.

Table 11-13. Monitor Mode Control Register S Register (Sheet 1 of 3)

Bits Field Name Description

0:31 Reserved Reserved.

32 FC

Freeze counters.
0 The SPMCs are incremented if permitted by other MMCR bits.
1 The SPMCs are not incremented.
The processor sets this bit to ‘1’ when an enabled condition or event occurs and
MMCRS[FCECE] = ‘1’.

33 FCS
Freeze counters in privileged state.
0 The SPMCs are incremented if permitted by other MMCRS bits.
1 The SPMCs are not incremented if MSR[HV, PR] = ‘00’.

just-in-time

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 293 of 523

34 FCP

Freeze counter in problem state.
FCP FCPC
 0 0 SPMCn is incremented (if permitted by other MMCR bits)
 1 0 Freeze when MSR[HV] = ‘X’, MSR[PR] = ‘1’
 0 1 Freeze when MSR[HV] = ‘0’, MSR[PR] = ‘1’
 1 1 Freeze when MSR[HV] = ‘1’, MSR[PR] = ‘1’
Note: To freeze the counters in problem state regardless of MSR[HV], MMCRS[FCPC] must be set
to ‘0’ and MMCRS[FCP] must be set to ‘1’.

35 FCPC Freeze counters in problem state condition. This bit controls the operation of FCP (bit 34).

36 FCH
Freeze counters in hypervisor state.
0 The SPMCs are incremented (if permitted by other MMCRS bits).
1 The SPMCs are not incremented if MSR[HV, PR] = ‘10’.

37 FCM1
Freeze counters when MSR[PMM] = ‘1’.
0 The SPMCs are incremented.
1 The SPMCs are not incremented when MSR[PMM] = ‘1’.

38 FCM0
Freeze counters when MSR[PMM] = ‘0’.
0 The SPMCs are incremented.
1 The SPMCs are not incremented when MSR[PMM] = ‘0’.

39 FCTM
Freeze counters in TM transactional state.
0 SPMCs are incremented.
1 SPMCs are not incremented when TM is in transactional state (MSR[TM] = ‘10’).

40 FCTS
Freeze counters in TM suspend state.
0 SPMCs are incremented.
1 SPMCs are not incremented when TM is suspended state (MSR[TM] = ‘01’).

41:42 Reserved Reserved.

43 FCWAIT

Freeze counters in wait state.
0 The SPMCs are incremented (if permitted by other MMCR bits).
1 The SPMCs are not incremented if CTRL[RUN] = ‘0’. Software is expected to set

CTRL[RUN] = ‘0’ when it is in a wait state; that is, when there is no process ready to run.

44 FCECE

Freeze counters on an enabled condition or event.
0 The SPMCs are incremented (if permitted by other MMCR bits).
1 The SPMCs are incremented (if permitted by other MMCR bits) until an enabled condition

or event occurs at which time: MMCRS[FC] is set to ‘1’.

45 PMAE

Performance monitor alert enable.
0 Performance monitor alerts are disabled.
1 Performance monitor alerts are enabled until a performance monitor alert occurs, at which

time:
MMCR0[PMAE] is set to ‘0’
MMCR0[PMAO] is set to ‘1’

Note: Software can set this bit and MMCR0[PMAO] = ‘0’ to prevent performance monitor excep-
tions. Software can set this bit to ‘1’ and then poll the bit to determine whether an enabled condition
or event has occurred. This is especially useful for software that runs with MSR[EE] = ‘0’.

Table 11-13. Monitor Mode Control Register S Register (Sheet 2 of 3)

Bits Field Name Description

transactional memory

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 294 of 523
Version 1.3

16 March 2016

11.9 Sampled Instruction Event Register (SIER)

The Sampled Instruction Event Register is a 64-bit register that stores information that pertains to a sampled
or marked instruction. The contents of the SIER can be altered by the hardware if and only if
MMCR0[PMAE] = ‘1’. Thus, after the performance monitor alert occurs, the contents of SIER are not altered
by the hardware until software sets MMCR0[PMAE] = ‘1’. After software sets MMCR0[PMAE] = ‘1’, the
contents of SIER are undefined until the next performance monitor alert occurs.

P
E

M
P

T
Y

IS
S

_S
T

A
LL

C
M

P
L_

S
T

A
LL

F
IN

_S
T

A
LL

_R
E

A
S

O
N

E
X

P
O

S
E

D
_L

S
U

_R
E

J

DATA_SRC X
LA

T
E

_S
R

C

P
A

G
E

_S
IZ

E

EXT CRESP TTYPE LO
C

_M
E

M
_B

U
S

Y

LO
A

D
_M

E
R

G
E

S
T

C
X

_F
A

IL

S
T

_F
W

D

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

R
E

J_
IS

U
_S

R
C

R
E

J_
IS

U
_C

O
L

R
E

J_
LS

U

R
E

J_
LS

U
_R

E
A

S
O

N

M
P

R
E

D
_C

C
A

C
H

E

M
S

R
_P

R

M
S

R
_H

V

M
S

R
_T

A

S
IA

R
_V

A
LI

D

S
D

A
R

_V
A

LI
D

TE S
LE

W
_D

N

S
LE

W
_U

P

TYPE ICACHE T
A

K
_B

R

M
P

R
E

D

M
P

R
E

D
_T

Y
P

E

D
E

R
A

T
_M

IS
S

A
_X

LA
T

E
_S

R
C

LDST C
M

P
L

32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63

46 PMAO

Performance monitor alert has occurred.
0 A performance monitor event has not occurred since the last time software set this bit to

‘0’.
1 A performance monitor event has occurred since the last time software set this bit to ‘0’.
This bit is set to ‘1’ by the processor when a performance monitor event occurs. This bit can be set
to ‘0’ only by the mtspr instruction.
Software can set this bit to ‘1’ to simulate the occurrence of a performance monitor event.
Software should set this bit to ‘0’ after handling the performance monitor event.

47 Reserved Reserved.

48:55 SPMC1_SEL SPMC1 select. Bit 55 is edge detect. See Section 11.4 Enhanced Sampling Support on page 272.

56:63 SPMC2_SEL SPMC2 select. Bit 63 is edge detect. See Section 11.4 Enhanced Sampling Support on page 272.

Table 11-13. Monitor Mode Control Register S Register (Sheet 3 of 3)

Bits Field Name Description

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 295 of 523

Table 11-14. Sampled Instruction Event Register (SIER) (Sheet 1 of 3)

Bits Field Name Description

0 PEMPTY Pipeline was empty (first instruction after GCT noslot).

1 ISS_STALL Sampled instruction issue stall. The marked instruction was issued after it became NTC.

2 CMPL_STALL Sampled instruction group completion stall. The marked instruction became NTC some time before
completion.

3:6 FIN_STALL_REASON Sampled instruction group finish stall reason.
0000 Reserved
0001 Marked finish before NTC
0010 Reserved
0011 Reserved
0100 LSU D-cache miss
0101 LSU load finish
0110 LSU store forward
0111 LSU store
1000 FXU multicycle
1001 BRU finish mispredict
1010 VSU multicycle
1011 Reserved
1100 FXU other
1101 VSU other
1110 BRU other
1111 Reserved

7 EXPOSED_LSU_REJ Sampled instruction LSU reject exposed to completion.

8:10 DATA_SRC Sampled instruction microarchitecture-dependent data source information for loads and extended
store information. Encoding defined in Table 11-15 Implementation-Dependent Extension to Data
Source Encodes on page 297.

11:13 XLATE_SRC Sampled instruction microarchitecture-dependent data source information to go along with
data/translation/source/load information. Encodings are defined in Table 11-15 on page 297.

14:15 PAGE_SIZE Sampled instruction suffered an ERAT miss for the page size.
00 4 KB
01 64 KB
10 16 MB
11 16 GB

16:18 EXT Sampled instruction data/store/translation extension information. Encodings are defined in Table
11-16 Implementation-Dependent Extension Bits for Data Source Encodes (SIER[EXT]) on
page 299.

19:23 CRESP Combined response from the SMP interconnect.

24:26 TTYPE SMP interconnect event ttype.

27:28 LOC_MEM_BUSY Local memory busy.

29 LOAD_MERGE Load merge.

30 STCX_FAIL Sampled stcx failed.

31 ST_FWD Store forward.

32 REJ_ISU_SRC Sampled instruction suffered an ISU reject due to source unavailable.

33 REJ_ISU_COL Sampled instruction suffered a ISU reject due to resource collision.

34 REJ_LSU Sampled instruction suffered an LSU reject.

Next-to-complete

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 296 of 523
Version 1.3

16 March 2016

35:36 REJ_LSU_REASON Sampled instruction suffered a reject.
00 ERAT miss
01 LMQ full
10 LHS
11 Set MPRED
Valid only when SIER[REJ_LSU] = ‘1’.

37 MPRED_CCACHE C-cache misprediction.

38 MSR_PR Sampled problem state (MSR[PR] = ‘1’).
Note: This bit updates regardless of MMCRA[SE] and MMCRA[PMAE].

39 MSR_HV Sampled hypervisor state (MSR[HV] = ‘1’).
Note: This bit updates regardless of MMCRA[SE] and MMCRA[PMAE].

40 Reserved Reserved.

41 SIAR_VALID SIAR is valid for sampled instructions.

42 SDAR_VALID SDAR is valid for sampled instructions.

43 TE Threshold exceeded.

44 SLEW_DN Frequency is slewed down for any reason.

45 SLEW_UP Frequency is slewed up for any reason.

46:48 TYPE Type of sampled instruction.
000 Reserved.
001 Sampled instruction is a load.
010 Sampled instruction is a store.
011 Sampled instruction is a branch.
100 Sampled instruction is a floating-point instruction.
101 Sampled instruction is a fixed-point instruction.
110 Sampled instruction is an IFU but nonbranch.
111 Reserved.

49:51 ICACHE 000 Reserved.
001 Sampled instruction hit in the I-cache.
010 Sampled instruction hit in the L2 cache.
011 Sampled instruction hit in the L3 cache.
100 Sampled instruction is an L3 miss.
101 Reserved.
110 Reserved.
111 Reserved.
Note: This field is not valid when random event sampling is enabled.

MMCRA[63] = ‘1’ and MMCRA[61:62] ≠ ‘00’.

52 TAK_BR Sampled instruction is a taken branch.

53 MPRED Sampled branch instruction is mispredicted.

54:55 MPRED_TYPE Sampled instruction branch mispredicted information type.
00 Reserved.
01 Branch mispredicted due to direction.
10 Branch mispredicted due to target address.
11 Reserved.

56 DERAT_MISS Sampled instruction suffered a data ERAT miss.

Table 11-14. Sampled Instruction Event Register (SIER) (Sheet 2 of 3)

Bits Field Name Description

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 297 of 523

57:59 A_XLATE_SRC Sampled instruction data translation information.
000 Reserved.
001 TLB hit.
010 Data translation hit in the L2 cache.
011 Data translation hit in the L3 cache.
100 Data translation resolved from memory.
101 Data translation resolved from on-chip cache (other than local L2 or L3 cache).
110 Data translation resolved from off-chip cache.
111 Reserved.

60:62 LDST Sampled load-store instruction information.
000 Reserved.
001 Load hit in the L1 D-cache.
010 Load hit in the L2 cache.
011 Load hit in the L3 cache.
100 Load resolved from memory.
101 Load resolved from the on-chip cache (other than local L2 or L3 cache).
110 Load resolved from the off-chip cache.
111 Store missed the L1 cache and was sent to the cache/memory subsystem.

63 CMPL Sampled instruction completed.

Table 11-15. Implementation-Dependent Extension to Data Source Encodes (Sheet 1 of 3)

Architected Bits
SIER[LDST]

SIER[A_XLATE_SRC]

Implementation-
Dependent Bit

Encoding
SIER[DATA_SRC]

SIER[XLATE_SRC]

Implementation-Dependent Bit Description

L2 Hit

010 000 Private L2 cache for this core sourced data (or NCU loads) without dispatch conflicts.

010 001 Private L2 cache for this core sourced data in the Mepf state without dispatch con-
flicts. (L3 prefetch brought line in Me.)

010 010 Private L2 cache for this core sourced data that had a dispatch conflict on a
load-hit-store.

010 011 Private L2 cache for this core sourced data that had a dispatch conflict other than a
load-hit-store.

010 100 Reserved.

010 101 Reserved.

010 110 Reserved.

010 111 Reserved.

L3 Hit

011 000 The private L3 cache for this core sourced data without dispatch conflicts.

011 001 The private L3 cache for this core sourced data in the Mepf state without dispatch
conflicts. (L3 prefetch brought line in Me.)

011 010 The private L3 cache for this core-sourced data that had a dispatch conflict.

011 011 Reserved.

011 100 Reserved.

Table 11-14. Sampled Instruction Event Register (SIER) (Sheet 3 of 3)

Bits Field Name Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 298 of 523
Version 1.3

16 March 2016

011 101 Reserved.

011 110 Reserved.

011 111 Reserved.

Memory

100 000 Reserved.

100 001 Cacheable load on the chip from memory.

100 010 Reserved.

100 011 Cacheable load within group scope.

100 100 Reserved.

100 101 Cacheable load beyond group scope.

100 110 Reserved.

100 111 Reserved.

On-Chip Cache

101 000 Data sourced from another L2.1 cache (not M but valid) on the same chip.

101 001 Data sourced from another L2.1 cache (in M) on the same chip.

101 010 Data sourced from another L3.1 cache (not M but valid) on the same chip.

101 011 Data sourced from another L3.1 cache (in M) on the same chip.

101 100 Data sourced from another L3.1 cache (not M but valid) on the same chip (ECO).

101 101 Data sourced from another L3.1 cache (in M) on the same chip (ECO).

101 110 Reserved.

101 111 Reserved.

Off-Chip Cache

110 000 Data sourced from another L2 or L3 cache (not M but valid) within group scope.

110 001 Data sourced from another L2 or L3 cache (in M) within group scope.

110 010 Data sourced from another L2 or L3 cache (not M but valid) beyond group scope.

110 011 Data sourced from another L2 or L3 cache (in M) beyond group scope.

110 100 Reserved.

110 101 Reserved.

110 110 Reserved.

110 111 Reserved.

 Store Information (only applicable for SIER[LDST])

111 000 Store did not require an RC dispatch.

111 001 Store completed in the L2 cache without intervention.

111 010 Store completed in the L2 cache with modified intervention.

Table 11-15. Implementation-Dependent Extension to Data Source Encodes (Sheet 2 of 3)

Architected Bits
SIER[LDST]

SIER[A_XLATE_SRC]

Implementation-
Dependent Bit

Encoding
SIER[DATA_SRC]

SIER[XLATE_SRC]

Implementation-Dependent Bit Description

modified state

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 299 of 523

111 011 Reserved.

111 100 Reserved.

111 101 Reserved.

111 110 Reserved.

111 111 Reserved.

Table 11-16. Implementation-Dependent Extension Bits for Data Source Encodes (SIER[EXT])

Encoding Case Description Prediction

000 Nonfabric operation Private L2/L3 hit for this core sourced data (or NCU load). N/A

001 Fabric Initial/Final Pump = Chip Initial and final pump scope and data sourced across this
scope.

Correct

010 Fabric Initial/Final Pump = Group Initial and final pump scope and data sourced across this
scope.

Correct

011 Fabric Initial/Final Pump = System Initial and final pump scope and data sourced across this
scope.

Correct

100 Fabric Final Pump = Group Final pump scope to get data sourced ended up larger than
initial pump scope. (Original scope selected was too small.)

Mispredict

101 Fabric Final Pump = Group Final pump scope got data from source that was at a smaller
scope. (Original scope selected was too large.)

Mispredict

110 Fabric Final Pump = System Final pump scope to get data sourced ended up larger than
initial pump scope. (Original scope selected was too small.)

Mispredict

111 Fabric Final Pump = System Final pump scope got data from source that was at a smaller
scope. (Original scope selected was too large.)

Mispredict

Table 11-15. Implementation-Dependent Extension to Data Source Encodes (Sheet 3 of 3)

Architected Bits
SIER[LDST]

SIER[A_XLATE_SRC]

Implementation-
Dependent Bit

Encoding
SIER[DATA_SRC]

SIER[XLATE_SRC]

Implementation-Dependent Bit Description

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 300 of 523
Version 1.3

16 March 2016

11.10 POWER8 CPI Stack

The POWER8 processor provides functionality for a hardware-based CPI stack that can hierarchically
account for completion stalls and front-end stalls on a per-thread basis.

At the most basic level, the CPI stack on a per-thread level can be broken down into three main categories:

• Completion cycles are cycles during which a group of instructions completed for that thread (completion
cycles).

• Front-end stall cycles are cycles where the GCT did not have any entries for that thread.

• Completion stall cycles are cycles where the GCT has an entry for the given thread but no completion
was seen for the thread. These are cycles where a thread is considered to be completion stalled.

Completion stall cycles can be broken down hierarchically into different reasons why the completion of an
instruction was delayed. The mechanism for determining the reason in the POWER8 processor is next-
to-finish (NTF) based. A next-to-finish instruction is defined as the oldest instruction in a next-to-complete
group that has not finished yet.

The POWER8 processor does precise accounting based on an NTF indication. Table 11-17 shows the
accounting technique.

Table 11-17. POWER8 Accounting

Age of Instruction Instruction Address Instruction Mnemonic

1 56CCDC00 lwz R30,20(R3)

2 56CCDC04 twi 0x4,R30,0x0

3 56CCDC08 lwz R3,0(R30)

4 56CCDC0C cmp CR0,)x0,R3,R4

5 56CCDC10 bc 4,2,+4296

6 56CCDC14 lwz R3,16(R30)

Figure 11-1 POWER8 CPI Stack Example on page 301 shows a group of instructions dispatched. The
number to the left indicates the age of the instruction. In this sequence, instructions 2, 3, and 6 are dependent
on instruction 1; instruction 4 is dependent on instruction 3; and instruction 5 is dependent on instruction 4.
The example assumes that all instructions finish after they become NTC. Figure 11-1 shows the finish order.
The POWER8 processor introduces the NTF-based completion stall. This mechanism ensures that a stall
period is broken down into fine grained NTF stall periods. The completion stall is always charged to the oldest
instruction in the NTC group that has not finished yet.

Figure 11-1. POWER8 CPI Stack Example

Stall for 334 cycles

1 2 6 3 4 5

Stall due
to cache

miss

Stall due
to reject

Finish orderNTF = 1; 289 cycles

NTF = 2; 1 cycle

NTF = 3; 42 cycles

NTF = 4; 1 cycle

NTF = 5; 1 cycle

POWER8 CPI Stack
Completion Stall - LSU = 331 cycles
Completion Stall - LSU (cache miss) - 289 cycles
Completion Stall - LSU (reject) - 42 cycles
Completion Stall - FXU = 2 cycles
Completion Stall - BRU = 1 cycles

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 301 of 523

Table 11-18 on page 302 shows a visualization of the CPI stack.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 302 of 523
Version 1.3

16 March 2016

Table 11-18. CPI Stack (Sheet 1 of 2)

Cycles
(PM_RUN_CYC)

Stalled Cycles
(PM_CMPLU_STALL)

Stall Due to BR or CR
(PM_CMPLU_STALL_

BRU_CRU)

Stall Due to Branch (PM_CMPLU_STALL_BRU)

Stall Due to CR

Stall Due to Fixed Point
(PM_CMPLU_STALL_

FXU)

Stall Due to Fixed-Point Long (PM_CMPLU_STALL_FXLONG)

Stall Due to Fixed-Point (Other)

Stall Due to Vector/
Scalar

(PM_CMPLU_STALL_
VSU)

Stall Due to Vector
(PM_CMPLU_STALL_

VECTOR)

Stall Due to Vector Long
(PM_CMPLU_STALL_VECTOR_LONG)

Stall Due to Vector (Other)

Stall Due to Scalar
(PM_CMPLU_STALL_

SCALAR)

Stall Due to Scalar Long
(PM_CMPLU_STALL_SCALAR_LONG)

Stall Due to Scalar (Other)

Stall Due to Vector/Scalar (Other)

Stall Due to Load/Store
(PM_CMPLU_STALL_

LSU)

Stall Due to D-Cache
Miss

(PM_CMPLU_STALL_
DCACHE_MISS)

Stall Due to L2/L3 Hit
(PM_CMPLU_STALL_

DMISS_L2L3)

L2/L3 Hit with Conflict
(PM_CMPLU_STALL_

DMISS_L2L3_CONFLICT)

L2/L3 Hit with No Conflict

Stall Due to L3 Miss
(PM_CMPLU_STALL_

DMISS_L3MISS)

Stall Due to On-Chip L2/L3
(PM_CMPLU_STALL_

DMISS_L21_L31)

Stall Due to On-Chip
Memory

(PM_CMPLU_STALL_
DMISS_LMEM)

Stall Due to Off-Chip
Memory

(PM_CMPLU_STALL_
DMISS_REMOTE)

Stall Due to Off-Node
Memory/Cache

Stall Due to LSU Reject
(PM_CMPLU_STALL_

REJECT)

Reject Due to Load-Hit-Store
(PM_CMPLU_STALL_REJECT_LHS)

Reject Due to ERAT Miss
(PM_CMPLU_STALL_ERAT_MISS)

Reject Due to LMQ Full
(PM_CMPLU_STALL_REJ_LMQ_FULL)

Reject Due to Reject (Other)

Stall Due to Store Finish (PM_CMPLU_STALL_STORE)

Stall Due to Load Finish (PM_CMPLU_STALL_LOAD_FINISH)

Stall Due to Store Forward (PM_CMPLU_STALL_ST_FWD)

Stall Due to Load/Store (Other)

Stall Due to Next-To-Complete Flush (PM_CMPLU_STALL_NTCG_FLUSH)

Stall Due to NOPs (PM_CMPLU_STALL_NO_NTF)

Stall Cycles (Other)

Finished Group Waiting to Complete (PM_NTCG_ALL_FIN)

Thread Blocked
(PM_CMPLU_STALL_

THRD)

Blocked Due to LWSYNC (PM_CMPLU_STALL_LWSYNC)

Blocked Due to HWSYNC (PM_CMPLU_STALL_HWSYNC)

Blocked Due to ECC Delay (PM_CMPLU_STALL_MEM_ECC_DELAY)

Blocked Due to Other Thread's Flush (PM_CMPLU_STALL_FLUSH)

Blocked Due to COQ Full (PM_CMPLU_STALL_COQ_FULL)

Thread Blocked (Other)

Note: Shaded boxes indicate that these are not hardware events but are derived from existing events.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 303 of 523

11.10.1 Completion Stall Accounting: LSU Related Stalls

This category of stalls indicates that an instruction that finished in the load-store unit was responsible for a
portion of the NTF stall.

LSU stalls can be hierarchically broken down into stalls due to cache misses, rejects, stores, store
forwarding, and stcx fails.

11.10.1.1 Completion Stall Accounting: Data Cache Misses

This category of stalls indicates that an instruction that finished in the load unit and suffered a cache miss was
responsible for a portion of the NTF stall.

11.10.1.2 Completion Stalls: Data Cache Miss that Resolves in a Local Core’s L2 or L3 Cache

This category of stalls indicates that an instruction that finished in the load unit and suffered a cache miss that
resolved in the local L2 or L3 cache was responsible for a portion of the NTF stall.

11.10.1.3 Completion Stalls: Data Cache Miss that Resolves in a Local Chip’s L2 or L3 Cache

This category of stalls indicates that an instruction that finished in the load unit and suffered a cache miss that
resolved in the local chip’s L2 or L3 cache was responsible for a portion of the NTF stall.

11.10.1.4 Completion Stalls: Data Cache Miss that Resolves from Remote Chip’s Cache or Memory

This category of stalls indicates that an instruction that finished in the load unit and suffered a cache miss that
resolved in a remote chip’s cache or memory was responsible for a portion of the NTF stall.

Cycles
(continued)

Nothing to Dispatch
(PM_GCT_NOSLOT_

CYC)

Nothing to Dispatch Due
to I-Cache Miss

(PM_GCT_NOSLOT_IC
_MISS)

Nothing to Dispatch Due to I-Cache L3 Miss (PM_GCT_NOSLOT_IC_L3MISS)

Nothing to Dispatch Due to I-Cache Miss (Other)

Nothing to Dispatch Due to Branch Mispredict (PM_GCT_NOSLOT_BR_MPRED)

Nothing to Dispatch Due to Branch Mispredict and I-Cache Miss (PM_GCT_NOSLOT_BR_MPRED_ICMISS)

Nothing to Dispatch -
Dispatch Held

Dispatch Held Due to Mapper (PM_GCT_NOSLOT_DISP_HELD_MAP)

Dispatch Held Due to Store Queue (PM_GCT_NOSLOT_DISP_HELD_SRQ)

Dispatch Held Due to Issue Queue (PM_GCT_NOSLOT_DISP_HELD_ISSQ)

Dispatch Held (Other) (PM_GCT_NOSLOT_DISP_HELD_OTHER)

Nothing to Dispatch (Other)

Other

Completion Cycles (PM_RUN_INST_CMPL)

Table 11-18. CPI Stack (Sheet 2 of 2)

Note: Shaded boxes indicate that these are not hardware events but are derived from existing events.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 304 of 523
Version 1.3

16 March 2016

11.10.1.5 Completion Stalls: Data Cache Miss that Resolves from Local Core’s L2 or L3 (Dispatch
Conflict)

This category of stalls indicates that an instruction that finished in the load unit and suffered a cache miss that
resolved on a core’s local L2 or L3 cache but with a conflict was responsible for a portion of the NTF stall.

11.10.1.6 Completion Stalls: Data Cache Miss that Resolves from Local Memory

This category of stalls indicates that an instruction that finished in the load unit and suffered a cache miss that
resolved in the core’s local memory was responsible for a portion of the NTF stall.

11.10.1.7 Completion Stalls: Stores

This category of stalls indicates that a store instruction that finished in the load-store unit was responsible for
a portion of the NTF stall.

11.10.1.8 Completion Stalls: Store Forwarding

This category of stalls indicates that a store instruction forwarded data to a load that was responsible for a
portion of the NTF stall.

11.10.1.9 Completion Stalls: LSU Rejects

This category of stalls indicates that completion was stalled due to an LSU reject.

11.10.1.10 Completion Stalls: LSU Rejects Due to ERAT Miss

This category of stalls indicates that completion was stalled due to an LSU reject due to an ERAT miss.

11.10.1.11 Completion Stalls: LSU Rejects Due to LMQ Full

This category of stalls indicates that completion was stalled due to an LSU reject because the LMQ is full.

11.10.1.12 Completion Stalls: LSU Rejects Due to Load-Hit-Store Reject

This category of stalls indicates that completion was stalled due to an LSU reject because the LMQ is full.

11.10.2 Completion Stalls: FXU

This category of stalls covers stalls due to a fixed-point instruction. The PMU starts counting stall cycles and
if the NTF instruction is an FXU instruction, the stall cycles are charged to this category.

11.10.3 Completion Stalls: VSU

This category of stalls covers stalls due to a VSU instruction. The PMU starts counting stall cycles and if the
NTF instruction is a VSU instruction, the stall cycles are charged to this category.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 305 of 523

11.10.4 Completion Stalls: IFU

This category of stalls covers stalls due to instructions that finish in the IFU. The PMU starts counting stall
cycles and if the NTF instruction finishes in the IFU, the stall cycles are charged to this category.

This category is further subdivided into branch and CR instructions.

11.10.5 Front-End Stalls

The CPI stack also accounts for cycles when the GCT is completely empty for the given thread. This is an
indication of thread starvation, and the hardware attempts to account for reasons for the GCT to be empty for
that thread.

11.10.5.1 GCT Empty: I-Cache Miss

This event counts the cycles when the GCT is empty for that thread because of an instruction-cache miss.

Every group dispatched has an indication if the group suffered a branch redirect or an I-cache miss or both.
The PMU starts counting cycles where the GCT is empty for the given thread. If a group is dispatched,
causing the GCT to be nonempty, the PMU stops counting and accounts for the GCT-empty cycles and
charges the front-end stall cycles to an I-cache miss if the group dispatched has an I-cache miss indication.

11.10.5.2 GCT Empty: I-Cache Miss That Also Missed the Local L3 Cache

This event counts the cycles where the GCT was empty for that thread because of an instruction-cache miss
that resolved in the local L2 cache.

Every group dispatched has an indication if the group suffered a branch redirect or an I-cache miss or both.
Every group dispatched also has an indication of the I-cache miss resolved from the local L2 or local L3
cache or was an L3 miss. The PMU starts counting cycles when the GCT is empty for the given thread. If a
group was dispatched causing the GCT to be nonempty, the PMU stops counting and accounts for the GCT
empty cycles and charges the front-end stall cycles to an I-cache miss if the group dispatched has an I-cache
miss indication.

11.10.5.3 GCT Empty: Branch Redirects

This event counts the cycles where the GCT was empty for that thread because of a branch redirect. Every
group dispatched has an indication if the group suffered a branch redirect or an I-cache miss or both. The
PMU starts counting cycles where the GCT is empty for the given thread. If a group was dispatched causing
the GCT to be nonempty, the PMU stops counting and accounts for the GCT empty cycles and charges the
front-end stall cycles to branch redirects if the group has a branch redirect indication.

11.10.5.4 GCT Empty: Branch Redirects and I-Cache Miss

This event counts the cycles where the GCT was empty for that thread because of a branch redirect that also
suffered an I-cache miss. Every group dispatched has an indication if the group suffered a branch redirect or
an I-cache miss or both. The PMU starts counting cycles where the GCT is empty for the given thread. If a
group was dispatched causing the GCT to be nonempty, the PMU stops counting and accounts for the GCT
empty cycles and charges the front-end stall cycles to branch redirects and an I-cache miss if the group has a
branch redirect and an I-cache miss indication.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 306 of 523
Version 1.3

16 March 2016

11.10.5.5 GCT Empty: Dispatch Hold Conditions

This event counts the cycles where the GCT was empty for that thread because of dispatch hold conditions
that exist in the pipeline.

The PMU starts counting cycles where the GCT is empty for the given thread and stops counting when a
group is dispatched and it indicates a previous dispatch hold condition for that thread.

11.11 Exploiting Advanced Features of the PMU

11.11.1 Correlating Fabric Responses to Effective Addresses

This feature identifies the code and data addresses of locks and atomic updates, transactional memory, and
other contention across threads that are causing traffic on the inter-processor connection fabric. In particular,
this feature accurately identifies which locking code sequences and which data structures are involved in the
locks that are causing problems. This feature also distinguishes between problems related to locking and
other problems that might cause poor scaling but are in fact unrelated to the locking.

Identifying the causes of lock contention in a precise and accurate manner that is easily accessible to
programmers through standard tools helps them produce software that has better scaling characteristics.
This is important because scaling up to a large number of cores and threads is important for cloud-computing
platforms.

The basic idea is to sample or mark loads or stores and record their effective instruction and data addresses
in the core in special-purpose registers (SIAR/SDAR). While the load/store is pending in the nest (L2 or L3
miss), the L2 cache forwards fabric responses for that tagged load/store to the performance monitoring unit
located in the core.

11.11.1.1 Operation

The PMU records effective addresses and fabric responses in the SIER. The fabric responses can be post-
processed to find contention issues. The hardware can also be programmed to find a specific response from
the fabric using the thread-level PMCs, or count responses and raise an interrupt when the threshold is
reached.

• The POWER8 processor provides thread-level sampling to randomly mark loads/stores using random
instruction sampling or random event sampling. The effective address of the instruction is logged in the
SIAR and the data effective address is logged in the SDAR.

• If a load or store is marked in the thread-level PMU, the sampling state machine monitors the progress of
the marked instruction at the time the request for the line is sent to the L2 cache.

• Only one instruction can be marked at a time. The hardware waits for the current marked instruction to
either flush or complete before marking the next instruction.

• The PMU captures information about the address, combined response, and ttype in the SIER based on
the MMCRA settings. When MMCRA[SIER_CTRL] = ‘1’, the SIER[16:28] bits are changed to data real
adress bits [44:56].

By default, the SIER provides cresp and ttype information. However, this can be changed to provide real
address bits [44:56] that map to congruence class bits in the L2 or L3 cache.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 307 of 523

Because the PMU captures the instruction and data effective address in the SIAR and SDAR registers,
combined responses, ttypes, and effective address can be correlated to determine where and what type of
contention issues exist.

11.11.1.2 Tools Exploitation

The PMU provides the following performance events that can be configured and used for profiling. For
example, the user can profile directly for stores that do a background kill (bkill) to gain ownership of the line,
which is a sign that shared copies were given away.

PM_MRK_FAB_RSP_T_INTV: T intervention
PM_MRK_FAB_RSP_RWITM_RTY: RWITM was retried
PM_MRK_FAB_RSP_DCLAIM: store did a dclaim
PM_MRK_FAB_RSP_CLAIM_RTY: dclaim was retried
PM_MRK_FAB_RSP_BKIL: store did a bkill
PM_MRK_FAB_RSP_RD_RTY: loads were retried

The PMU also provides a general purpose match event: PM_MRK_FAB_RSP_MATCH. This event counts
the number of occurrences of the combination of ttype and cresp specified in MMCR1[20:27]. See Table 11-3
MMCR1 Register on page 280. This enables the tools to create any combination of ttype and cresp and
events on demand.

In addition to the performance events, the PMU also provides the ability to post-process the SIER. For
example, the PM_MRK_ST_CMPL can be used as a profiling event and the SIER can then be processed to
see the various cresps that the stores are receiving.

Software post-processing tools can look for patterns (see the list that follows) to identify possible bottlenecks.
Workloads can then be tuned to avoid or reduce these bottlenecks.

• Loads that get a T intervention. Because T interventions happen after a combined response is done, the
latency is much longer. If more than a small fraction of interventions are sourced by T states, the added
latency can cause a performance problem.

If a go_Sl:T response is seen, either the data was not present in the local node (indicating poor locality),
or the Sl copy in the local node aged out of the cache and was discarded (indicating cache management
or cache address conflict issues). The table in the architecture specifies go_Sl:T to have an encoding of
‘01000’; therefore, tools can look for this while processing the SIER.

If a go_S:T (‘01100’) is seen, the cache that contained the Sl copy in the local node was not able to
respond (indicating snoop machine utilization issues).

If a go_Sl:lpc (‘01010’) response to a rd_go_s command is seen, this indicates that there are S copies of
the data present in the node, but the Sl copy has been lost suggesting that there are cache management
or sharing pattern issues.

• Loads that get lots of retries. Each retry adds hundreds of cycles of latency to the load request, which
impacts performance.

rty_ned_np: indicates conflicts are on-node.

rty_ned_sp: indicates that data was not found on-node or that there are conflicts off-node.

read-with-intent-to-modify

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 308 of 523
Version 1.3

16 March 2016

• Stores that had to do a bkill. Similar to load retries, these make the stores take longer. If the store is fol-
lowed by a sync, as is usually the case in a locking sequence, the sync cannot complete until the previ-
ous stores are complete. A store that hits a Tx state in the local cache ends up doing a bkill on the fabric.

addr_ack_done resp: indicates that the bkill finished successfully.

addr_ack_bk_np: indicates that the bkill had to be resent to the local node. Other shared copies are cre-
ated while a bkill is pending, that indicate high levels of contention for the line.

addr_ack_bk_sp: indicates that the bkill had to be resent to the whole system.

• Stores that had to do a dclaim.

A store that hits an S/Sl state in the L2 cache results in a dclaim being issued.

go_M_bk_np: indicates that the dclaim was successful, but a background kill must be sent to the node
afterward.

go_M_bk_sp: indicates that the dclaim was successful, but a background kill must be sent to the whole
system.

rty_np: indicates that the dclaim must be resent to the node. When this response is seen, either another
cache is also trying to gain ownership, or the memory controller queues are full and the dclaim cannot be
accepted there.

rty_sp: indicates that the dclaim must be resent to the whole system.

rty_lost_claim_np and rty_lost_claim_sp: indicate that another thread has gained ownership of the line for
a store and this thread must invalidate its copy of the line and start over (as if it had missed the cache) by
sending an RWITM to the node or the whole system respectively. This indicates that many threads are
storing to the line at the same time and that there is a high level of contention, especially if there were one
or more rty_np/rty_sp seen before the final lost claim.

• A larx that sees an Sl.

An Sl intervention response to a larx request indicates that there are shared copies of the line in the sys-
tem, which is undesirable for locks. In the case of an atomic update, this can be due to incorrect hint bits
or a protection window not being sufficient.

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 309 of 523

11.11.2 Finding Wasted L3 Prefetches

The POWER8 processor has a cache state called Mepf that determines the effectiveness of L3 prefetches.
Rules for the Mepf state are as follows:

1. The state is formed by the L3 cache when an L3 prefetch machine brings a line in the Me state from the
SMP interconnect; that is, the line comes in from another cache (L2 or L3) or memory.

2. An Mepf-to-Me transition occurs when a demand load or an L1 prefetch hits a line in the Mepf state in the
L3 cache.

11.11.2.1 PMU Usage

The PMU has the following Mepf events:

• PM_DATA_FROM_L3_MEPF
This event counts when a demand load merges with an L1 prefetch or a demand load hits on the line in
an Mepf state. There is also a version of the same event with no Mepf (PM_DATA_FROM_L3) that
includes lines in the Mepf state and all the other possible states.

• PM_MRK_DATA_FROM_L3_MEPF_CYC
This is the same as the previous event but can be used to count the cycles that a demand load hits in the
Mepf state. This event tells how many cycles the prefetch is saving.

• PM_MEM_PREF
This event counts the number of prefetches that came into the chiplet from memory for a particular LPAR.

• PM_MEM_CO_MEPF
This event counts the number of lines that were evicted from the L3 cache in the Mepf state for a particu-
lar LPAR. This event indicates that the line was never consumed by the core. Assuming all prefetches
come from memory, the difference of PM_MEM_PREF - PM_MEM_CO_MEPF indicates how many L3
prefetches are used. It is also possible that prefetches came from another cache.

The L3 event bus on the default setting on Bus0 supports the following events. These events are per physical
core:

• PM_L3_PF_MISS_L3
The L3 prefetch missed in the L3 cache and the L3 prefetch machines will master a request for an L3
prefetch on the SMP interconnect.

• PM_L3_CO_MEPF
An L3 replacement of a line in the Mepf state. This event along with PM_L3_PF_MISS_L3 provides a per-
core average of lines brought in by L3 prefetches but never consumed by an L1 prefetch or demand load.

The following events can be used to find an affinity of prefetches:

• PM_L3_PF_ON_CHIP_CACHE
L3 prefetch from an on-chip cache.

• PM_L3_PF_OFF_CHIP_CACHE
L3 prefetch from an off-chip cache.

• PM_L3_PF_ON_CHIP_MEM
L3 prefetch from on-chip memory.

• PM_L3_PF_OFF_CHIP_MEM
L3 prefetch from off-chip memory.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 310 of 523
Version 1.3

16 March 2016

11.11.3 Per LPAR Memory Bandwidth

The PMU provides the following performance events to characterize and break down memory bandwidth at
an LPAR level. This can be compared to memory bandwidth at a socket or chip level to find memory band-
width bottlenecks and identify the LPARs that are consuming memory bandwidth.

The PMU provides the following events.

• PM_MEM_READ: Counts the number of L2 mastered reads that resolved from memory. This includes:

– Demand L1 misses

– L1 prefetches

– Instruction fetches

– Instruction prefetches

– Speculative load misses (that is, loads that missed the L1 cache but cancelled after the L2 cache
started doing a read)

– Data translation requests

– Instruction translation requests

• PM_MEM_PREF: Counts the number of L3 prefetches that were sourced from memory. This also
includes store spawned prefetches.

• PM_MEM_RWITM: Counts store misses from the L2 cache that were sourced from memory.

• PM_MEM_CO: Count includes dirty castouts; both L2 stores that hit in the local L3 cache and L2 stores
that hit in the local L2 cache.

11.11.4 Monitoring Fabric Command Scope at a Thread Level

Pumps mastered by the internal fabric (SMP) interconnect can be monitored at the chip level and monitor
pumps mastered by the L2 cache at the chiplet level.

The scope of the pumps is a primary indication of affinity issues. For example, if affinity is good, the pump
scope is limited to the narrowest scope (chip pump). Many system pumps typically means bad scaling.

It is also useful to monitor retries along with the scope of SMP interconnect commands. Many retries add
latency to requests and increase snoop/bus utilization.

The pumps the SMP interconnect sees can be either from the L2 or the L3 cache. The L2 cache masters
commands on the SMP interconnect for demand misses, L1 prefetches, store misses, instruction fetches,
instruction prefetches, translation misses, bkills, dclaims, and translation prefetches.

The L2 instrumentation provides the following events at the core and chiplet level:

• PM_L2_CHIP_PUMP
• PM_L2_GROUP_PUMP
• PM_L2_SYS_PUMP

The L3 cache masters commands on the SMP interconnect for L3 prefetches, lateral castouts, and castouts
to memory. The L3 instrumentation provides the following events at the core and chiplet level:

• PM_L3_P0_NODE_PUMP
• PM_L3_P1_NODE_PUMP
• PM_L3_P0_GRP_PUMP

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitor

Page 311 of 523

• PM_L3_P1_GRP_PUMP
• PM_L3_P0_SYS_PUMP
• PM_L3_P1_SYS_PUMP

The following events are also available to the thread-level PMCs:

• PM_GRP_PUMP_CPRED
• PM_GRP_PUMP_MPRED
• PM_GRP_PUMP_MPRED_RTY
• PM_SYS_PUMP_CPRED
• PM_SYS_PUMP_MPRED
• PM_SYS_PUMP_MPRED_RTY
• PM_PUMP_CPRED
• PM_PUMP_MPRED

These events can also be broken down in the PMU for data, instruction, and translation (instruction and data).

When profiling, the PMU generates marked events for some of these events and also records the extension
field in the SIER[EXT] bits. Profiling tools can then post-process this information enabling performance tools
to characterize SMP interconnect pump activity at the thread level. This information is useful in determining
where affinity issues arise.

11.12 PMC Events

The PMC events are listed in Appendix D Performance Monitoring Events on page 387.

11.13 SPMC Events

The SPMC events are listed in Appendix E SPMC Performance Monitoring Events on page 435.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitor

Page 312 of 523
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 313 of 450

Appendix A. POWER8 Instruction Summary by Category

Table A-1. defines the POWER8 categories listed in Table A-2. on page 314.

Table A-1. Category Listing

Abbreviation Category Notes

64 64-Bit Required for 64-bit implementations; not defined for 32-bit implementations.

B Base Required for all implementations.

DFP Decimal Floating-Point Decimal floating-point facilities.

FP Floating-Point Floating-point facilities.

FP[R] Floating-Point Record Floating-point with Rc = 1.

LSQ Load/Store Quadword Load/Store quadword instructions. See Power ISA, Book III-S.

MA Move Assist Move assist instructions.3

S Server Required for server implementations.

TM Transactional Memory Full hardware transactional memory support.

V Vector Vector facilities.

V.AES Vector Advanced encryption standard assist instruction.

V.RAID Vector Vector permute-XOR instruction.

V.SHA2 Vector Secure hash algorithm-2 assist instructions.

VSX Vector-Scalar Extension Vector-scalar extension. Requires implementation of floating-point and vector
categories.

1. .in - facilities and instructions that, in the next version of the architecture, will be required as part of the category they are depen-
dent on. For example, FP[R].in.

2. .out - facilities and instructions that, in some future version of the architecture, will be dropped out of the architecture.
For example, FP.out.

3. Move assist instructions are not valid in little-endian mode.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 314 of 450
Version 1.3

16 March 2016

Table A-2. lists the instructions implemented in the POWER8 processor in order by category.

Table A-2. POWER8 Instructions by Category (Sheet 1 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

X 31 7C0001F8 64 bpermd Bit Permute Doubleword

X 31 7C000074 64 cntlzd[.] Count Leading Zeros Doubleword

XO 31 7C0003D2 64 divd[.] Divide Doubleword

XO 31 7C000352 64 divde[.] Divide Doubleword Extended

XO 31 7C000752 64 divdeo[.] Divide Doubleword Extended and Record OV

XO 31 7C000312 64 divdeu[.] Divide Doubleword Extended Unsigned

XO 31 7C000712 64 divdeuo[.] Divide Doubleword Extended Unsigned and Record OV

XO 31 7C0007D2 64 divdo[.] Divide Doubleword and Record OV

XO 31 7C000392 64 divdu[.] Divide Doubleword Unsigned

XO 31 7C000792 64 divduo[.] Divide Doubleword Unsigned and Record OV

X 31 7C0007B4 64 extsw[.] Extend Sign Word

DS 58 E8000000 64 ld Load Doubleword

X 31 7C0000A8 64 ldarx Load Doubleword And Reserve Indexed

X 31 7C000428 64 ldbrx Load Doubleword Byte-Reverse Indexed

X 31 7C00003A 64 ldepx Load Doubleword by External PID Indexed

DS 58 E8000001 64 ldu Load Doubleword with Update

X 31 7C00006A 64 ldux Load Doubleword with Update Indexed

X 31 7C00002A 64 ldx Load Doubleword Indexed

DS 58 E8000002 64 lwa Load Word Algebraic

X 31 7C0002EA 64 lwaux Load Word Algebraic with Update Indexed

X 31 7C0002AA 64 lwax Load Word Algebraic Indexed

XO 31 7C000092 64 mulhd[.] Multiply High Doubleword

XO 31 7C000012 64 mulhdu[.] Multiply High Doubleword Unsigned

XO 31 7C0001D2 64 mulld[.] Multiply Low Doubleword

XO 31 7C0005D2 64 mulldo[.] Multiply Low Doubleword and Record OV

X 31 7C0003F4 64 popcntd Population Count Doubleword

X 31 7C000174 64 prtyd Parity Doubleword

MDS 30 78000010 64 rldcl[.] Rotate Left Doubleword then Clear Left

MDS 30 78000012 64 rldcr[.] Rotate Left Doubleword then Clear Right

MD 30 78000008 64 rldic[.] Rotate Left Doubleword Immediate then Clear

MD 30 78000000 64 rldicl[.] Rotate Left Doubleword Immediate then Clear Left

MD 30 78000004 64 rldicr[.] Rotate Left Doubleword Immediate then Clear Right

MD 30 7800000C 64 rldimi[.] Rotate Left Doubleword Immediate then Mask Insert

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 315 of 450

X 31 7C000036 64 sld[.] Shift Left Doubleword

X 31 7C000634 64 srad[.] Shift Right Algebraic Doubleword

XS 31 7C000674 64 sradi[.] Shift Right Algebraic Doubleword Immediate

X 31 7C000436 64 srd[.] Shift Right Doubleword

DS 62 F8000000 64 std Store Doubleword

X 31 7C000528 64 stdbrx Store Doubleword Byte-Reverse Indexed

X 31 7C0001AD 64 stdcx. Store Doubleword Conditional Indexed and Record CR0

X 31 7C00013A 64 stdepx Store Doubleword by External PID Indexed

DS 62 F8000001 64 stdu Store Doubleword with Update

X 31 7C00016A 64 stdux Store Doubleword with Update Indexed

X 31 7C00012A 64 stdx Store Doubleword Indexed

X 31 7C000088 64 td Trap Doubleword

D 2 08000000 64 tdi Trap Doubleword Immediate

XO 31 7C000214 B add[.] Add

XO 31 7C000014 B addc[.] Add Carrying

XO 31 7C000414 B addco[.] Add Carrying and Record OV

XO 31 7C000114 B adde[.] Add Extended

XO 31 7C000514 B addeo[.] Add Extended and Record OV and Record OV

D 14 38000000 B addi Add Immediate

D 12 30000000 B addic Add Immediate Carrying

D 13 34000000 B addic. Add Immediate Carrying and Record CR0

D 15 3C000000 B addis Add Immediate Shifted

XO 31 7C0001D4 B addme[.] Add to Minus One Extended

XO 31 7C0005D4 B addmeo[.] Add to Minus One Extended and Record OV

XO 31 7C000614 B addo[.] Add and Record OV

XO 31 7C000194 B addze[.] Add to Zero Extended

XO 31 7C000594 B addzeo[.] Add to Zero Extended and Record OV

X 31 7C000038 B and[.] AND

X 31 7C000078 B andc[.] AND with Complement

D 28 70000000 B andi. AND Immediate and Record CR0

D 29 74000000 B andis. AND Immediate Shifted and Record CR0

I 18 48000000 B b[l][a] Branch

B 16 40000000 B bc[l][a] Branch Conditional

XL 19 4C000420 B bcctr[l] Branch Conditional to Count Register

Table A-2. POWER8 Instructions by Category (Sheet 2 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 316 of 450
Version 1.3

16 March 2016

XL 19 4C000020 B bclr[l] Branch Conditional to Link Register

X 19 4C000460 B bctar[l] Branch Conditional to Branch Target Address Register

X 31 7C000000 B cmp Compare

X 31 7C0003F8 B cmpb Compare Byte

D 11 2C000000 B cmpi Compare Immediate

X 31 7C000040 B cmpl Compare Logical

D 10 28000000 B cmpli Compare Logical Immediate

X 31 7C000034 B cntlzw[.] Count Leading Zeros Word

XL 19 4C000202 B crand Condition Register AND

XL 19 4C000102 B crandc Condition Register AND with Complement

XL 19 4C000242 B creqv Condition Register Equivalent

XL 19 4C0001C2 B crnand Condition Register NAND

XL 19 4C000042 B crnor Condition Register NOR

XL 19 4C000382 B cror Condition Register OR

XL 19 4C000342 B crorc Condition Register OR with Complement

XL 19 4C000182 B crxor Condition Register XOR

X 31 7C0000AC B dcbf Data Cache Block Flush

X 31 7C00006C B dcbst Data Cache Block Store

X 31 7C00022C B dcbt Data Cache Block Touch

X 31 7C0001EC B dcbtst Data Cache Block Touch for Store

X 31 7C0007EC B dcbz Data Cache Block Zero

XO 31 7C0003D6 B divw[.] Divide Word

XO 31 7C000356 B divwe[.] Divide Word Extended

XO 31 7C000756 B divweo[.] Divide Word Extended and Record OV

XO 31 7C000316 B divweu[.] Divide Word Extended Unsigned

XO 31 7C000716 B divweuo[.] Divide Word Extended Unsigned and Record OV

XO 31 7C0007D6 B divwo[.] Divide Word and Record OV

XO 31 7C000396 B divwu[.] Divide Word Unsigned

XO 31 7C000796 B divwuo[.] Divide Word Unsigned and Record OV

X 31 7C000238 B eqv[.] Equivalent

X 31 7C000774 B extsb[.] Extend Sign Byte

X 31 7C000734 B extsh[.] Extend Sign Halfword

X 31 7C0007AC B icbi Instruction Cache Block Invalidate

X 31 7C00002C B icbt Instruction Cache Block Touch

Table A-2. POWER8 Instructions by Category (Sheet 3 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 317 of 450

A 31 7C00001E B isel Integer Select

XL 19 4C00012C B isync Instruction Synchronize

X 31 7C000068 B lbarx Load Byte And Reserve Indexed

D 34 88000000 B lbz Load Byte and Zero

D 35 8C000000 B lbzu Load Byte and Zero with Update

X 31 7C0000EE B lbzux Load Byte and Zero with Update Indexed

X 31 7C0000AE B lbzx Load Byte and Zero Indexed

D 42 A8000000 B lha Load Halfword Algebraic

X 31 7C0000E8 B lharx Load Halfword And Reserve Indexed Xform

D 43 AC000000 B lhau Load Halfword Algebraic with Update

X 31 7C0002EE B lhaux Load Halfword Algebraic with Update Indexed

X 31 7C0002AE B lhax Load Halfword Algebraic Indexed

X 31 7C00062C B lhbrx Load Halfword Byte-Reverse Indexed

D 40 A0000000 B lhz Load Halfword and Zero

D 41 A4000000 B lhzu Load Halfword and Zero with Update

X 31 7C00026E B lhzux Load Halfword and Zero with Update Indexed

X 31 7C00022E B lhzx Load Halfword and Zero Indexed

D 46 B8000000 B lmw Load Multiple Word

X 31 7C000028 B lwarx Load Word and Reserve Indexed

X 31 7C00042C B lwbrx Load Word Byte-Reverse Indexed

D 32 80000000 B lwz Load Word and Zero

D 33 84000000 B lwzu Load Word and Zero with Update

X 31 7C00006E B lwzux Load Word and Zero with Update Indexed

X 31 7C00002E B lwzx Load Word and Zero Indexed

XL 19 4C000000 B mcrf Move Condition Register Field

XFX 31 7C000026 B mfcr Move From Condition Register

XFX 31 7C100026 B mfocrf Move From One Condition Register Field

XFX 31 7C0002A6 B mfspr Move From Special Purpose Register

XFX 31 7C000120 B mtcrf Move To Condition Register Fields

XFX 31 7C100120 B mtocrf Move To One Condition Register Field

XFX 31 7C0003A6 B mtspr Move To Special Purpose Register

XO 31 7C000096 B mulhw[.] Multiply High Word

XO 31 7C000016 B mulhwu[.] Multiply High Word Unsigned

D 7 1C000000 B mulli Multiply Low Immediate

Table A-2. POWER8 Instructions by Category (Sheet 4 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 318 of 450
Version 1.3

16 March 2016

XO 31 7C0001D6 B mullw[.] Multiply Low Word

XO 31 7C0005D6 B mullwo[.] Multiply Low Word and Record OV

X 31 7C0003B8 B nand[.] NAND

XO 31 7C0000D0 B neg[.] Negate

XO 31 7C0004D0 B nego[.] Negate and Record OV

X 31 7C0000F8 B nor[.] NOR

X 31 7C000378 B or[.] OR

X 31 7C000338 B orc[.] OR with Complement

D 24 60000000 B ori OR Immediate

D 25 64000000 B oris OR Immediate Shifted

X 31 7C0000F4 B popcntb Population Count Byte-wise

X 31 7C0002F4 B popcntw Population Count Words

X 31 7C000134 B prtyw Parity Word

M 20 50000000 B rlwimi[.] Rotate Left Word Immediate then Mask Insert

M 21 54000000 B rlwinm[.] Rotate Left Word Immediate then AND with Mask

M 23 5C000000 B rlwnm[.] Rotate Left Word then AND with Mask

SC 17 44000002 B sc System Call

X 31 7C000030 B slw[.] Shift Left Word

X 31 7C000630 B sraw[.] Shift Right Algebraic Word

X 31 7C000670 B srawi[.] Shift Right Algebraic Word Immediate

X 31 7C000430 B srw[.] Shift Right Word

D 38 98000000 B stb Store Byte

X 31 7C00056D B stbcx. Store Byte Conditional Indexed

D 39 9C000000 B stbu Store Byte with Update

X 31 7C0001EE B stbux Store Byte with Update Indexed

X 31 7C0001AE B stbx Store Byte Indexed

D 44 B0000000 B sth Store Halfword

X 31 7C00072C B sthbrx Store Halfword Byte-Reverse Indexed

X 31 7C0005AD B sthcx. Store Halfword Conditional Indexed Xform

D 45 B4000000 B sthu Store Halfword with Update

X 31 7C00036E B sthux Store Halfword with Update Indexed

X 31 7C00032E B sthx Store Halfword Indexed

D 47 BC000000 B stmw Store Multiple Word

D 36 90000000 B stw Store Word

Table A-2. POWER8 Instructions by Category (Sheet 5 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 319 of 450

X 31 7C00052C B stwbrx Store Word Byte-Reverse Indexed

X 31 7C00012D B stwcx. Store Word Conditional Indexed and Record CR0

D 37 94000000 B stwu Store Word with Update

X 31 7C00016E B stwux Store Word with Update Indexed

X 31 7C00012E B stwx Store Word Indexed

XO 31 7C000050 B subf[.] Subtract From

XO 31 7C000010 B subfc[.] Subtract From Carrying

XO 31 7C000410 B subfco[.] Subtract From Carrying and Record OV

XO 31 7C000110 B subfe[.] Subtract From Extended

XO 31 7C000510 B subfeo[.] Subtract From Extended and Record OV

D 8 20000000 B subfic Subtract From Immediate Carrying

XO 31 7C0001D0 B subfme[.] Subtract From Minus One Extended

XO 31 7C0005D0 B subfmeo[.] Subtract From Minus One Extended and Record OV

XO 31 7C000450 B subfo[.] Subtract From and Record OV

XO 31 7C000190 B subfze[.] Subtract From Zero Extended

XO 31 7C000590 B subfzeo[.] Subtract From Zero Extended and Record OV

X 31 7C0004AC B sync Synchronize

X 31 7C000008 B tw Trap Word

D 3 0C000000 B twi Trap Word Immediate

X 26 68000000 B xnop Executed No Operation

X 31 7C000278 B xor[.] XOR

D 26 68000000 B xori XOR Immediate

D 27 6C000000 B xoris XOR Immediate Shifted

X 59 EC000004 DFP dadd[.] Decimal Floating Add

X 63 FC000004 DFP daddq[.] Decimal Floating Add Quad

X 59 EC000644 DFP dcffix[.] Decimal Floating Convert From Fixed

X 63 FC000644 DFP dcffixq[.] Decimal Floating Convert From Fixed Quad

X 59 EC000104 DFP dcmpo Decimal Floating Compare Ordered

X 63 FC000104 DFP dcmpoq Decimal Floating Compare Ordered Quad

X 59 EC000504 DFP dcmpu Decimal Floating Compare Unordered

X 63 FC000504 DFP dcmpuq Decimal Floating Compare Unordered Quad

X 59 EC000204 DFP dctdp[.] Decimal Floating Convert To DFP Long

X 59 EC000244 DFP dctfix[.] Decimal Floating Convert To Fixed

X 63 FC000244 DFP dctfixq[.] Decimal Floating Convert To Fixed Quad

Table A-2. POWER8 Instructions by Category (Sheet 6 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 320 of 450
Version 1.3

16 March 2016

X 63 FC000204 DFP dctqpq[.] Decimal Floating Convert To DFP Extended

X 59 EC000284 DFP ddedpd[.] Decimal Floating Decode DPD To BCD

X 63 FC000284 DFP ddedpdq[.] Decimal Floating Decode DPD To BCD Quad

X 59 EC000444 DFP ddiv[.] Decimal Floating Divide

X 63 FC000444 DFP ddivq[.] Decimal Floating Divide Quad

X 59 EC000684 DFP denbcd[.] Decimal Floating Encode BCD To DPD

X 63 FC000684 DFP denbcdq[.] Decimal Floating Encode BCD To DPD Quad

X 59 EC0006C4 DFP diex[.] Decimal Floating Insert Exponent

X 63 FC0006C4 DFP diexq[.] Decimal Floating Insert Exponent Quad

X 59 EC000044 DFP dmul[.] Decimal Floating Multiply

X 63 FC000044 DFP dmulq[.] Decimal Floating Multiply Quad

Z23 59 EC000006 DFP dqua[.] Decimal Quantize

Z23 59 EC000086 DFP dquai[.] Decimal Quantize Immediate

Z23 63 FC000086 DFP dquaiq[.] Decimal Quantize Immediate Quad

Z23 63 FC000006 DFP dquaq[.] Decimal Quantize Quad

X 63 FC000604 DFP drdpq[.] Decimal Floating Round To DFP Long

Z23 59 EC0001C6 DFP drintn[.] Decimal Floating Round To FP Integer Without Inexact

Z23 63 FC0001C6 DFP drintnq[.] Decimal Floating Round To FP Integer Without Inexact Quad

Z23 59 EC0000C6 DFP drintx[.] Decimal Floating Round To FP Integer With Inexact

Z23 63 FC0000C6 DFP drintxq[.] Decimal Floating Round To FP Integer With Inexact Quad

Z23 59 EC000046 DFP drrnd[.] Decimal Floating Reround

Z23 63 FC000046 DFP drrndq[.] Decimal Floating Reround Quad

X 59 EC000604 DFP drsp[.] Decimal Floating Round To DFP Short

Z22 59 EC000084 DFP dscli[.] Decimal Floating Shift Coefficient Left Immediate

Z22 63 FC000084 DFP dscliq[.] Decimal Floating Shift Coefficient Left Immediate Quad

Z22 59 EC0000C4 DFP dscri[.] Decimal Floating Shift Coefficient Right Immediate

Z22 63 FC0000C4 DFP dscriq[.] Decimal Floating Shift Coefficient Right Immediate Quad

X 59 EC000404 DFP dsub[.] Decimal Floating Subtract

X 63 FC000404 DFP dsubq[.] Decimal Floating Subtract Quad

Z22 59 EC000184 DFP dtstdc Decimal Floating Test Data Class

Z22 63 FC000184 DFP dtstdcq Decimal Floating Test Data Class Quad

Z22 59 EC0001C4 DFP dtstdg Decimal Floating Test Data Group

Z22 63 FC0001C4 DFP dtstdgq Decimal Floating Test Data Group Quad

X 59 EC000144 DFP dtstex Decimal Floating Test Exponent

Table A-2. POWER8 Instructions by Category (Sheet 7 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 321 of 450

X 63 FC000144 DFP dtstexq Decimal Floating Test Exponent Quad

X 59 EC000544 DFP dtstsf Decimal Floating Test Significance

X 63 FC000544 DFP dtstsfq Decimal Floating Test Significance Quad

X 59 EC0002C4 DFP dxex[.] Decimal Floating Extract Exponent

X 63 FC0002C4 DFP dxexq[.] Decimal Floating Extract Exponent Quad

X 63 FC000040 FP fcmpo Floating Compare Ordered

X 63 FC000000 FP fcmpu Floating Compare Unordered

X 63 FC000100 FP ftdiv Floating Test for Software Divide

X 63 FC000140 FP ftsqrt Floating Test for Software Square Root

D 50 C8000000 FP lfd Load Floating-Point Double

D 51 CC000000 FP lfdu Load Floating-Point Double with Update

X 31 7C0004EE FP lfdux Load Floating-Point Double with Update Indexed

X 31 7C0004AE FP lfdx Load Floating-Point Double Indexed

X 31 7C0006AE FP lfiwax Load Floating-Point as Integer Word Algebraic Indexed

X 31 7C0006EE FP lfiwzx Load Floating-Point as Integer Word and Zero Indexed

D 48 C0000000 FP lfs Load Floating-Point Single

D 49 C4000000 FP lfsu Load Floating-Point Single with Update

X 31 7C00046E FP lfsux Load Floating-Point Single with Update Indexed

X 31 7C00042E FP lfsx Load Floating-Point Single Indexed

X 63 FC000080 FP mcrfs Move To Condition Register from FPSCR

D 54 D8000000 FP stfd Store Floating-Point Double

D 55 DC000000 FP stfdu Store Floating-Point Double with Update

X 31 7C0005EE FP stfdux Store Floating-Point Double with Update Indexed

X 31 7C0005AE FP stfdx Store Floating-Point Double Indexed

X 31 7C0007AE FP stfiwx Store Floating-Point as Integer Word Indexed

D 52 D0000000 FP stfs Store Floating-Point Single

D 53 D4000000 FP stfsu Store Floating-Point Single with Update

X 31 7C00056E FP stfsux Store Floating-Point Single with Update Indexed

X 31 7C00052E FP stfsx Store Floating-Point Single Indexed

DS 57 E4000000 FP.out lfdp Load Floating-Point Double Pair

X 31 7C00062E FP.out lfdpx Load Floating-Point Double Pair Indexed

DS 61 F4000000 FP.out stfdp Store Floating-Point Double Pair

X 31 7C00072E FP.out stfdpx Store Floating-Point Double Pair Indexed

X 63 FC000210 FP[R] fabs[.] Floating Absolute Value

Table A-2. POWER8 Instructions by Category (Sheet 8 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 322 of 450
Version 1.3

16 March 2016

A 63 FC00002A FP[R] fadd[.] Floating Add

A 59 EC00002A FP[R] fadds[.] Floating Add Single

X 63 FC00069C FP[R] fcfid[.] Floating Convert From Integer Doubleword

X 59 EC00069C FP[R] fcfids[.] Floating Convert From Integer Doubleword Single

X 63 FC00079C FP[R] fcfidu[.] Floating Convert From Integer Doubleword Unsigned

X 59 EC00079C FP[R] fcfidus[.] Floating Convert From Integer Doubleword Unsigned Single

X 63 FC000010 FP[R] fcpsgn[.] Floating Copy Sign

X 63 FC00065C FP[R] fctid[.] Floating Convert To Integer Doubleword

X 63 FC00075C FP[R] fctidu[.] Floating Convert To Integer Doubleword Unsigned

X 63 FC00075E FP[R] fctiduz[.] Floating Convert To Integer Doubleword Unsigned with
Round Toward Zero

X 63 FC00065E FP[R] fctidz[.] Floating Convert To Integer Doubleword with Round Toward
Zero

X 63 FC00001C FP[R] fctiw[.] Floating Convert To Integer Word

X 63 FC00011C FP[R] fctiwu[.] Floating Convert To Integer Word Unsigned

X 63 FC00011E FP[R] fctiwuz[.] Floating Convert To Integer Word Unsigned with Round
Toward Zero

X 63 FC00001E FP[R] fctiwz[.] Floating Convert To Integer Word with round to Zero

A 63 FC000024 FP[R] fdiv[.] Floating Divide

A 59 EC000024 FP[R] fdivs[.] Floating Divide Single

A 63 FC00003A FP[R] fmadd[.] Floating Multiply-Add

A 59 EC00003A FP[R] fmadds[.] Floating Multiply-Add Single

X 63 FC000090 FP[R] fmr[.] Floating Move Register

A 63 FC000038 FP[R] fmsub[.] Floating Multiply-Subtract

A 59 EC000038 FP[R] fmsubs[.] Floating Multiply-Subtract Single

A 63 FC000032 FP[R] fmul[.] Floating Multiply

A 59 EC000032 FP[R] fmuls[.] Floating Multiply Single

X 63 FC000110 FP[R] fnabs[.] Floating Negative Absolute Value

X 63 FC000050 FP[R] fneg[.] Floating Negate

A 63 FC00003E FP[R] fnmadd[.] Floating Negative Multiply-Add

A 59 EC00003E FP[R] fnmadds[.] Floating Negative Multiply-Add Single

A 63 FC00003C FP[R] fnmsub[.] Floating Negative Multiply-Subtract

A 59 EC00003C FP[R] fnmsubs[.] Floating Negative Multiply-Subtract Single

A 59 EC000030 FP[R] fres[.] Floating Reciprocal Estimate Single

X 63 FC000018 FP[R] frsp[.] Floating Round to Single-Precision

A 63 FC000034 FP[R] frsqrte[.] Floating Reciprocal Square Root Estimate

Table A-2. POWER8 Instructions by Category (Sheet 9 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 323 of 450

A 63 FC00002E FP[R] fsel[.] Floating Select

A 63 FC00002C FP[R] fsqrt[.] Floating Square Root

A 59 EC00002C FP[R] fsqrts[.] Floating Square Root Single

A 63 FC000028 FP[R] fsub[.] Floating Subtract

A 59 EC000028 FP[R] fsubs[.] Floating Subtract Single

X 63 FC00048E FP[R] mffs[.] Move From FPSCR

X 63 FC00008C FP[R] mtfsb0[.] Move To FPSCR Bit 0

X 63 FC00004C FP[R] mtfsb1[.] Move To FPSCR Bit 1

XFL 63 FC00058E FP[R] mtfsf[.] Move To FPSCR Fields

X 63 FC00010C FP[R] mtfsfi[.] Move To FPSCR Field Immediate

A 63 FC000030 FP[R].in fre[.] Floating Reciprocal Estimate

X 63 FC0003D0 FP[R].in frim[.] Floating Round To Integer Minus

X 63 FC000310 FP[R].in frin[.] Floating Round To Integer Nearest

X 63 FC000390 FP[R].in frip[.] Floating Round To Integer Plus

X 63 FC000350 FP[R].in friz[.] Floating Round To Integer toward Zero

A 59 EC000034 FP[R].in frsqrtes[.] Floating Reciprocal Square Root Estimate Single

DQ 56 E0000000 LSQ lq Load Quadword

X 31 7C000228 LSQ lqarx Load Quadword And Reserve Indexed

DS 62 F8000002 LSQ stq Store Quadword

X 31 7C00016D LSQ stqcx. Store Quadword Conditional Indexed and record CR0

X 31 7C0004AA MA lswi Load String Word Immediate

X 31 7C00042A MA lswx Load String Word Indexed

X 31 7C0005AA MA stswi Store String Word Immediate

X 31 7C00052A MA stswx Store String Word Indexed

X 31 7C00035C S clrbhrb Clear BHRB

XL 19 4C000324 S doze Doze

X 31 7C0006AC S eieio Enforce In-order Execution of I/O

XL 19 4C000224 S hrfid Return From Interrupt Doubleword Hypervisor

X 31 7C0006AA S lbzcix Load Byte and Zero Caching Inhibited Indexed

X 31 7C0006EA S ldcix Load Doubleword Caching Inhibited Indexed

X 31 7C00066A S lhzcix Load Halfword and Zero Caching Inhibited Indexed

X 31 7C00062A S lwzcix Load Word and Zero Caching Inhibited Indexed

XFX 31 7C00025C S mfbhrbe Move From Branch History Rolling Buffer

X 31 7C0000A6 S mfmsr Move From Machine State Register

Table A-2. POWER8 Instructions by Category (Sheet 10 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 324 of 450
Version 1.3

16 March 2016

X 31 7C0004A6 S mfsr Move From Segment Register

X 31 7C000526 S mfsrin Move From Segment Register Indirect

X 31 7C0001DC S msgclr Message Clear

X 31 7C00015C S msgclrp Message Clear Privileged

X 31 7C00019C S msgsnd Message Send

X 31 7C00011C S msgsndp Message Send Privileged

X 31 7C000124 S mtmsr Move To Machine State Register

X 31 7C000164 S mtmsrd Move To Machine State Register Doubleword

X 31 7C0001A4 S mtsr Move To Segment Register

X 31 7C0001E4 S mtsrin Move To Segment Register Indirect

XL 19 4C000364 S nap Nap

XL 19 4C000124 S rfebb Return from Event Based Branch

XL 19 4C000024 S rfid Return from Interrupt Doubleword

XL 19 4C0003E4 S rvwinkle Rip Van Winkle

X 31 7C0007A7 S slbfee. SLB Find Entry ESID

X 31 7C0003E4 S slbia SLB Invalidate All

X 31 7C000364 S slbie SLB Invalidate Entry

X 31 7C000726 S slbmfee SLB Move From Entry ESID

X 31 7C0006A6 S slbmfev SLB Move From Entry VSID

X 31 7C000324 S slbmte SLB Move To Entry

XL 19 4C0003A4 S sleep Sleep

X 31 7C0007AA S stbcix Store Byte Caching Inhibited Indexed

X 31 7C0007EA S stdcix Store Doubleword Caching Inhibited Indexed

X 31 7C00076A S sthcix Store Halfword and Zero Caching Inhibited Indexed

X 31 7C00072A S stwcix Store Word and Zero Caching Inhibited Indexed

X 31 7C000264 S tlbie TLB Invalidate Entry

X 31 7C000224 S tlbiel TLB Invalidate Entry Local

X 31 7C00046C S tlbsync TLB Synchronize

XFX 31 7C0002E6 S.out mftb Move From Time Base

X 31 7C00071D TM tabort. Transaction Abort

X 31 7C00065D TM tabortdc. Transaction Abort Doubleword Conditional

X 31 7C0006DD TM tabortdci. Transaction Abort Doubleword Conditional Immediate

X 31 7C00061D TM tabortwc. Transaction Abort Word Conditional

X 31 7C00069D TM tabortwci. Transaction Abort Word Conditional Immediate

Table A-2. POWER8 Instructions by Category (Sheet 11 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 325 of 450

X 31 7C00051D TM tbegin. Transaction Begin

X 31 7C00059C TM tcheck Transaction Check

X 31 7C00055C TM tend. Transaction End

X 31 7C0007DD TM trechkpt. Transaction Recheckpoint

X 31 7C00075D TM treclaim. Transaction Reclaim

VX 4 10000401 V bcdadd. Decimal Add Modulo

VX 4 10000441 V bcdsub. Decimal Subtract Modulo

X 31 7C00000E V lvebx Load Vector Element Byte Indexed

X 31 7C00004E V lvehx Load Vector Element Halfword Indexed

X 31 7C00008E V lvewx Load Vector Element Word Indexed

X 31 7C00000C V lvsl Load Vector for Shift Left

X 31 7C00004C V lvsr Load Vector for Shift Right

X 31 7C0000CE V lvx Load Vector Indexed

X 31 7C0002CE V lvxl Load Vector Indexed Last

VX 4 10000604 V mfvscr Move From Vector Status and Control Register

VX 4 10000644 V mtvscr Move To Vector Status and Control Register

X 31 7C00010E V stvebx Store Vector Element Byte Indexed

X 31 7C00014E V stvehx Store Vector Element Halfword Indexed

X 31 7C00018E V stvewx Store Vector Element Word Indexed

X 31 7C0001CE V stvx Store Vector Indexed

X 31 7C0003CE V stvxl Store Vector Indexed Last

VX 4 10000140 V vaddcuq Vector Add and Write Carry Unsigned Quadword

VX 4 10000180 V vaddcuw Vector Add and Write Carry-Out Unsigned Word

VA 4 1000003D V vaddecuq Vector Add Extended and Write Carry Unsigned Quadword

VA 4 1000003C V vaddeuqm Vector Add Extended Unsigned Quadword Modulo

VX 4 1000000A V vaddfp Vector Add Single-Precision

VX 4 10000300 V vaddsbs Vector Add Signed Byte Saturate

VX 4 10000340 V vaddshs Vector Add Signed Halfword Saturate

VX 4 10000380 V vaddsws Vector Add Signed Word Saturate

VX 4 10000000 V vaddubm Vector Add Unsigned Byte Modulo

VX 4 10000200 V vaddubs Vector Add Unsigned Byte Saturate

VX 4 100000C0 V vaddudm Vector Add Unsigned Doubleword Modulo

VX 4 10000040 V vadduhm Vector Add Unsigned Halfword Modulo

VX 4 10000240 V vadduhs Vector Add Unsigned Halfword Saturate

Table A-2. POWER8 Instructions by Category (Sheet 12 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 326 of 450
Version 1.3

16 March 2016

VX 4 10000100 V vadduqm Vector Add Unsigned Quadword Modulo

VX 4 10000080 V vadduwm Vector Add Unsigned Word Modulo

VX 4 10000280 V vadduws Vector Add Unsigned Word Saturate

VX 4 10000404 V vand Vector Logical AND

VX 4 10000444 V vandc Vector Logical AND with Complement

VX 4 10000502 V vavgsb Vector Average Signed Byte

VX 4 10000542 V vavgsh Vector Average Signed Halfword

VX 4 10000582 V vavgsw Vector Average Signed Word

VX 4 10000402 V vavgub Vector Average Unsigned Byte

VX 4 10000442 V vavguh Vector Average Unsigned Halfword

VX 4 10000482 V vavguw Vector Average Unsigned Word

VX 4 1000054C V vbpermq Vector Bit Permute Quadword

VX 4 1000054C V vbpermq Vector Bit Permute Quadword

VX 4 1000034A V vcfsx Vector Convert From Signed Fixed-Point Word To Single-Pre-
cision

VX 4 1000030A V vcfux Vector Convert From Unsigned Fixed-Point Word

VX 4 10000702 V vclzb Vector Count Leading Zeros Byte

VX 4 100007C2 V vclzd Vector Count Leading Zeros Doubleword

VX 4 10000742 V vclzh Vector Count Leading Zeros Halfword

VX 4 10000782 V vclzw Vector Count Leading Zeros Word

VC 4 100003C6 V vcmpbfp[.] Vector Compare Bounds Single-Precision

VC 4 100000C6 V vcmpeqfp[.] Vector Compare Equal To Single-Precision

VC 4 10000006 V vcmpequb[.] Vector Compare Equal To Unsigned Byte

VC 4 100000C7 V vcmpequd[.] Vector Compare Equal To Unsigned Doubleword

VC 4 10000046 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword

VC 4 10000086 V vcmpequw[.] Vector Compare Equal To Unsigned Word

VC 4 100001C6 V vcmpgefp[.] Vector Compare Greater Than or Equal To Single-Precision

VC 4 100002C6 V vcmpgtfp[.] Vector Compare Greater Than Single-Precision

VC 4 10000306 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte

VC 4 100003C7 V vcmpgtsd[.] Vector Compare Greater Than Signed Doubleword

VC 4 10000346 V vcmpgtsh[.] Vector Compare Greater Than Signed Halfword

VC 4 10000386 V vcmpgtsw[.] Vector Compare Greater Than Signed Word

VC 4 10000206 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte

VC 4 100002C7 V vcmpgtud[.] Vector Compare Greater Than Unsigned Doubleword

VC 4 10000246 V vcmpgtuh[.] Vector Compare Greater Than Unsigned Halfword

Table A-2. POWER8 Instructions by Category (Sheet 13 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 327 of 450

VC 4 10000286 V vcmpgtuw[.] Vector Compare Greater Than Unsigned Word

VX 4 100003CA V vctsxs Vector Convert From Single-Precision To Signed Fixed-Point
Word Saturate

VX 4 1000038A V vctuxs Vector Convert From Single-Precision To Unsigned Fixed-
Point Word Saturate

VX 4 10000684 V veqv Vector Equivalence

VX 4 1000018A V vexptefp Vector 2 Raised to the Exponent Estimate Single-Precision

VX 4 1000050C V vgbbd Vector Gather Bits by Byte by Doubleword

VX 4 100001CA V vlogefp Vector Log Base 2 Estimate Single-Precision

VA 4 1000002E V vmaddfp Vector Multiply-Add Single-Precision

VX 4 1000040A V vmaxfp Vector Maximum Single-Precision

VX 4 10000102 V vmaxsb Vector Maximum Signed Byte

VX 4 100001C2 V vmaxsd Vector Maximum Signed Doubleword

VX 4 10000142 V vmaxsh Vector Maximum Signed Halfword

VX 4 10000182 V vmaxsw Vector Maximum Signed Word

VX 4 10000002 V vmaxub Vector Maximum Unsigned Byte

VX 4 100000C2 V vmaxud Vector Maximum Unsigned Doubleword

VX 4 10000042 V vmaxuh Vector Maximum Unsigned Halfword

VX 4 10000082 V vmaxuw Vector Maximum Unsigned Word

VA 4 10000020 V vmhaddshs Vector Multiply-High-Add Signed Halfword Saturate

VA 4 10000021 V vmhraddshs Vector Multiply-High-Round-Add Signed Halfword Saturate

VX 4 1000044A V vminfp Vector Minimum Single-Precision

VX 4 10000302 V vminsb Vector Minimum Signed Byte

X 4 100003C2 V vminsd Vector Minimum Signed Doubleword

VX 4 10000342 V vminsh Vector Minimum Signed Halfword

VX 4 10000382 V vminsw Vector Minimum Signed Word

VX 4 10000202 V vminub Vector Minimum Unsigned Byte

VX 4 100002C2 V vminud Vector Minimum Unsigned Doubleword

VX 4 10000242 V vminuh Vector Minimum Unsigned Halfword

VX 4 10000282 V vminuw Vector Minimum Unsigned Word

VA 4 10000022 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword Modulo

VX 4 1000000C V vmrghb Vector Merge High Byte

VX 4 1000004C V vmrghh Vector Merge High Halfword

VX 4 1000008C V vmrghw Vector Merge High Word

VX 4 1000010C V vmrglb Vector Merge Low Byte

Table A-2. POWER8 Instructions by Category (Sheet 14 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 328 of 450
Version 1.3

16 March 2016

VX 4 1000014C V vmrglh Vector Merge Low Halfword

VX 4 1000018C V vmrglw Vector Merge Low Word

VA 4 10000025 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo

VA 4 10000028 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo

VA 4 10000029 V vmsumshs Vector Multiply-Sum Signed Halfword Saturate

VA 4 10000024 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo

VA 4 10000026 V vmsumuhm Vector Multiply-Sum Unsigned Halfword Modulo

VA 4 10000027 V vmsumuhs Vector Multiply-Sum Unsigned Halfword Saturate

VX 4 10000308 V vmulesb Vector Multiply Even Signed Byte

VX 4 10000348 V vmulesh Vector Multiply Even Signed Halfword

VX 4 10000388 V vmulesw Vector Multiply Even Signed Word

VX 4 10000208 V vmuleub Vector Multiply Even Unsigned Byte

VX 4 10000248 V vmuleuh Vector Multiply Even Unsigned Halfword

VX 4 10000288 V vmuleuw Vector Multiply Even Unsigned Word

VX 4 10000108 V vmulosb Vector Multiply Odd Signed Byte

VX 4 10000148 V vmulosh Vector Multiply Odd Signed Halfword

VX 4 10000188 V vmulosw Vector Multiply Odd Signed Word

VX 4 10000008 V vmuloub Vector Multiply Odd Unsigned Byte

VX 4 10000048 V vmulouh Vector Multiply Odd Unsigned Halfword

VX 4 10000088 V vmulouw Vector Multiply Odd Unsigned Word

VX 4 10000089 V vmuluwm Vector Multiply Unsigned Word Modulo

VX 4 10000584 V vnand Vector NAND

VA 4 1000002F V vnmsubfp Vector Negative Multiply-Subtract Single-Precision

VX 4 10000504 V vnor Vector Logical NOR

VX 4 10000484 V vor Vector Logical OR

VX 4 10000544 V vorc Vector OR with Complement

VA 4 1000002B V vperm Vector Permute

VX 4 1000030E V vpkpx Vector Pack Pixel

VX 4 100005CE V vpksdss Vector Pack Signed Doubleword Signed Saturate

VX 4 1000054E V vpksdus Vector Pack Signed Doubleword Unsigned Saturate

VX 4 1000018E V vpkshss Vector Pack Signed Halfword Signed Saturate

VX 4 1000010E V vpkshus Vector Pack Signed Halfword Unsigned Saturate

VX 4 100001CE V vpkswss Vector Pack Signed Word Signed Saturate

VX 4 1000014E V vpkswus Vector Pack Signed Word Unsigned Saturate

Table A-2. POWER8 Instructions by Category (Sheet 15 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 329 of 450

VX 4 1000044E V vpkudum Vector Pack Unsigned Doubleword Unsigned Modulo

VX 4 100004CE V vpkudus Vector Pack Unsigned Doubleword Unsigned Saturate

VX 4 1000000E V vpkuhum Vector Pack Unsigned Halfword Unsigned Modulo

VX 4 1000008E V vpkuhus Vector Pack Unsigned Halfword Unsigned Saturate

VX 4 1000004E V vpkuwum Vector Pack Unsigned Word Unsigned Modulo

VX 4 100000CE V vpkuwus Vector Pack Unsigned Word Unsigned Saturate

VX 4 10000408 V vpmsumb Vector Polynomial Multiply-Sum Byte

VX 4 100004C8 V vpmsumd Vector Polynomial Multiply-Sum Doubleword

VX 4 10000448 V vpmsumh Vector Polynomial Multiply-Sum Halfword

VX 4 10000488 V vpmsumw Vector Polynomial Multiply-Sum Word

VX 4 10000703 V vpopcntb Vector Population Count Byte

VX 4 100007C3 V vpopcntd Vector Population Count Doubleword

VX 4 10000743 V vpopcnth Vector Population Count Halfword

VX 4 10000783 V vpopcntw Vector Population Count Word

VX 4 1000010A V vrefp Vector Reciprocal Estimate Single-Precision

VX 4 100002CA V vrfim Vector Round to Single-Precision Integer toward -Infinity

VX 4 1000020A V vrfin Vector Round to Single-Precision Integer Nearest

VX 4 1000028A V vrfip Vector Round to Single-Precision Integer toward +Infinity

VX 4 1000024A V vrfiz Vector Round to Single-Precision Integer toward Zero

VX 4 10000004 V vrlb Vector Rotate Left Byte

VX 4 100000C4 V vrld Vector Rotate Left Doubleword

VX 4 10000044 V vrlh Vector Rotate Left Halfword

VX 4 10000084 V vrlw Vector Rotate Left Word

VX 4 1000014A V vrsqrtefp Vector Reciprocal Square Root Estimate Single-Precision

VA 4 1000002A V vsel Vector Select

VX 4 100001C4 V vsl Vector Shift Left

VX 4 10000104 V vslb Vector Shift Left Byte

VX 4 100005C4 V vsld Vector Shift Left Doubleword

VA 4 1000002C V vsldoi Vector Shift Left Double by Octet Immediate

VX 4 10000144 V vslh Vector Shift Left Halfword

VX 4 1000040C V vslo Vector Shift Left by Octet

VX 4 10000184 V vslw Vector Shift Left Word

VX 4 1000020C V vspltb Vector Splat Byte

VX 4 1000024C V vsplth Vector Splat Halfword

Table A-2. POWER8 Instructions by Category (Sheet 16 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 330 of 450
Version 1.3

16 March 2016

VX 4 1000030C V vspltisb Vector Splat Immediate Signed Byte

VX 4 1000034C V vspltish Vector Splat Immediate Signed Halfword

VX 4 1000038C V vspltisw Vector Splat Immediate Signed Word

VX 4 1000028C V vspltw Vector Splat Word

VX 4 100002C4 V vsr Vector Shift Right

VX 4 10000304 V vsrab Vector Shift Right Algebraic Byte

VX 4 100003C4 V vsrad Vector Shift Right Algebraic Doubleword

VX 4 10000344 V vsrah Vector Shift Right Algebraic Halfword

VX 4 10000384 V vsraw Vector Shift Right Algebraic Word

VX 4 10000204 V vsrb Vector Shift Right Byte

VX 4 100006C4 V vsrd Vector Shift Right Doubleword

VX 4 10000244 V vsrh Vector Shift Right Halfword

VX 4 1000044C V vsro Vector Shift Right by Octet

VX 4 10000284 V vsrw Vector Shift Right Word

VX 4 10000540 V vsubcuq Vector Subtract and Write Carry Unsigned Quadword

VX 4 10000580 V vsubcuw Vector Subtract and Write Carry-Out Unsigned Word

VA 4 1000003F V vsubecuq Vector Subtract Extended and Write Carry Unsigned Quad-
word

VA 4 1000003E V vsubeuqm Vector Subtract Extended Unsigned Quadword Modulo

VX 4 1000004A V vsubfp Vector Subtract Single-Precision

VX 4 10000700 V vsubsbs Vector Subtract Signed Byte Saturate

VX 4 10000740 V vsubshs Vector Subtract Signed Halfword Saturate

VX 4 10000780 V vsubsws Vector Subtract Signed Word Saturate

VX 4 10000400 V vsububm Vector Subtract Unsigned Byte Modulo

VX 4 10000600 V vsububs Vector Subtract Unsigned Byte Saturate

VX 4 100004C0 V vsubudm Vector Subtract Unsigned Doubleword Modulo

VX 4 10000440 V vsubuhm Vector Subtract Unsigned Halfword Modulo

VX 4 10000640 V vsubuhs Vector Subtract Unsigned Halfword Saturate

VX 4 10000500 V vsubuqm Vector Subtract Unsigned Quadword Modulo

VX 4 10000480 V vsubuwm Vector Subtract Unsigned Word Modulo

VX 4 10000680 V vsubuws Vector Subtract Unsigned Word Saturate

VX 4 10000688 V vsum2sws Vector Sum across Half Signed Word Saturate

VX 4 10000708 V vsum4sbs Vector Sum across Quarter Signed Byte Saturate

VX 4 10000648 V vsum4shs Vector Sum across Quarter Signed Halfword Saturate

VX 4 10000608 V vsum4ubs Vector Sum across Quarter Unsigned Byte Saturate

Table A-2. POWER8 Instructions by Category (Sheet 17 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 331 of 450

VX 4 10000788 V vsumsws Vector Sum across Signed Word Saturate

VX 4 1000034E V vupkhpx Vector Unpack High Pixel

VX 4 1000020E V vupkhsb Vector Unpack High Signed Byte

VX 4 1000024E V vupkhsh Vector Unpack High Signed Halfword

VX 4 1000064E V vupkhsw Vector Unpack High Signed Word

VX 4 100003CE V vupklpx Vector Unpack Low Pixel

VX 4 1000028E V vupklsb Vector Unpack Low Signed Byte

VX 4 100002CE V vupklsh Vector Unpack Low Signed Halfword

VX 4 100006CE V vupklsw Vector Unpack Low Signed Word

VX 4 100004C4 V vxor Vector Logical XOR

VX 4 10000508 V.AES vcipher Vector AES Cipher

VX 4 10000509 V.AES vcipherlast Vector AES Cipher Last

VX 4 10000548 V.AES vncipher Vector AES Inverse Cipher

VX 4 10000549 V.AES vncipherlast Vector AES Inverse Cipher Last

VX 4 100005C8 V.AES vsbox Vector AES S-Box

VA 4 1000002D V.RAID vpermxor Vector Permute and Exclusive-OR

VX 4 100006C2 V.SHA2 vshasigmad Vector SHA-512 Sigma Doubleword

VX 4 10000682 V.SHA2 vshasigmaw Vector SHA-256 Sigma Word

X 63 FC00078C VSX fmrgew Floating Merge Even Word

X 63 FC00068C VSX fmrgow Floating Merge Odd Word

XX1 31 7C000498 VSX lxsdx Load VSR Scalar Doubleword Indexed

XX1 31 7C000098 VSX lxsiwax Load VSX Scalar as Integer Word Algebraic Indexed

XX1 31 7C000018 VSX lxsiwzx Load VSX Scalar as Integer Word and Zero Indexed

XX1 31 7C000418 VSX lxsspx Load VSX Scalar Single-Precision Indexed

XX1 31 7C000698 VSX lxvd2x Load VSR Vector Doubleword*2 Indexed

XX1 31 7C000298 VSX lxvdsx Load VSR Vector Doubleword and Splat Indexed

XX1 31 7C000618 VSX lxvw4x Load VSR Vector Word*4 Indexed

XX1 31 7C000066 VSX mfvsrd Move From VSR Doubleword

XX1 31 7C0000E6 VSX mfvsrwz Move From VSR Word and Zero

XX1 31 7C000166 VSX mtvsrd Move To VSR Doubleword

XX1 31 7C0001A6 VSX mtvsrwa Move To VSR Word Algebraic

XX1 31 7C0001E6 VSX mtvsrwz Move To VSR Word and Zero

XX1 31 7C000598 VSX stxsdx Store VSR Scalar Doubleword Indexed

XX1 31 7C000118 VSX stxsiwx Store VSX Scalar as Integer Word Indexed

Table A-2. POWER8 Instructions by Category (Sheet 18 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 332 of 450
Version 1.3

16 March 2016

XX1 31 7C000518 VSX stxsspx Store VSR Scalar Word Indexed

XX1 31 7C000798 VSX stxvd2x Store VSR Vector Doubleword*2 Indexed

XX1 31 7C000718 VSX stxvw4x Store VSR Vector Word*4 Indexed

VX 4 1000078C VSX vmrgew Vector Merge Even Word

VX 4 1000068C VSX vmrgow Vector Merge Odd Word

XX2 60 F0000564 VSX xsabsdp VSX Scalar Absolute Value Double-Precision

XX3 60 F0000100 VSX xsadddp VSX Scalar Add Double-Precision

XX3 60 F0000000 VSX xsaddsp VSX Scalar Add Single-Precision

XX3 60 F0000158 VSX xscmpodp VSX Scalar Compare Ordered Double-Precision

XX3 60 F0000118 VSX xscmpudp VSX Scalar Compare Unordered Double-Precision

XX3 60 F0000580 VSX xscpsgndp VSX Scalar Copy Sign Double-Precision

XX2 60 F0000424 VSX xscvdpsp VSX Scalar Convert Double-Precision to Single-Precision

XX2 60 F000042C VSX xscvdpspn VSX Scalar Convert Double-Precision to Single-Precision for-
mat Non-signalling

XX2 60 F0000560 VSX xscvdpsxds VSX Scalar Convert Double-Precision to Signed Fixed-Point
Doubleword Saturate

XX2 60 F0000160 VSX xscvdpsxws VSX Scalar Convert Double-Precision to Signed Fixed-Point
Word Saturate

XX2 60 F0000520 VSX xscvdpuxds VSX Scalar Convert Double-Precision to Unsigned Fixed-
Point Doubleword Saturate

XX2 60 F0000120 VSX xscvdpuxws VSX Scalar Convert Double-Precision to Unsigned Fixed-
Point Word Saturate

XX2 60 F0000524 VSX xscvspdp VSX Scalar Convert Single-Precision to Double-Precision
(p=1)

XX2 60 F000052C VSX xscvspdpn Scalar Convert Single-Precision to Double-Precision format
Non-signalling

XX2 60 F00005E0 VSX xscvsxddp VSX Scalar Convert Signed Fixed-Point Doubleword to Dou-
ble-Precision

XX2 60 F00004E0 VSX xscvsxdsp VSX Scalar Convert Signed Fixed-Point Doubleword to Sin-
gle-Precision

XX2 60 F00005A0 VSX xscvuxddp VSX Scalar Convert Unsigned Fixed-Point Doubleword to
Double-Precision

XX2 60 F00004A0 VSX xscvuxdsp VSX Scalar Convert Unsigned Fixed-Point Doubleword to
Single-Precision

XX3 60 F00001C0 VSX xsdivdp VSX Scalar Divide Double-Precision

XX3 60 F00000C0 VSX xsdivsp VSX Scalar Divide Single-Precision

XX3 60 F0000108 VSX xsmaddadp VSX Scalar Multiply-Add Type-A Double-Precision

XX3 60 F0000008 VSX xsmaddasp VSX Scalar Multiply-Add Type-A Single-Precision

XX3 60 F0000148 VSX xsmaddmdp VSX Scalar Multiply-Add Type-M Double-Precision

Table A-2. POWER8 Instructions by Category (Sheet 19 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 333 of 450

XX3 60 F0000048 VSX xsmaddmsp VSX Scalar Multiply-Add Type-M Single-Precision

XX3 60 F0000500 VSX xsmaxdp VSX Scalar Maximum Double-Precision

XX3 60 F0000540 VSX xsmindp VSX Scalar Minimum Double-Precision

XX3 60 F0000188 VSX xsmsubadp VSX Scalar Multiply-Subtract Type-A Double-Precision

XX3 60 F0000088 VSX xsmsubasp VSX Scalar Multiply-Subtract Type-A Single-Precision

XX3 60 F00001C8 VSX xsmsubmdp VSX Scalar Multiply-Subtract Type-M Double-Precision

XX3 60 F00000C8 VSX xsmsubmsp VSX Scalar Multiply-Subtract Type-M Single-Precision

XX3 60 F0000180 VSX xsmuldp VSX Scalar Multiply Double-Precision

XX3 60 F0000080 VSX xsmulsp VSX Scalar Multiply Single-Precision

XX2 60 F00005A4 VSX xsnabsdp VSX Scalar Negative Absolute Value Double-Precision

XX2 60 F00005E4 VSX xsnegdp VSX Scalar Negate Double-Precision

XX3 60 F0000508 VSX xsnmaddadp VSX Scalar Negative Multiply-Add Type-A Double-Precision

XX3 60 F0000408 VSX xsnmaddasp VSX Scalar Negative Multiply-Add Type-A Single-Precision

XX3 60 F0000548 VSX xsnmaddmdp VSX Scalar Negative Multiply-Add Type-M Double-Precision

XX3 60 F0000448 VSX xsnmaddmsp VSX Scalar Negative Multiply-Add Type-M Single-Precision

XX3 60 F0000588 VSX xsnmsubadp VSX Scalar Negative Multiply-Subtract Type-A Double-Preci-
sion

XX3 60 F0000488 VSX xsnmsubasp VSX Scalar Negative Multiply-Subtract Type-A Single-Preci-
sion

XX3 60 F00005C8 VSX xsnmsubmdp VSX Scalar Negative Multiply-Subtract Type-M Double-Preci-
sion

XX3 60 F00004C8 VSX xsnmsubmsp VSX Scalar Negative Multiply-Subtract Type-M Single-Preci-
sion

XX2 60 F0000124 VSX xsrdpi VSX Scalar Round to Double-Precision Integer

XX2 60 F00001AC VSX xsrdpic VSX Scalar Round to Double-Precision Integer Using Current
Rounding Mode

XX2 60 F00001E4 VSX xsrdpim VSX Scalar Round to Double-Precision Integer toward -Infin-
ity

XX2 60 F00001A4 VSX xsrdpip VSX Scalar Round to Double-Precision Integer toward +Infin-
ity

XX2 60 F0000164 VSX xsrdpiz VSX Scalar Round to Double-Precision Integer toward Zero

XX1 60 F0000168 VSX xsredp VSX Scalar Reciprocal Estimate Double-Precision

XX2 60 F0000068 VSX xsresp VSX Scalar Reciprocal Estimate Single-Precision

XX2 60 F0000464 VSX xsrsp VSX Scalar Round to Single-Precision

XX2 60 F0000128 VSX xsrsqrtedp VSX Scalar Reciprocal Square Root Estimate Double-Preci-
sion

XX2 60 F0000028 VSX xsrsqrtesp VSX Scalar Reciprocal Square Root Estimate Single-Preci-
sion

Table A-2. POWER8 Instructions by Category (Sheet 20 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 334 of 450
Version 1.3

16 March 2016

XX2 60 F000012C VSX xssqrtdp VSX Scalar Square Root Double-Precision

XX2 60 F000002C VSX xssqrtsp VSX Scalar Square Root Single-Precision

XX3 60 F0000140 VSX xssubdp VSX Scalar Subtract Double-Precision

XX3 60 F0000040 VSX xssubsp VSX Scalar Subtract Single-Precision

XX3 60 F00001E8 VSX xstdivdp VSX Scalar Test for Software Divide Double-Precision

XX2 60 F00001A8 VSX xstsqrtdp VSX Scalar Test for Software Square Root Double-Precision

XX2 60 F0000764 VSX xvabsdp VSX Vector Absolute Value Double-Precision

XX2 60 F0000664 VSX xvabssp VSX Vector Absolute Value Single-Precision

XX3 60 F0000300 VSX xvadddp VSX Vector Add Double-Precision

XX3 60 F0000200 VSX xvaddsp VSX Vector Add Single-Precision

XX3 60 F0000318 VSX xvcmpeqdp VSX Vector Compare Equal To Double-Precision

XX3 60 F0000718 VSX xvcmpeqdp. VSX Vector Compare Equal To Double-Precision and Record
CR6

XX3 60 F0000218 VSX xvcmpeqsp VSX Vector Compare Equal To Single-Precision

XX3 60 F0000618 VSX xvcmpeqsp. VSX Vector Compare Equal To Single-Precision and Record
CR6

XX3 60 F0000398 VSX xvcmpgedp VSX Vector Compare Greater Than or Equal To Double-Pre-
cision

XX3 60 F0000798 VSX xvcmpgedp. VSX Vector Compare Greater Than or Equal To Double-Pre-
cision and Record CR6

XX3 60 F0000298 VSX xvcmpgesp VSX Vector Compare Greater Than or Equal To Single-Preci-
sion

XX3 60 F0000698 VSX xvcmpgesp. VSX Vector Compare Greater Than or Equal To Single-Preci-
sion and Record CR6

XX3 60 F0000358 VSX xvcmpgtdp VSX Vector Compare Greater Than Double-Precision

XX3 60 F0000758 VSX xvcmpgtdp. VSX Vector Compare Greater Than Double-Precision and
Record CR6

XX3 60 F0000258 VSX xvcmpgtsp VSX Vector Compare Greater Than Single-Precision

XX3 60 F0000658 VSX xvcmpgtsp. VSX Vector Compare Greater Than Single-Precision and
Record CR6

XX3 60 F0000780 VSX xvcpsgndp VSX Vector Copy Sign Double-Precision

XX3 60 F0000680 VSX xvcpsgnsp VSX Vector Copy Sign Single-Precision

XX2 60 F0000624 VSX xvcvdpsp VSX Vector Convert Double-Precision to Single-Precision

XX2 60 F0000760 VSX xvcvdpsxds VSX Vector Convert Double-Precision to Signed Fixed-Point
Doubleword Saturate

XX2 60 F0000360 VSX xvcvdpsxws VSX Vector Convert Double-Precision to Signed Fixed-Point
Word Saturate

XX2 60 F0000720 VSX xvcvdpuxds VSX Vector Convert Double-Precision to Unsigned Fixed-
Point Doubleword Saturate

Table A-2. POWER8 Instructions by Category (Sheet 21 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 335 of 450

XX2 60 F0000320 VSX xvcvdpuxws VSX Vector Convert Double-Precision to Unsigned Fixed-
Point Word Saturate

XX2 60 F0000724 VSX xvcvspdp VSX Vector Convert Single-Precision to Double-Precision

XX2 60 F0000660 VSX xvcvspsxds VSX Vector Convert Single-Precision to Signed Fixed-Point
Doubleword Saturate

XX2 60 F0000260 VSX xvcvspsxws VSX Vector Convert Single-Precision to Signed Fixed-Point
Word Saturate

XX2 60 F0000620 VSX xvcvspuxds VSX Vector Convert Single-Precision to Unsigned Fixed-
Point Doubleword Saturate

XX2 60 F0000220 VSX xvcvspuxws VSX Vector Convert Single-Precision to Unsigned Fixed-
Point Word Saturate

XX2 60 F00007E0 VSX xvcvsxddp VSX Vector Convert Signed Fixed-Point Doubleword to Dou-
ble-Precision

XX2 60 F00006E0 VSX xvcvsxdsp VSX Vector Convert Signed Fixed-Point Doubleword to Sin-
gle-Precision

XX2 60 F00003E0 VSX xvcvsxwdp VSX Vector Convert Signed Fixed-Point Word to Double-Pre-
cision

XX2 60 F00002E0 VSX xvcvsxwsp VSX Vector Convert Signed Fixed-Point Word to Single-Pre-
cision

XX2 60 F00007A0 VSX xvcvuxddp VSX Vector Convert Unsigned Fixed-Point Doubleword to
Double-Precision

XX2 60 F00006A0 VSX xvcvuxdsp VSX Vector Convert Unsigned Fixed-Point Doubleword to
Single-Precision

XX2 60 F00003A0 VSX xvcvuxwdp VSX Vector Convert Unsigned Fixed-Point Word to Double-
Precision

XX2 60 F00002A0 VSX xvcvuxwsp VSX Vector Convert Unsigned Fixed-Point Word to Single-
Precision

XX3 60 F00003C0 VSX xvdivdp VSX Vector Divide Double-Precision

XX3 60 F00002C0 VSX xvdivsp VSX Vector Divide Single-Precision

XX3 60 F0000308 VSX xvmaddadp VSX Vector Multiply-Add Type-A Double-Precision

XX3 60 F0000208 VSX xvmaddasp VSX Vector Multiply-Add Type-A Single-Precision

XX3 60 F0000348 VSX xvmaddmdp VSX Vector Multiply-Add Type-M Double-Precision

XX3 60 F0000248 VSX xvmaddmsp VSX Vector Multiply-Add Type-M Single-Precision

XX3 60 F0000700 VSX xvmaxdp VSX Vector Maximum Double-Precision

XX3 60 F0000600 VSX xvmaxsp VSX Vector Maximum Single-Precision

XX3 60 F0000740 VSX xvmindp VSX Vector Minimum Double-Precision

XX3 60 F0000640 VSX xvminsp VSX Vector Minimum Single-Precision

XX3 60 F0000388 VSX xvmsubadp VSX Vector Multiply-Subtract Type-A Double-Precision

XX3 60 F0000288 VSX xvmsubasp VSX Vector Multiply-Subtract Type-A Single-Precision

XX3 60 F00003C8 VSX xvmsubmdp VSX Vector Multiply-Subtract Type-M Double-Precision

Table A-2. POWER8 Instructions by Category (Sheet 22 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 336 of 450
Version 1.3

16 March 2016

XX3 60 F00002C8 VSX xvmsubmsp VSX Vector Multiply-Subtract Type-M Single-Precision

XX3 60 F0000380 VSX xvmuldp VSX Vector Multiply Double-Precision

XX3 60 F0000280 VSX xvmulsp VSX Vector Multiply Single-Precision

XX2 60 F00007A4 VSX xvnabsdp VSX Vector Negative Absolute Value Double-Precision

XX2 60 F00006A4 VSX xvnabssp VSX Vector Negative Absolute Value Single-Precision

XX2 60 F00007E4 VSX xvnegdp VSX Vector Negate Double-Precision

XX2 60 F00006E4 VSX xvnegsp VSX Vector Negate Single-Precision

XX3 60 F0000708 VSX xvnmaddadp VSX Vector Negative Multiply-Add Type-A Double-Precision

XX3 60 F0000608 VSX xvnmaddasp VSX Vector Negative Multiply-Add Type-A Single-Precision

XX3 60 F0000748 VSX xvnmaddmdp VSX Vector Negative Multiply-Add Type-M Double-Precision

XX3 60 F0000648 VSX xvnmaddmsp VSX Vector Negative Multiply-Add Type-M Single-Precision

XX3 60 F0000788 VSX xvnmsubadp VSX Vector Negative Multiply-Subtract Type-A Double-Preci-
sion

XX3 60 F0000688 VSX xvnmsubasp VSX Vector Negative Multiply-Subtract Type-A Single-Preci-
sion

XX3 60 F00007C8 VSX xvnmsubmdp VSX Vector Negative Multiply-Subtract Type-M Double-Preci-
sion

XX3 60 F00006C8 VSX xvnmsubmsp VSX Vector Negative Multiply-Subtract Type-M Single-Preci-
sion

XX2 60 F0000324 VSX xvrdpi VSX Vector Round to Double-Precision Integer

XX2 60 F00003AC VSX xvrdpic VSX Vector Round to Double-Precision Integer using Current
Rounding Mode

XX2 60 F00003E4 VSX xvrdpim VSX Vector Round to Double-Precision Integer toward -Infin-
ity

XX2 60 F00003A4 VSX xvrdpip VSX Vector Round to Double-Precision Integer toward +Infin-
ity

XX2 60 F0000364 VSX xvrdpiz VSX Vector Round to Double-Precision Integer toward Zero

XX2 60 F0000368 VSX xvredp VSX Vector Reciprocal Estimate Double-Precision

XX2 60 F0000268 VSX xvresp VSX Vector Reciprocal Estimate Single-Precision

XX2 60 F0000224 VSX xvrspi VSX Vector Round to Single-Precision Integer

XX2 60 F00002AC VSX xvrspic VSX Vector Round to Single-Precision Integer using Current
Rounding Mode

XX2 60 F00002E4 VSX xvrspim VSX Vector Round to Single-Precision Integer toward -Infinity

XX2 60 F00002A4 VSX xvrspip VSX Vector Round to Single-Precision Integer toward +Infin-
ity

XX2 60 F0000264 VSX xvrspiz VSX Vector Round to Single-Precision Integer toward Zero

XX2 60 F0000328 VSX xvrsqrtedp VSX Vector Reciprocal Square Root Estimate Double-Preci-
sion

Table A-2. POWER8 Instructions by Category (Sheet 23 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Category

Page 337 of 450

XX2 60 F0000228 VSX xvrsqrtesp VSX Vector Reciprocal Square Root Estimate Single-Preci-
sion

XX2 60 F000032C VSX xvsqrtdp VSX Vector Square Root Double-Precision

XX2 60 F000022C VSX xvsqrtsp VSX Vector Square Root Single-Precision

XX3 60 F0000340 VSX xvsubdp VSX Vector Subtract Double-Precision

XX3 60 F0000240 VSX xvsubsp VSX Vector Subtract Single-Precision

XX3 60 F00003E8 VSX xvtdivdp VSX Vector Test for Software Divide Double-Precision

XX3 60 F00002E8 VSX xvtdivsp VSX Vector Test for Software Divide Single-Precision

XX2 60 F00003A8 VSX xvtsqrtdp VSX Vector Test for Software Square Root Double-Precision

XX2 60 F00002A8 VSX xvtsqrtsp VSX Vector Test for Software Square Root Single-Precision

XX3 60 F0000410 VSX xxland VSX Logical AND

XX3 60 F0000450 VSX xxlandc VSX Logical AND with Complement

XX3 60 F00005D0 VSX xxleqv VSX Logical Equivalence

XX3 60 F0000590 VSX xxlnand VSX Logical NAND

XX3 60 F0000510 VSX xxlnor VSX Logical NOR

XX3 60 F0000490 VSX xxlor VSX Logical OR

XX3 60 F0000550 VSX xxlorc VSX Logical OR with Complement

XX3 60 F00004D0 VSX xxlxor VSX Logical XOR

XX3 60 F0000090 VSX xxmrghw VSX Merge High Word

XX3 60 F0000190 VSX xxmrglw VSX Merge Low Word

XX3 60 F0000050 VSX xxpermdi VSX Permute Doubleword Immediate

XX4 60 F0000030 VSX xxsel VSX Select

XX3 60 F0000010 VSX xxsldwi VSX Shift Left Double by Word Immediate

XX2 60 F0000290 VSX xxspltw VSX Splat Word

Table A-2. POWER8 Instructions by Category (Sheet 24 of 24)

Instruction
Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Category

Page 338 of 450
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 339 of 450

Appendix B. POWER8 Instruction Summary by Mnemonic

Table B-1. lists the instructions implemented in the POWER8 processor in alphabetical order by mnemonic.
See Table A-1. Category Listing on page 313 for a description of the categories.

Table B-1. POWER8 Instructions by Mnemonic (Sheet 1 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

XO 31 7C000214 B add[.] Add

XO 31 7C000014 B addc[.] Add Carrying

XO 31 7C000414 B addco[.] Add Carrying and Record OV

XO 31 7C000114 B adde[.] Add Extended

XO 31 7C000514 B addeo[.] Add Extended and Record OV and Record OV

D 14 38000000 B addi Add Immediate

D 12 30000000 B addic Add Immediate Carrying

D 13 34000000 B addic. Add Immediate Carrying and Record CR0

D 15 3C000000 B addis Add Immediate Shifted

XO 31 7C0001D4 B addme[.] Add to Minus One Extended

XO 31 7C0005D4 B addmeo[.] Add to Minus One Extended and Record OV

XO 31 7C000614 B addo[.] Add and Record OV

XO 31 7C000194 B addze[.] Add to Zero Extended

XO 31 7C000594 B addzeo[.] Add to Zero Extended and Record OV

X 31 7C000038 B and[.] AND

X 31 7C000078 B andc[.] AND with Complement

D 28 70000000 B andi. AND Immediate and Record CR0

D 29 74000000 B andis. AND Immediate Shifted and Record CR0

I 18 48000000 B b[l][a] Branch

B 16 40000000 B bc[l][a] Branch Conditional

XL 19 4C000420 B bcctr[l] Branch Conditional to Count Register

VX 4 10000401 V bcdadd. Decimal Add Modulo

VX 4 10000441 V bcdsub. Decimal Subtract Modulo

XL 19 4C000020 B bclr[l] Branch Conditional to Link Register

X 19 4C000460 B bctar[l] Branch Conditional to Branch Target Address Register

X 31 7C0001F8 64 bpermd Bit Permute Doubleword

X 31 7C00035C S clrbhrb Clear BHRB

X 31 7C000000 B cmp Compare

X 31 7C0003F8 B cmpb Compare Byte

D 11 2C000000 B cmpi Compare Immediate

X 31 7C000040 B cmpl Compare Logical

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 340 of 450
Version 1.3

16 March 2016

D 10 28000000 B cmpli Compare Logical Immediate

X 31 7C000074 64 cntlzd[.] Count Leading Zeros Doubleword

X 31 7C000034 B cntlzw[.] Count Leading Zeros Word

XL 19 4C000202 B crand Condition Register AND

XL 19 4C000102 B crandc Condition Register AND with Complement

XL 19 4C000242 B creqv Condition Register Equivalent

XL 19 4C0001C2 B crnand Condition Register NAND

XL 19 4C000042 B crnor Condition Register NOR

XL 19 4C000382 B cror Condition Register OR

XL 19 4C000342 B crorc Condition Register OR with Complement

XL 19 4C000182 B crxor Condition Register XOR

X 59 EC000004 DFP dadd[.] Decimal Floating Add

X 63 FC000004 DFP daddq[.] Decimal Floating Add Quad

X 31 7C0000AC B dcbf Data Cache Block Flush

X 31 7C00006C B dcbst Data Cache Block Store

X 31 7C00022C B dcbt Data Cache Block Touch

X 31 7C0001EC B dcbtst Data Cache Block Touch for Store

X 31 7C0007EC B dcbz Data Cache Block Zero

X 59 EC000644 DFP dcffix[.] Decimal Floating Convert From Fixed

X 63 FC000644 DFP dcffixq[.] Decimal Floating Convert From Fixed Quad

X 59 EC000104 DFP dcmpo Decimal Floating Compare Ordered

X 63 FC000104 DFP dcmpoq Decimal Floating Compare Ordered Quad

X 59 EC000504 DFP dcmpu Decimal Floating Compare Unordered

X 63 FC000504 DFP dcmpuq Decimal Floating Compare Unordered Quad

X 59 EC000204 DFP dctdp[.] Decimal Floating Convert To DFP Long

X 59 EC000244 DFP dctfix[.] Decimal Floating Convert To Fixed

X 63 FC000244 DFP dctfixq[.] Decimal Floating Convert To Fixed Quad

X 63 FC000204 DFP dctqpq[.] Decimal Floating Convert To DFP Extended

X 59 EC000284 DFP ddedpd[.] Decimal Floating Decode DPD To BCD

X 63 FC000284 DFP ddedpdq[.] Decimal Floating Decode DPD To BCD Quad

X 59 EC000444 DFP ddiv[.] Decimal Floating Divide

X 63 FC000444 DFP ddivq[.] Decimal Floating Divide Quad

X 59 EC000684 DFP denbcd[.] Decimal Floating Encode BCD To DPD

X 63 FC000684 DFP denbcdq[.] Decimal Floating Encode BCD To DPD Quad

Table B-1. POWER8 Instructions by Mnemonic (Sheet 2 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 341 of 450

X 59 EC0006C4 DFP diex[.] Decimal Floating Insert Exponent

X 63 FC0006C4 DFP diexq[.] Decimal Floating Insert Exponent Quad

XO 31 7C0003D2 64 divd[.] Divide Doubleword

XO 31 7C000352 64 divde[.] Divide Doubleword Extended

XO 31 7C000752 64 divdeo[.] Divide Doubleword Extended and Record OV

XO 31 7C000312 64 divdeu[.] Divide Doubleword Extended Unsigned

XO 31 7C000712 64 divdeuo[.] Divide Doubleword Extended Unsigned and Record OV

XO 31 7C0007D2 64 divdo[.] Divide Doubleword and Record OV

XO 31 7C000392 64 divdu[.] Divide Doubleword Unsigned

XO 31 7C000792 64 divduo[.] Divide Doubleword Unsigned and Record OV

XO 31 7C0003D6 B divw[.] Divide Word

XO 31 7C000356 B divwe[.] Divide Word Extended

XO 31 7C000756 B divweo[.] Divide Word Extended and Record OV

XO 31 7C000316 B divweu[.] Divide Word Extended Unsigned

XO 31 7C000716 B divweuo[.] Divide Word Extended Unsigned and Record OV

XO 31 7C0007D6 B divwo[.] Divide Word and Record OV

XO 31 7C000396 B divwu[.] Divide Word Unsigned

XO 31 7C000796 B divwuo[.] Divide Word Unsigned and Record OV

X 59 EC000044 DFP dmul[.] Decimal Floating Multiply

X 63 FC000044 DFP dmulq[.] Decimal Floating Multiply Quad

XL 19 4C000324 S doze Doze

Z23 59 EC000006 DFP dqua[.] Decimal Quantize

Z23 59 EC000086 DFP dquai[.] Decimal Quantize Immediate

Z23 63 FC000086 DFP dquaiq[.] Decimal Quantize Immediate Quad

Z23 63 FC000006 DFP dquaq[.] Decimal Quantize Quad

X 63 FC000604 DFP drdpq[.] Decimal Floating Round To DFP Long

Z23 59 EC0001C6 DFP drintn[.] Decimal Floating Round To FP Integer Without Inexact

Z23 63 FC0001C6 DFP drintnq[.] Decimal Floating Round To FP Integer Without Inexact Quad

Z23 59 EC0000C6 DFP drintx[.] Decimal Floating Round To FP Integer With Inexact

Z23 63 FC0000C6 DFP drintxq[.] Decimal Floating Round To FP Integer With Inexact Quad

Z23 59 EC000046 DFP drrnd[.] Decimal Floating Reround

Z23 63 FC000046 DFP drrndq[.] Decimal Floating Reround Quad

X 59 EC000604 DFP drsp[.] Decimal Floating Round To DFP Short

Z22 59 EC000084 DFP dscli[.] Decimal Floating Shift Coefficient Left Immediate

Table B-1. POWER8 Instructions by Mnemonic (Sheet 3 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 342 of 450
Version 1.3

16 March 2016

Z22 63 FC000084 DFP dscliq[.] Decimal Floating Shift Coefficient Left Immediate Quad

Z22 59 EC0000C4 DFP dscri[.] Decimal Floating Shift Coefficient Right Immediate

Z22 63 FC0000C4 DFP dscriq[.] Decimal Floating Shift Coefficient Right Immediate Quad

X 59 EC000404 DFP dsub[.] Decimal Floating Subtract

X 63 FC000404 DFP dsubq[.] Decimal Floating Subtract Quad

Z22 59 EC000184 DFP dtstdc Decimal Floating Test Data Class

Z22 63 FC000184 DFP dtstdcq Decimal Floating Test Data Class Quad

Z22 59 EC0001C4 DFP dtstdg Decimal Floating Test Data Group

Z22 63 FC0001C4 DFP dtstdgq Decimal Floating Test Data Group Quad

X 59 EC000144 DFP dtstex Decimal Floating Test Exponent

X 63 FC000144 DFP dtstexq Decimal Floating Test Exponent Quad

X 59 EC000544 DFP dtstsf Decimal Floating Test Significance

X 63 FC000544 DFP dtstsfq Decimal Floating Test Significance Quad

X 59 EC0002C4 DFP dxex[.] Decimal Floating Extract Exponent

X 63 FC0002C4 DFP dxexq[.] Decimal Floating Extract Exponent Quad

X 31 7C0006AC S eieio Enforce In-order Execution of I/O

X 31 7C000238 B eqv[.] Equivalent

X 31 7C000774 B extsb[.] Extend Sign Byte

X 31 7C000734 B extsh[.] Extend Sign Halfword

X 31 7C0007B4 64 extsw[.] Extend Sign Word

X 63 FC000210 FP[R] fabs[.] Floating Absolute Value

A 63 FC00002A FP[R] fadd[.] Floating Add

A 59 EC00002A FP[R] fadds[.] Floating Add Single

X 63 FC00069C FP[R] fcfid[.] Floating Convert From Integer Doubleword

X 59 EC00069C FP[R] fcfids[.] Floating Convert From Integer Doubleword Single

X 63 FC00079C FP[R] fcfidu[.] Floating Convert From Integer Doubleword Unsigned

X 59 EC00079C FP[R] fcfidus[.] Floating Convert From Integer Doubleword Unsigned Single

X 63 FC000040 FP fcmpo Floating Compare Ordered

X 63 FC000000 FP fcmpu Floating Compare Unordered

X 63 FC000010 FP[R] fcpsgn[.] Floating Copy Sign

X 63 FC00065C FP[R] fctid[.] Floating Convert To Integer Doubleword

X 63 FC00075C FP[R] fctidu[.] Floating Convert To Integer Doubleword Unsigned

X 63 FC00075E FP[R] fctiduz[.] Floating Convert To Integer Doubleword Unsigned with Round
Toward Zero

Table B-1. POWER8 Instructions by Mnemonic (Sheet 4 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 343 of 450

X 63 FC00065E FP[R] fctidz[.] Floating Convert To Integer Doubleword with Round Toward
Zero

X 63 FC00001C FP[R] fctiw[.] Floating Convert To Integer Word

X 63 FC00011C FP[R] fctiwu[.] Floating Convert To Integer Word Unsigned

X 63 FC00011E FP[R] fctiwuz[.] Floating Convert To Integer Word Unsigned with Round Toward
Zero

X 63 FC00001E FP[R] fctiwz[.] Floating Convert To Integer Word with round to Zero

A 63 FC000024 FP[R] fdiv[.] Floating Divide

A 59 EC000024 FP[R] fdivs[.] Floating Divide Single

A 63 FC00003A FP[R] fmadd[.] Floating Multiply-Add

A 59 EC00003A FP[R] fmadds[.] Floating Multiply-Add Single

X 63 FC000090 FP[R] fmr[.] Floating Move Register

X 63 FC00078C VSX fmrgew Floating Merge Even Word

X 63 FC00068C VSX fmrgow Floating Merge Odd Word

A 63 FC000038 FP[R] fmsub[.] Floating Multiply-Subtract

A 59 EC000038 FP[R] fmsubs[.] Floating Multiply-Subtract Single

A 63 FC000032 FP[R] fmul[.] Floating Multiply

A 59 EC000032 FP[R] fmuls[.] Floating Multiply Single

X 63 FC000110 FP[R] fnabs[.] Floating Negative Absolute Value

X 63 FC000050 FP[R] fneg[.] Floating Negate

A 63 FC00003E FP[R] fnmadd[.] Floating Negative Multiply-Add

A 59 EC00003E FP[R] fnmadds[.] Floating Negative Multiply-Add Single

A 63 FC00003C FP[R] fnmsub[.] Floating Negative Multiply-Subtract

A 59 EC00003C FP[R] fnmsubs[.] Floating Negative Multiply-Subtract Single

A 63 FC000030 FP[R].in fre[.] Floating Reciprocal Estimate

A 59 EC000030 FP[R] fres[.] Floating Reciprocal Estimate Single

X 63 FC0003D0 FP[R].in frim[.] Floating Round To Integer Minus

X 63 FC000310 FP[R].in frin[.] Floating Round To Integer Nearest

X 63 FC000390 FP[R].in frip[.] Floating Round To Integer Plus

X 63 FC000350 FP[R].in friz[.] Floating Round To Integer toward Zero

X 63 FC000018 FP[R] frsp[.] Floating Round to Single-Precision

A 63 FC000034 FP[R] frsqrte[.] Floating Reciprocal Square Root Estimate

A 59 EC000034 FP[R].in frsqrtes[.] Floating Reciprocal Square Root Estimate Single

A 63 FC00002E FP[R] fsel[.] Floating Select

A 63 FC00002C FP[R] fsqrt[.] Floating Square Root

Table B-1. POWER8 Instructions by Mnemonic (Sheet 5 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 344 of 450
Version 1.3

16 March 2016

A 59 EC00002C FP[R] fsqrts[.] Floating Square Root Single

A 63 FC000028 FP[R] fsub[.] Floating Subtract

A 59 EC000028 FP[R] fsubs[.] Floating Subtract Single

X 63 FC000100 FP ftdiv Floating Test for Software Divide

X 63 FC000140 FP ftsqrt Floating Test for Software Square Root

XL 19 4C000224 S hrfid Return From Interrupt Doubleword Hypervisor

X 31 7C0007AC B icbi Instruction Cache Block Invalidate

X 31 7C00002C B icbt Instruction Cache Block Touch

A 31 7C00001E B isel Integer Select

XL 19 4C00012C B isync Instruction Synchronize

X 31 7C000068 B lbarx Load Byte And Reserve Indexed

D 34 88000000 B lbz Load Byte and Zero

X 31 7C0006AA S lbzcix Load Byte and Zero Caching Inhibited Indexed

D 35 8C000000 B lbzu Load Byte and Zero with Update

X 31 7C0000EE B lbzux Load Byte and Zero with Update Indexed

X 31 7C0000AE B lbzx Load Byte and Zero Indexed

DS 58 E8000000 64 ld Load Doubleword

X 31 7C0000A8 64 ldarx Load Doubleword And Reserve Indexed

X 31 7C000428 64 ldbrx Load Doubleword Byte-Reverse Indexed

X 31 7C0006EA S ldcix Load Doubleword Caching Inhibited Indexed

X 31 7C00003A 64 ldepx Load Doubleword by External PID Indexed

DS 58 E8000001 64 ldu Load Doubleword with Update

X 31 7C00006A 64 ldux Load Doubleword with Update Indexed

X 31 7C00002A 64 ldx Load Doubleword Indexed

D 50 C8000000 FP lfd Load Floating-Point Double

DS 57 E4000000 FP.out lfdp Load Floating-Point Double Pair

X 31 7C00062E FP.out lfdpx Load Floating-Point Double Pair Indexed

D 51 CC000000 FP lfdu Load Floating-Point Double with Update

X 31 7C0004EE FP lfdux Load Floating-Point Double with Update Indexed

X 31 7C0004AE FP lfdx Load Floating-Point Double Indexed

X 31 7C0006AE FP lfiwax Load Floating-Point as Integer Word Algebraic Indexed

X 31 7C0006EE FP lfiwzx Load Floating-Point as Integer Word and Zero Indexed

D 48 C0000000 FP lfs Load Floating-Point Single

D 49 C4000000 FP lfsu Load Floating-Point Single with Update

Table B-1. POWER8 Instructions by Mnemonic (Sheet 6 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 345 of 450

X 31 7C00046E FP lfsux Load Floating-Point Single with Update Indexed

X 31 7C00042E FP lfsx Load Floating-Point Single Indexed

D 42 A8000000 B lha Load Halfword Algebraic

X 31 7C0000E8 B lharx Load Halfword And Reserve Indexed Xform

D 43 AC000000 B lhau Load Halfword Algebraic with Update

X 31 7C0002EE B lhaux Load Halfword Algebraic with Update Indexed

X 31 7C0002AE B lhax Load Halfword Algebraic Indexed

X 31 7C00062C B lhbrx Load Halfword Byte-Reverse Indexed

D 40 A0000000 B lhz Load Halfword and Zero

X 31 7C00066A S lhzcix Load Halfword and Zero Caching Inhibited Indexed

D 41 A4000000 B lhzu Load Halfword and Zero with Update

X 31 7C00026E B lhzux Load Halfword and Zero with Update Indexed

X 31 7C00022E B lhzx Load Halfword and Zero Indexed

D 46 B8000000 B lmw Load Multiple Word

DQ 56 E0000000 LSQ lq Load Quadword

X 31 7C000228 LSQ lqarx Load Quadword And Reserve Indexed

X 31 7C0004AA MA lswi Load String Word Immediate

X 31 7C00042A MA lswx Load String Word Indexed

X 31 7C00000E V lvebx Load Vector Element Byte Indexed

X 31 7C00004E V lvehx Load Vector Element Halfword Indexed

X 31 7C00008E V lvewx Load Vector Element Word Indexed

X 31 7C00000C V lvsl Load Vector for Shift Left

X 31 7C00004C V lvsr Load Vector for Shift Right

X 31 7C0000CE V lvx Load Vector Indexed

X 31 7C0002CE V lvxl Load Vector Indexed Last

DS 58 E8000002 64 lwa Load Word Algebraic

X 31 7C000028 B lwarx Load Word and Reserve Indexed

X 31 7C0002EA 64 lwaux Load Word Algebraic with Update Indexed

X 31 7C0002AA 64 lwax Load Word Algebraic Indexed

X 31 7C00042C B lwbrx Load Word Byte-Reverse Indexed

D 32 80000000 B lwz Load Word and Zero

X 31 7C00062A S lwzcix Load Word and Zero Caching Inhibited Indexed

D 33 84000000 B lwzu Load Word and Zero with Update

X 31 7C00006E B lwzux Load Word and Zero with Update Indexed

Table B-1. POWER8 Instructions by Mnemonic (Sheet 7 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 346 of 450
Version 1.3

16 March 2016

X 31 7C00002E B lwzx Load Word and Zero Indexed

XX1 31 7C000498 VSX lxsdx Load VSR Scalar Doubleword Indexed

XX1 31 7C000098 VSX lxsiwax Load VSX Scalar as Integer Word Algebraic Indexed

XX1 31 7C000018 VSX lxsiwzx Load VSX Scalar as Integer Word and Zero Indexed

XX1 31 7C000418 VSX lxsspx Load VSX Scalar Single-Precision Indexed

XX1 31 7C000698 VSX lxvd2x Load VSR Vector Doubleword*2 Indexed

XX1 31 7C000298 VSX lxvdsx Load VSR Vector Doubleword and Splat Indexed

XX1 31 7C000618 VSX lxvw4x Load VSR Vector Word*4 Indexed

XL 19 4C000000 B mcrf Move Condition Register Field

X 63 FC000080 FP mcrfs Move To Condition Register from FPSCR

XFX 31 7C00025C S mfbhrbe Move From Branch History Rolling Buffer

XFX 31 7C000026 B mfcr Move From Condition Register

X 63 FC00048E FP[R] mffs[.] Move From FPSCR

X 31 7C0000A6 S mfmsr Move From Machine State Register

XFX 31 7C100026 B mfocrf Move From One Condition Register Field

XFX 31 7C0002A6 B mfspr Move From Special Purpose Register

X 31 7C0004A6 S mfsr Move From Segment Register

X 31 7C000526 S mfsrin Move From Segment Register Indirect

XFX 31 7C0002E6 S.out mftb Move From Time Base

VX 4 10000604 V mfvscr Move From Vector Status and Control Register

XX1 31 7C000066 VSX mfvsrd Move From VSR Doubleword

XX1 31 7C0000E6 VSX mfvsrwz Move From VSR Word and Zero

X 31 7C0001DC S msgclr Message Clear

X 31 7C00015C S msgclrp Message Clear Privileged

X 31 7C00019C S msgsnd Message Send

X 31 7C00011C S msgsndp Message Send Privileged

XFX 31 7C000120 B mtcrf Move To Condition Register Fields

X 63 FC00008C FP[R] mtfsb0[.] Move To FPSCR Bit 0

X 63 FC00004C FP[R] mtfsb1[.] Move To FPSCR Bit 1

XFL 63 FC00058E FP[R] mtfsf[.] Move To FPSCR Fields

X 63 FC00010C FP[R] mtfsfi[.] Move To FPSCR Field Immediate

X 31 7C000124 S mtmsr Move To Machine State Register

X 31 7C000164 S mtmsrd Move To Machine State Register Doubleword

XFX 31 7C100120 B mtocrf Move To One Condition Register Field

Table B-1. POWER8 Instructions by Mnemonic (Sheet 8 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 347 of 450

XFX 31 7C0003A6 B mtspr Move To Special Purpose Register

X 31 7C0001A4 S mtsr Move To Segment Register

X 31 7C0001E4 S mtsrin Move To Segment Register Indirect

VX 4 10000644 V mtvscr Move To Vector Status and Control Register

XX1 31 7C000166 VSX mtvsrd Move To VSR Doubleword

XX1 31 7C0001A6 VSX mtvsrwa Move To VSR Word Algebraic

XX1 31 7C0001E6 VSX mtvsrwz Move To VSR Word and Zero

XO 31 7C000092 64 mulhd[.] Multiply High Doubleword

XO 31 7C000012 64 mulhdu[.] Multiply High Doubleword Unsigned

XO 31 7C000096 B mulhw[.] Multiply High Word

XO 31 7C000016 B mulhwu[.] Multiply High Word Unsigned

XO 31 7C0001D2 64 mulld[.] Multiply Low Doubleword

XO 31 7C0005D2 64 mulldo[.] Multiply Low Doubleword and Record OV

D 7 1C000000 B mulli Multiply Low Immediate

XO 31 7C0001D6 B mullw[.] Multiply Low Word

XO 31 7C0005D6 B mullwo[.] Multiply Low Word and Record OV

X 31 7C0003B8 B nand[.] NAND

XL 19 4C000364 S nap Nap

XO 31 7C0000D0 B neg[.] Negate

XO 31 7C0004D0 B nego[.] Negate and Record OV

X 31 7C0000F8 B nor[.] NOR

X 31 7C000378 B or[.] OR

X 31 7C000338 B orc[.] OR with Complement

D 24 60000000 B ori OR Immediate

D 25 64000000 B oris OR Immediate Shifted

X 31 7C0000F4 B popcntb Population Count Byte-wise

X 31 7C0003F4 64 popcntd Population Count Doubleword

X 31 7C0002F4 B popcntw Population Count Words

X 31 7C000174 64 prtyd Parity Doubleword

X 31 7C000134 B prtyw Parity Word

XL 19 4C000124 S rfebb Return from Event Based Branch

XL 19 4C000024 S rfid Return from Interrupt Doubleword

MDS 30 78000010 64 rldcl[.] Rotate Left Doubleword then Clear Left

MDS 30 78000012 64 rldcr[.] Rotate Left Doubleword then Clear Right

Table B-1. POWER8 Instructions by Mnemonic (Sheet 9 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 348 of 450
Version 1.3

16 March 2016

MD 30 78000008 64 rldic[.] Rotate Left Doubleword Immediate then Clear

MD 30 78000000 64 rldicl[.] Rotate Left Doubleword Immediate then Clear Left

MD 30 78000004 64 rldicr[.] Rotate Left Doubleword Immediate then Clear Right

MD 30 7800000C 64 rldimi[.] Rotate Left Doubleword Immediate then Mask Insert

M 20 50000000 B rlwimi[.] Rotate Left Word Immediate then Mask Insert

M 21 54000000 B rlwinm[.] Rotate Left Word Immediate then AND with Mask

M 23 5C000000 B rlwnm[.] Rotate Left Word then AND with Mask

XL 19 4C0003E4 S rvwinkle Rip Van Winkle

SC 17 44000002 B sc System Call

X 31 7C0007A7 S slbfee. SLB Find Entry ESID

X 31 7C0003E4 S slbia SLB Invalidate All

X 31 7C000364 S slbie SLB Invalidate Entry

X 31 7C000726 S slbmfee SLB Move From Entry ESID

X 31 7C0006A6 S slbmfev SLB Move From Entry VSID

X 31 7C000324 S slbmte SLB Move To Entry

X 31 7C000036 64 sld[.] Shift Left Doubleword

XL 19 4C0003A4 S sleep Sleep

X 31 7C000030 B slw[.] Shift Left Word

X 31 7C000634 64 srad[.] Shift Right Algebraic Doubleword

XS 31 7C000674 64 sradi[.] Shift Right Algebraic Doubleword Immediate

X 31 7C000630 B sraw[.] Shift Right Algebraic Word

X 31 7C000670 B srawi[.] Shift Right Algebraic Word Immediate

X 31 7C000436 64 srd[.] Shift Right Doubleword

X 31 7C000430 B srw[.] Shift Right Word

D 38 98000000 B stb Store Byte

X 31 7C0007AA S stbcix Store Byte Caching Inhibited Indexed

X 31 7C00056D B stbcx. Store Byte Conditional Indexed

D 39 9C000000 B stbu Store Byte with Update

X 31 7C0001EE B stbux Store Byte with Update Indexed

X 31 7C0001AE B stbx Store Byte Indexed

DS 62 F8000000 64 std Store Doubleword

X 31 7C000528 64 stdbrx Store Doubleword Byte-Reverse Indexed

X 31 7C0007EA S stdcix Store Doubleword Caching Inhibited Indexed

X 31 7C0001AD 64 stdcx. Store Doubleword Conditional Indexed and Record CR0

Table B-1. POWER8 Instructions by Mnemonic (Sheet 10 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 349 of 450

X 31 7C00013A 64 stdepx Store Doubleword by External PID Indexed

DS 62 F8000001 64 stdu Store Doubleword with Update

X 31 7C00016A 64 stdux Store Doubleword with Update Indexed

X 31 7C00012A 64 stdx Store Doubleword Indexed

D 54 D8000000 FP stfd Store Floating-Point Double

DS 61 F4000000 FP.out stfdp Store Floating-Point Double Pair

X 31 7C00072E FP.out stfdpx Store Floating-Point Double Pair Indexed

D 55 DC000000 FP stfdu Store Floating-Point Double with Update

X 31 7C0005EE FP stfdux Store Floating-Point Double with Update Indexed

X 31 7C0005AE FP stfdx Store Floating-Point Double Indexed

X 31 7C0007AE FP stfiwx Store Floating-Point as Integer Word Indexed

D 52 D0000000 FP stfs Store Floating-Point Single

D 53 D4000000 FP stfsu Store Floating-Point Single with Update

X 31 7C00056E FP stfsux Store Floating-Point Single with Update Indexed

X 31 7C00052E FP stfsx Store Floating-Point Single Indexed

D 44 B0000000 B sth Store Halfword

X 31 7C00072C B sthbrx Store Halfword Byte-Reverse Indexed

X 31 7C00076A S sthcix Store Halfword and Zero Caching Inhibited Indexed

X 31 7C0005AD B sthcx. Store Halfword Conditional Indexed Xform

D 45 B4000000 B sthu Store Halfword with Update

X 31 7C00036E B sthux Store Halfword with Update Indexed

X 31 7C00032E B sthx Store Halfword Indexed

D 47 BC000000 B stmw Store Multiple Word

DS 62 F8000002 LSQ stq Store Quadword

X 31 7C00016D LSQ stqcx. Store Quadword Conditional Indexed and record CR0

X 31 7C0005AA MA stswi Store String Word Immediate

X 31 7C00052A MA stswx Store String Word Indexed

X 31 7C00010E V stvebx Store Vector Element Byte Indexed

X 31 7C00014E V stvehx Store Vector Element Halfword Indexed

X 31 7C00018E V stvewx Store Vector Element Word Indexed

X 31 7C0001CE V stvx Store Vector Indexed

X 31 7C0003CE V stvxl Store Vector Indexed Last

D 36 90000000 B stw Store Word

X 31 7C00052C B stwbrx Store Word Byte-Reverse Indexed

Table B-1. POWER8 Instructions by Mnemonic (Sheet 11 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 350 of 450
Version 1.3

16 March 2016

X 31 7C00072A S stwcix Store Word and Zero Caching Inhibited Indexed

X 31 7C00012D B stwcx. Store Word Conditional Indexed and Record CR0

D 37 94000000 B stwu Store Word with Update

X 31 7C00016E B stwux Store Word with Update Indexed

X 31 7C00012E B stwx Store Word Indexed

XX1 31 7C000598 VSX stxsdx Store VSR Scalar Doubleword Indexed

XX1 31 7C000118 VSX stxsiwx Store VSX Scalar as Integer Word Indexed

XX1 31 7C000518 VSX stxsspx Store VSR Scalar Word Indexed

XX1 31 7C000798 VSX stxvd2x Store VSR Vector Doubleword*2 Indexed

XX1 31 7C000718 VSX stxvw4x Store VSR Vector Word*4 Indexed

XO 31 7C000050 B subf[.] Subtract From

XO 31 7C000010 B subfc[.] Subtract From Carrying

XO 31 7C000410 B subfco[.] Subtract From Carrying and Record OV

XO 31 7C000110 B subfe[.] Subtract From Extended

XO 31 7C000510 B subfeo[.] Subtract From Extended and Record OV

D 8 20000000 B subfic Subtract From Immediate Carrying

XO 31 7C0001D0 B subfme[.] Subtract From Minus One Extended

XO 31 7C0005D0 B subfmeo[.] Subtract From Minus One Extended and Record OV

XO 31 7C000450 B subfo[.] Subtract From and Record OV

XO 31 7C000190 B subfze[.] Subtract From Zero Extended

XO 31 7C000590 B subfzeo[.] Subtract From Zero Extended and Record OV

X 31 7C0004AC B sync Synchronize

X 31 7C00071D TM tabort. Transaction Abort

X 31 7C00065D TM tabortdc. Transaction Abort Doubleword Conditional

X 31 7C0006DD TM tabortdci. Transaction Abort Doubleword Conditional Immediate

X 31 7C00061D TM tabortwc. Transaction Abort Word Conditional

X 31 7C00069D TM tabortwci. Transaction Abort Word Conditional Immediate

X 31 7C00051D TM tbegin. Transaction Begin

X 31 7C00059C TM tcheck Transaction Check

X 31 7C000088 64 td Trap Doubleword

D 2 08000000 64 tdi Trap Doubleword Immediate

X 31 7C00055C TM tend. Transaction End

X 31 7C000264 S tlbie TLB Invalidate Entry

X 31 7C000224 S tlbiel TLB Invalidate Entry Local

Table B-1. POWER8 Instructions by Mnemonic (Sheet 12 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 351 of 450

X 31 7C00046C S tlbsync TLB Synchronize

X 31 7C0007DD TM trechkpt. Transaction Recheckpoint

X 31 7C00075D TM treclaim. Transaction Reclaim

X 31 7C000008 B tw Trap Word

D 3 0C000000 B twi Trap Word Immediate

VX 4 10000140 V vaddcuq Vector Add and Write Carry Unsigned Quadword

VX 4 10000180 V vaddcuw Vector Add and Write Carry-Out Unsigned Word

VA 4 1000003D V vaddecuq Vector Add Extended and Write Carry Unsigned Quadword

VA 4 1000003C V vaddeuqm Vector Add Extended Unsigned Quadword Modulo

VX 4 1000000A V vaddfp Vector Add Single-Precision

VX 4 10000300 V vaddsbs Vector Add Signed Byte Saturate

VX 4 10000340 V vaddshs Vector Add Signed Halfword Saturate

VX 4 10000380 V vaddsws Vector Add Signed Word Saturate

VX 4 10000000 V vaddubm Vector Add Unsigned Byte Modulo

VX 4 10000200 V vaddubs Vector Add Unsigned Byte Saturate

VX 4 100000C0 V vaddudm Vector Add Unsigned Doubleword Modulo

VX 4 10000040 V vadduhm Vector Add Unsigned Halfword Modulo

VX 4 10000240 V vadduhs Vector Add Unsigned Halfword Saturate

VX 4 10000100 V vadduqm Vector Add Unsigned Quadword Modulo

VX 4 10000080 V vadduwm Vector Add Unsigned Word Modulo

VX 4 10000280 V vadduws Vector Add Unsigned Word Saturate

VX 4 10000404 V vand Vector Logical AND

VX 4 10000444 V vandc Vector Logical AND with Complement

VX 4 10000502 V vavgsb Vector Average Signed Byte

VX 4 10000542 V vavgsh Vector Average Signed Halfword

VX 4 10000582 V vavgsw Vector Average Signed Word

VX 4 10000402 V vavgub Vector Average Unsigned Byte

VX 4 10000442 V vavguh Vector Average Unsigned Halfword

VX 4 10000482 V vavguw Vector Average Unsigned Word

VX 4 1000054C V vbpermq Vector Bit Permute Quadword

VX 4 1000054C V vbpermq Vector Bit Permute Quadword

VX 4 1000034A V vcfsx Vector Convert From Signed Fixed-Point Word To
Single-Precision

VX 4 1000030A V vcfux Vector Convert From Unsigned Fixed-Point Word

VX 4 10000508 V.AES vcipher Vector AES Cipher

Table B-1. POWER8 Instructions by Mnemonic (Sheet 13 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 352 of 450
Version 1.3

16 March 2016

VX 4 10000509 V.AES vcipherlast Vector AES Cipher Last

VX 4 10000702 V vclzb Vector Count Leading Zeros Byte

VX 4 100007C2 V vclzd Vector Count Leading Zeros Doubleword

VX 4 10000742 V vclzh Vector Count Leading Zeros Halfword

VX 4 10000782 V vclzw Vector Count Leading Zeros Word

VC 4 100003C6 V vcmpbfp[.] Vector Compare Bounds Single-Precision

VC 4 100000C6 V vcmpeqfp[.] Vector Compare Equal To Single-Precision

VC 4 10000006 V vcmpequb[.] Vector Compare Equal To Unsigned Byte

VC 4 100000C7 V vcmpequd[.] Vector Compare Equal To Unsigned Doubleword

VC 4 10000046 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword

VC 4 10000086 V vcmpequw[.] Vector Compare Equal To Unsigned Word

VC 4 100001C6 V vcmpgefp[.] Vector Compare Greater Than or Equal To Single-Precision

VC 4 100002C6 V vcmpgtfp[.] Vector Compare Greater Than Single-Precision

VC 4 10000306 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte

VC 4 100003C7 V vcmpgtsd[.] Vector Compare Greater Than Signed Doubleword

VC 4 10000346 V vcmpgtsh[.] Vector Compare Greater Than Signed Halfword

VC 4 10000386 V vcmpgtsw[.] Vector Compare Greater Than Signed Word

VC 4 10000206 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte

VC 4 100002C7 V vcmpgtud[.] Vector Compare Greater Than Unsigned Doubleword

VC 4 10000246 V vcmpgtuh[.] Vector Compare Greater Than Unsigned Halfword

VC 4 10000286 V vcmpgtuw[.] Vector Compare Greater Than Unsigned Word

VX 4 100003CA V vctsxs Vector Convert From Single-Precision To Signed Fixed-Point
Word Saturate

VX 4 1000038A V vctuxs Vector Convert From Single-Precision To Unsigned Fixed-Point
Word Saturate

VX 4 10000684 V veqv Vector Equivalence

VX 4 1000018A V vexptefp Vector 2 Raised to the Exponent Estimate Single-Precision

VX 4 1000050C V vgbbd Vector Gather Bits by Byte by Doubleword

VX 4 100001CA V vlogefp Vector Log Base 2 Estimate Single-Precision

VA 4 1000002E V vmaddfp Vector Multiply-Add Single-Precision

VX 4 1000040A V vmaxfp Vector Maximum Single-Precision

VX 4 10000102 V vmaxsb Vector Maximum Signed Byte

VX 4 100001C2 V vmaxsd Vector Maximum Signed Doubleword

VX 4 10000142 V vmaxsh Vector Maximum Signed Halfword

VX 4 10000182 V vmaxsw Vector Maximum Signed Word

Table B-1. POWER8 Instructions by Mnemonic (Sheet 14 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 353 of 450

VX 4 10000002 V vmaxub Vector Maximum Unsigned Byte

VX 4 100000C2 V vmaxud Vector Maximum Unsigned Doubleword

VX 4 10000042 V vmaxuh Vector Maximum Unsigned Halfword

VX 4 10000082 V vmaxuw Vector Maximum Unsigned Word

VA 4 10000020 V vmhaddshs Vector Multiply-High-Add Signed Halfword Saturate

VA 4 10000021 V vmhraddshs Vector Multiply-High-Round-Add Signed Halfword Saturate

VX 4 1000044A V vminfp Vector Minimum Single-Precision

VX 4 10000302 V vminsb Vector Minimum Signed Byte

X 4 100003C2 V vminsd Vector Minimum Signed Doubleword

VX 4 10000342 V vminsh Vector Minimum Signed Halfword

VX 4 10000382 V vminsw Vector Minimum Signed Word

VX 4 10000202 V vminub Vector Minimum Unsigned Byte

VX 4 100002C2 V vminud Vector Minimum Unsigned Doubleword

VX 4 10000242 V vminuh Vector Minimum Unsigned Halfword

VX 4 10000282 V vminuw Vector Minimum Unsigned Word

VA 4 10000022 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword Modulo

VX 4 1000078C VSX vmrgew Vector Merge Even Word

VX 4 1000000C V vmrghb Vector Merge High Byte

VX 4 1000004C V vmrghh Vector Merge High Halfword

VX 4 1000008C V vmrghw Vector Merge High Word

VX 4 1000010C V vmrglb Vector Merge Low Byte

VX 4 1000014C V vmrglh Vector Merge Low Halfword

VX 4 1000018C V vmrglw Vector Merge Low Word

VX 4 1000068C VSX vmrgow Vector Merge Odd Word

VA 4 10000025 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo

VA 4 10000028 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo

VA 4 10000029 V vmsumshs Vector Multiply-Sum Signed Halfword Saturate

VA 4 10000024 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo

VA 4 10000026 V vmsumuhm Vector Multiply-Sum Unsigned Halfword Modulo

VA 4 10000027 V vmsumuhs Vector Multiply-Sum Unsigned Halfword Saturate

VX 4 10000308 V vmulesb Vector Multiply Even Signed Byte

VX 4 10000348 V vmulesh Vector Multiply Even Signed Halfword

VX 4 10000388 V vmulesw Vector Multiply Even Signed Word

VX 4 10000208 V vmuleub Vector Multiply Even Unsigned Byte

Table B-1. POWER8 Instructions by Mnemonic (Sheet 15 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 354 of 450
Version 1.3

16 March 2016

VX 4 10000248 V vmuleuh Vector Multiply Even Unsigned Halfword

VX 4 10000288 V vmuleuw Vector Multiply Even Unsigned Word

VX 4 10000108 V vmulosb Vector Multiply Odd Signed Byte

VX 4 10000148 V vmulosh Vector Multiply Odd Signed Halfword

VX 4 10000188 V vmulosw Vector Multiply Odd Signed Word

VX 4 10000008 V vmuloub Vector Multiply Odd Unsigned Byte

VX 4 10000048 V vmulouh Vector Multiply Odd Unsigned Halfword

VX 4 10000088 V vmulouw Vector Multiply Odd Unsigned Word

VX 4 10000089 V vmuluwm Vector Multiply Unsigned Word Modulo

VX 4 10000584 V vnand Vector NAND

VX 4 10000548 V.AES vncipher Vector AES Inverse Cipher

VX 4 10000549 V.AES vncipherlast Vector AES Inverse Cipher Last

VA 4 1000002F V vnmsubfp Vector Negative Multiply-Subtract Single-Precision

VX 4 10000504 V vnor Vector Logical NOR

VX 4 10000484 V vor Vector Logical OR

VX 4 10000544 V vorc Vector OR with Complement

VA 4 1000002B V vperm Vector Permute

VA 4 1000002D V.RAID vpermxor Vector Permute and Exclusive-OR

VX 4 1000030E V vpkpx Vector Pack Pixel

VX 4 100005CE V vpksdss Vector Pack Signed Doubleword Signed Saturate

VX 4 1000054E V vpksdus Vector Pack Signed Doubleword Unsigned Saturate

VX 4 1000018E V vpkshss Vector Pack Signed Halfword Signed Saturate

VX 4 1000010E V vpkshus Vector Pack Signed Halfword Unsigned Saturate

VX 4 100001CE V vpkswss Vector Pack Signed Word Signed Saturate

VX 4 1000014E V vpkswus Vector Pack Signed Word Unsigned Saturate

VX 4 1000044E V vpkudum Vector Pack Unsigned Doubleword Unsigned Modulo

VX 4 100004CE V vpkudus Vector Pack Unsigned Doubleword Unsigned Saturate

VX 4 1000000E V vpkuhum Vector Pack Unsigned Halfword Unsigned Modulo

VX 4 1000008E V vpkuhus Vector Pack Unsigned Halfword Unsigned Saturate

VX 4 1000004E V vpkuwum Vector Pack Unsigned Word Unsigned Modulo

VX 4 100000CE V vpkuwus Vector Pack Unsigned Word Unsigned Saturate

VX 4 10000408 V vpmsumb Vector Polynomial Multiply-Sum Byte

VX 4 100004C8 V vpmsumd Vector Polynomial Multiply-Sum Doubleword

VX 4 10000448 V vpmsumh Vector Polynomial Multiply-Sum Halfword

Table B-1. POWER8 Instructions by Mnemonic (Sheet 16 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 355 of 450

VX 4 10000488 V vpmsumw Vector Polynomial Multiply-Sum Word

VX 4 10000703 V vpopcntb Vector Population Count Byte

VX 4 100007C3 V vpopcntd Vector Population Count Doubleword

VX 4 10000743 V vpopcnth Vector Population Count Halfword

VX 4 10000783 V vpopcntw Vector Population Count Word

VX 4 1000010A V vrefp Vector Reciprocal Estimate Single-Precision

VX 4 100002CA V vrfim Vector Round to Single-Precision Integer toward -Infinity

VX 4 1000020A V vrfin Vector Round to Single-Precision Integer Nearest

VX 4 1000028A V vrfip Vector Round to Single-Precision Integer toward +Infinity

VX 4 1000024A V vrfiz Vector Round to Single-Precision Integer toward Zero

VX 4 10000004 V vrlb Vector Rotate Left Byte

VX 4 100000C4 V vrld Vector Rotate Left Doubleword

VX 4 10000044 V vrlh Vector Rotate Left Halfword

VX 4 10000084 V vrlw Vector Rotate Left Word

VX 4 1000014A V vrsqrtefp Vector Reciprocal Square Root Estimate Single-Precision

VX 4 100005C8 V.AES vsbox Vector AES S-Box

VA 4 1000002A V vsel Vector Select

VX 4 100006C2 V.SHA2 vshasigmad Vector SHA-512 Sigma Doubleword

VX 4 10000682 V.SHA2 vshasigmaw Vector SHA-256 Sigma Word

VX 4 100001C4 V vsl Vector Shift Left

VX 4 10000104 V vslb Vector Shift Left Byte

VX 4 100005C4 V vsld Vector Shift Left Doubleword

VA 4 1000002C V vsldoi Vector Shift Left Double by Octet Immediate

VX 4 10000144 V vslh Vector Shift Left Halfword

VX 4 1000040C V vslo Vector Shift Left by Octet

VX 4 10000184 V vslw Vector Shift Left Word

VX 4 1000020C V vspltb Vector Splat Byte

VX 4 1000024C V vsplth Vector Splat Halfword

VX 4 1000030C V vspltisb Vector Splat Immediate Signed Byte

VX 4 1000034C V vspltish Vector Splat Immediate Signed Halfword

VX 4 1000038C V vspltisw Vector Splat Immediate Signed Word

VX 4 1000028C V vspltw Vector Splat Word

VX 4 100002C4 V vsr Vector Shift Right

VX 4 10000304 V vsrab Vector Shift Right Algebraic Byte

Table B-1. POWER8 Instructions by Mnemonic (Sheet 17 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 356 of 450
Version 1.3

16 March 2016

VX 4 100003C4 V vsrad Vector Shift Right Algebraic Doubleword

VX 4 10000344 V vsrah Vector Shift Right Algebraic Halfword

VX 4 10000384 V vsraw Vector Shift Right Algebraic Word

VX 4 10000204 V vsrb Vector Shift Right Byte

VX 4 100006C4 V vsrd Vector Shift Right Doubleword

VX 4 10000244 V vsrh Vector Shift Right Halfword

VX 4 1000044C V vsro Vector Shift Right by Octet

VX 4 10000284 V vsrw Vector Shift Right Word

VX 4 10000540 V vsubcuq Vector Subtract and Write Carry Unsigned Quadword

VX 4 10000580 V vsubcuw Vector Subtract and Write Carry-Out Unsigned Word

VA 4 1000003F V vsubecuq Vector Subtract Extended and Write Carry Unsigned Quadword

VA 4 1000003E V vsubeuqm Vector Subtract Extended Unsigned Quadword Modulo

VX 4 1000004A V vsubfp Vector Subtract Single-Precision

VX 4 10000700 V vsubsbs Vector Subtract Signed Byte Saturate

VX 4 10000740 V vsubshs Vector Subtract Signed Halfword Saturate

VX 4 10000780 V vsubsws Vector Subtract Signed Word Saturate

VX 4 10000400 V vsububm Vector Subtract Unsigned Byte Modulo

VX 4 10000600 V vsububs Vector Subtract Unsigned Byte Saturate

VX 4 100004C0 V vsubudm Vector Subtract Unsigned Doubleword Modulo

VX 4 10000440 V vsubuhm Vector Subtract Unsigned Halfword Modulo

VX 4 10000640 V vsubuhs Vector Subtract Unsigned Halfword Saturate

VX 4 10000500 V vsubuqm Vector Subtract Unsigned Quadword Modulo

VX 4 10000480 V vsubuwm Vector Subtract Unsigned Word Modulo

VX 4 10000680 V vsubuws Vector Subtract Unsigned Word Saturate

VX 4 10000688 V vsum2sws Vector Sum across Half Signed Word Saturate

VX 4 10000708 V vsum4sbs Vector Sum across Quarter Signed Byte Saturate

VX 4 10000648 V vsum4shs Vector Sum across Quarter Signed Halfword Saturate

VX 4 10000608 V vsum4ubs Vector Sum across Quarter Unsigned Byte Saturate

VX 4 10000788 V vsumsws Vector Sum across Signed Word Saturate

VX 4 1000034E V vupkhpx Vector Unpack High Pixel

VX 4 1000020E V vupkhsb Vector Unpack High Signed Byte

VX 4 1000024E V vupkhsh Vector Unpack High Signed Halfword

VX 4 1000064E V vupkhsw Vector Unpack High Signed Word

VX 4 100003CE V vupklpx Vector Unpack Low Pixel

Table B-1. POWER8 Instructions by Mnemonic (Sheet 18 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 357 of 450

VX 4 1000028E V vupklsb Vector Unpack Low Signed Byte

VX 4 100002CE V vupklsh Vector Unpack Low Signed Halfword

VX 4 100006CE V vupklsw Vector Unpack Low Signed Word

VX 4 100004C4 V vxor Vector Logical XOR

X 26 68000000 B xnop Executed No Operation

X 31 7C000278 B xor[.] XOR

D 26 68000000 B xori XOR Immediate

D 27 6C000000 B xoris XOR Immediate Shifted

XX2 60 F0000564 VSX xsabsdp VSX Scalar Absolute Value Double-Precision

XX3 60 F0000100 VSX xsadddp VSX Scalar Add Double-Precision

XX3 60 F0000000 VSX xsaddsp VSX Scalar Add Single-Precision

XX3 60 F0000158 VSX xscmpodp VSX Scalar Compare Ordered Double-Precision

XX3 60 F0000118 VSX xscmpudp VSX Scalar Compare Unordered Double-Precision

XX3 60 F0000580 VSX xscpsgndp VSX Scalar Copy Sign Double-Precision

XX2 60 F0000424 VSX xscvdpsp VSX Scalar Convert Double-Precision to Single-Precision

XX2 60 F000042C VSX xscvdpspn VSX Scalar Convert Double-Precision to Single-Precision format
Non-signalling

XX2 60 F0000560 VSX xscvdpsxds VSX Scalar Convert Double-Precision to Signed Fixed-Point
Doubleword Saturate

XX2 60 F0000160 VSX xscvdpsxws VSX Scalar Convert Double-Precision to Signed Fixed-Point
Word Saturate

XX2 60 F0000520 VSX xscvdpuxds VSX Scalar Convert Double-Precision to Unsigned Fixed-Point
Doubleword Saturate

XX2 60 F0000120 VSX xscvdpuxws VSX Scalar Convert Double-Precision to Unsigned Fixed-Point
Word Saturate

XX2 60 F0000524 VSX xscvspdp VSX Scalar Convert Single-Precision to Double-Precision (p=1)

XX2 60 F000052C VSX xscvspdpn Scalar Convert Single-Precision to Double-Precision format
Non-signalling

XX2 60 F00005E0 VSX xscvsxddp VSX Scalar Convert Signed Fixed-Point Doubleword to Double-
Precision

XX2 60 F00004E0 VSX xscvsxdsp VSX Scalar Convert Signed Fixed-Point Doubleword to Single-
Precision

XX2 60 F00005A0 VSX xscvuxddp VSX Scalar Convert Unsigned Fixed-Point Doubleword to Dou-
ble-Precision

XX2 60 F00004A0 VSX xscvuxdsp VSX Scalar Convert Unsigned Fixed-Point Doubleword to Sin-
gle-Precision

XX3 60 F00001C0 VSX xsdivdp VSX Scalar Divide Double-Precision

XX3 60 F00000C0 VSX xsdivsp VSX Scalar Divide Single-Precision

XX3 60 F0000108 VSX xsmaddadp VSX Scalar Multiply-Add Type-A Double-Precision

Table B-1. POWER8 Instructions by Mnemonic (Sheet 19 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 358 of 450
Version 1.3

16 March 2016

XX3 60 F0000008 VSX xsmaddasp VSX Scalar Multiply-Add Type-A Single-Precision

XX3 60 F0000148 VSX xsmaddmdp VSX Scalar Multiply-Add Type-M Double-Precision

XX3 60 F0000048 VSX xsmaddmsp VSX Scalar Multiply-Add Type-M Single-Precision

XX3 60 F0000500 VSX xsmaxdp VSX Scalar Maximum Double-Precision

XX3 60 F0000540 VSX xsmindp VSX Scalar Minimum Double-Precision

XX3 60 F0000188 VSX xsmsubadp VSX Scalar Multiply-Subtract Type-A Double-Precision

XX3 60 F0000088 VSX xsmsubasp VSX Scalar Multiply-Subtract Type-A Single-Precision

XX3 60 F00001C8 VSX xsmsubmdp VSX Scalar Multiply-Subtract Type-M Double-Precision

XX3 60 F00000C8 VSX xsmsubmsp VSX Scalar Multiply-Subtract Type-M Single-Precision

XX3 60 F0000180 VSX xsmuldp VSX Scalar Multiply Double-Precision

XX3 60 F0000080 VSX xsmulsp VSX Scalar Multiply Single-Precision

XX2 60 F00005A4 VSX xsnabsdp VSX Scalar Negative Absolute Value Double-Precision

XX2 60 F00005E4 VSX xsnegdp VSX Scalar Negate Double-Precision

XX3 60 F0000508 VSX xsnmaddadp VSX Scalar Negative Multiply-Add Type-A Double-Precision

XX3 60 F0000408 VSX xsnmaddasp VSX Scalar Negative Multiply-Add Type-A Single-Precision

XX3 60 F0000548 VSX xsnmaddmdp VSX Scalar Negative Multiply-Add Type-M Double-Precision

XX3 60 F0000448 VSX xsnmaddmsp VSX Scalar Negative Multiply-Add Type-M Single-Precision

XX3 60 F0000588 VSX xsnmsubadp VSX Scalar Negative Multiply-Subtract Type-A Double-Precision

XX3 60 F0000488 VSX xsnmsubasp VSX Scalar Negative Multiply-Subtract Type-A Single-Precision

XX3 60 F00005C8 VSX xsnmsubmdp VSX Scalar Negative Multiply-Subtract Type-M Double-Preci-
sion

XX3 60 F00004C8 VSX xsnmsubmsp VSX Scalar Negative Multiply-Subtract Type-M Single-Precision

XX2 60 F0000124 VSX xsrdpi VSX Scalar Round to Double-Precision Integer

XX2 60 F00001AC VSX xsrdpic VSX Scalar Round to Double-Precision Integer using Current
Rounding Mode

XX2 60 F00001E4 VSX xsrdpim VSX Scalar Round to Double-Precision Integer toward -Infinity

XX2 60 F00001A4 VSX xsrdpip VSX Scalar Round to Double-Precision Integer toward +Infinity

XX2 60 F0000164 VSX xsrdpiz VSX Scalar Round to Double-Precision Integer toward Zero

XX1 60 F0000168 VSX xsredp VSX Scalar Reciprocal Estimate Double-Precision

XX2 60 F0000068 VSX xsresp VSX Scalar Reciprocal Estimate Single-Precision

XX2 60 F0000464 VSX xsrsp VSX Scalar Round to Single-Precision

XX2 60 F0000128 VSX xsrsqrtedp VSX Scalar Reciprocal Square Root Estimate Double-Precision

XX2 60 F0000028 VSX xsrsqrtesp VSX Scalar Reciprocal Square Root Estimate Single-Precision

XX2 60 F000012C VSX xssqrtdp VSX Scalar Square Root Double-Precision

XX2 60 F000002C VSX xssqrtsp VSX Scalar Square Root Single-Precision

Table B-1. POWER8 Instructions by Mnemonic (Sheet 20 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 359 of 450

XX3 60 F0000140 VSX xssubdp VSX Scalar Subtract Double-Precision

XX3 60 F0000040 VSX xssubsp VSX Scalar Subtract Single-Precision

XX3 60 F00001E8 VSX xstdivdp VSX Scalar Test for Software Divide Double-Precision

XX2 60 F00001A8 VSX xstsqrtdp VSX Scalar Test for Software Square Root Double-Precision

XX2 60 F0000764 VSX xvabsdp VSX Vector Absolute Value Double-Precision

XX2 60 F0000664 VSX xvabssp VSX Vector Absolute Value Single-Precision

XX3 60 F0000300 VSX xvadddp VSX Vector Add Double-Precision

XX3 60 F0000200 VSX xvaddsp VSX Vector Add Single-Precision

XX3 60 F0000318 VSX xvcmpeqdp VSX Vector Compare Equal To Double-Precision

XX3 60 F0000718 VSX xvcmpeqdp. VSX Vector Compare Equal To Double-Precision and Record
CR6

XX3 60 F0000218 VSX xvcmpeqsp VSX Vector Compare Equal To Single-Precision

XX3 60 F0000618 VSX xvcmpeqsp. VSX Vector Compare Equal To Single-Precision and Record
CR6

XX3 60 F0000398 VSX xvcmpgedp VSX Vector Compare Greater Than or Equal To Double-Preci-
sion

XX3 60 F0000798 VSX xvcmpgedp. VSX Vector Compare Greater Than or Equal To Double-Preci-
sion and Record CR6

XX3 60 F0000298 VSX xvcmpgesp VSX Vector Compare Greater Than or Equal To Single-Preci-
sion

XX3 60 F0000698 VSX xvcmpgesp. VSX Vector Compare Greater Than or Equal To Single-Preci-
sion and Record CR6

XX3 60 F0000358 VSX xvcmpgtdp VSX Vector Compare Greater Than Double-Precision

XX3 60 F0000758 VSX xvcmpgtdp. VSX Vector Compare Greater Than Double-Precision and
Record CR6

XX3 60 F0000258 VSX xvcmpgtsp VSX Vector Compare Greater Than Single-Precision

XX3 60 F0000658 VSX xvcmpgtsp. VSX Vector Compare Greater Than Single-Precision and
Record CR6

XX3 60 F0000780 VSX xvcpsgndp VSX Vector Copy Sign Double-Precision

XX3 60 F0000680 VSX xvcpsgnsp VSX Vector Copy Sign Single-Precision

XX2 60 F0000624 VSX xvcvdpsp VSX Vector Convert Double-Precision to Single-Precision

XX2 60 F0000760 VSX xvcvdpsxds VSX Vector Convert Double-Precision to Signed Fixed-Point
Doubleword Saturate

XX2 60 F0000360 VSX xvcvdpsxws VSX Vector Convert Double-Precision to Signed Fixed-Point
Word Saturate

XX2 60 F0000720 VSX xvcvdpuxds VSX Vector Convert Double-Precision to Unsigned Fixed-Point
Doubleword Saturate

XX2 60 F0000320 VSX xvcvdpuxws VSX Vector Convert Double-Precision to Unsigned Fixed-Point
Word Saturate

XX2 60 F0000724 VSX xvcvspdp VSX Vector Convert Single-Precision to Double-Precision

Table B-1. POWER8 Instructions by Mnemonic (Sheet 21 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 360 of 450
Version 1.3

16 March 2016

XX2 60 F0000660 VSX xvcvspsxds VSX Vector Convert Single-Precision to Signed Fixed-Point
Doubleword Saturate

XX2 60 F0000260 VSX xvcvspsxws VSX Vector Convert Single-Precision to Signed Fixed-Point
Word Saturate

XX2 60 F0000620 VSX xvcvspuxds VSX Vector Convert Single-Precision to Unsigned Fixed-Point
Doubleword Saturate

XX2 60 F0000220 VSX xvcvspuxws VSX Vector Convert Single-Precision to Unsigned Fixed-Point
Word Saturate

XX2 60 F00007E0 VSX xvcvsxddp VSX Vector Convert Signed Fixed-Point Doubleword to Double-
Precision

XX2 60 F00006E0 VSX xvcvsxdsp VSX Vector Convert Signed Fixed-Point Doubleword to Single-
Precision

XX2 60 F00003E0 VSX xvcvsxwdp VSX Vector Convert Signed Fixed-Point Word to Double-Preci-
sion

XX2 60 F00002E0 VSX xvcvsxwsp VSX Vector Convert Signed Fixed-Point Word to Single-Preci-
sion

XX2 60 F00007A0 VSX xvcvuxddp VSX Vector Convert Unsigned Fixed-Point Doubleword to Dou-
ble-Precision

XX2 60 F00006A0 VSX xvcvuxdsp VSX Vector Convert Unsigned Fixed-Point Doubleword to Sin-
gle-Precision

XX2 60 F00003A0 VSX xvcvuxwdp VSX Vector Convert Unsigned Fixed-Point Word to Double-Pre-
cision

XX2 60 F00002A0 VSX xvcvuxwsp VSX Vector Convert Unsigned Fixed-Point Word to Single-Pre-
cision

XX3 60 F00003C0 VSX xvdivdp VSX Vector Divide Double-Precision

XX3 60 F00002C0 VSX xvdivsp VSX Vector Divide Single-Precision

XX3 60 F0000308 VSX xvmaddadp VSX Vector Multiply-Add Type-A Double-Precision

XX3 60 F0000208 VSX xvmaddasp VSX Vector Multiply-Add Type-A Single-Precision

XX3 60 F0000348 VSX xvmaddmdp VSX Vector Multiply-Add Type-M Double-Precision

XX3 60 F0000248 VSX xvmaddmsp VSX Vector Multiply-Add Type-M Single-Precision

XX3 60 F0000700 VSX xvmaxdp VSX Vector Maximum Double-Precision

XX3 60 F0000600 VSX xvmaxsp VSX Vector Maximum Single-Precision

XX3 60 F0000740 VSX xvmindp VSX Vector Minimum Double-Precision

XX3 60 F0000640 VSX xvminsp VSX Vector Minimum Single-Precision

XX3 60 F0000388 VSX xvmsubadp VSX Vector Multiply-Subtract Type-A Double-Precision

XX3 60 F0000288 VSX xvmsubasp VSX Vector Multiply-Subtract Type-A Single-Precision

XX3 60 F00003C8 VSX xvmsubmdp VSX Vector Multiply-Subtract Type-M Double-Precision

XX3 60 F00002C8 VSX xvmsubmsp VSX Vector Multiply-Subtract Type-M Single-Precision

XX3 60 F0000380 VSX xvmuldp VSX Vector Multiply Double-Precision

XX3 60 F0000280 VSX xvmulsp VSX Vector Multiply Single-Precision

Table B-1. POWER8 Instructions by Mnemonic (Sheet 22 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Mnemonic

Page 361 of 450

XX2 60 F00007A4 VSX xvnabsdp VSX Vector Negative Absolute Value Double-Precision

XX2 60 F00006A4 VSX xvnabssp VSX Vector Negative Absolute Value Single-Precision

XX2 60 F00007E4 VSX xvnegdp VSX Vector Negate Double-Precision

XX2 60 F00006E4 VSX xvnegsp VSX Vector Negate Single-Precision

XX3 60 F0000708 VSX xvnmaddadp VSX Vector Negative Multiply-Add Type-A Double-Precision

XX3 60 F0000608 VSX xvnmaddasp VSX Vector Negative Multiply-Add Type-A Single-Precision

XX3 60 F0000748 VSX xvnmaddmdp VSX Vector Negative Multiply-Add Type-M Double-Precision

XX3 60 F0000648 VSX xvnmaddmsp VSX Vector Negative Multiply-Add Type-M Single-Precision

XX3 60 F0000788 VSX xvnmsubadp VSX Vector Negative Multiply-Subtract Type-A Double-Preci-
sion

XX3 60 F0000688 VSX xvnmsubasp VSX Vector Negative Multiply-Subtract Type-A Single-Precision

XX3 60 F00007C8 VSX xvnmsubmdp VSX Vector Negative Multiply-Subtract Type-M Double-Preci-
sion

XX3 60 F00006C8 VSX xvnmsubmsp VSX Vector Negative Multiply-Subtract Type-M Single-Precision

XX2 60 F0000324 VSX xvrdpi VSX Vector Round to Double-Precision Integer

XX2 60 F00003AC VSX xvrdpic VSX Vector Round to Double-Precision Integer using Current
Rounding Mode

XX2 60 F00003E4 VSX xvrdpim VSX Vector Round to Double-Precision Integer toward -Infinity

XX2 60 F00003A4 VSX xvrdpip VSX Vector Round to Double-Precision Integer toward +Infinity

XX2 60 F0000364 VSX xvrdpiz VSX Vector Round to Double-Precision Integer toward Zero

XX2 60 F0000368 VSX xvredp VSX Vector Reciprocal Estimate Double-Precision

XX2 60 F0000268 VSX xvresp VSX Vector Reciprocal Estimate Single-Precision

XX2 60 F0000224 VSX xvrspi VSX Vector Round to Single-Precision Integer

XX2 60 F00002AC VSX xvrspic VSX Vector Round to Single-Precision Integer using Current
Rounding Mode

XX2 60 F00002E4 VSX xvrspim VSX Vector Round to Single-Precision Integer toward -Infinity

XX2 60 F00002A4 VSX xvrspip VSX Vector Round to Single-Precision Integer toward +Infinity

XX2 60 F0000264 VSX xvrspiz VSX Vector Round to Single-Precision Integer toward Zero

XX2 60 F0000328 VSX xvrsqrtedp VSX Vector Reciprocal Square Root Estimate Double-Precision

XX2 60 F0000228 VSX xvrsqrtesp VSX Vector Reciprocal Square Root Estimate Single-Precision

XX2 60 F000032C VSX xvsqrtdp VSX Vector Square Root Double-Precision

XX2 60 F000022C VSX xvsqrtsp VSX Vector Square Root Single-Precision

XX3 60 F0000340 VSX xvsubdp VSX Vector Subtract Double-Precision

XX3 60 F0000240 VSX xvsubsp VSX Vector Subtract Single-Precision

XX3 60 F00003E8 VSX xvtdivdp VSX Vector Test for Software Divide Double-Precision

XX3 60 F00002E8 VSX xvtdivsp VSX Vector Test for Software Divide Single-Precision

Table B-1. POWER8 Instructions by Mnemonic (Sheet 23 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Mnemonic

Page 362 of 450
Version 1.3

16 March 2016

XX2 60 F00003A8 VSX xvtsqrtdp VSX Vector Test for Software Square Root Double-Precision

XX2 60 F00002A8 VSX xvtsqrtsp VSX Vector Test for Software Square Root Single-Precision

XX3 60 F0000410 VSX xxland VSX Logical AND

XX3 60 F0000450 VSX xxlandc VSX Logical AND with Complement

XX3 60 F00005D0 VSX xxleqv VSX Logical Equivalence

XX3 60 F0000590 VSX xxlnand VSX Logical NAND

XX3 60 F0000510 VSX xxlnor VSX Logical NOR

XX3 60 F0000490 VSX xxlor VSX Logical OR

XX3 60 F0000550 VSX xxlorc VSX Logical OR with Complement

XX3 60 F00004D0 VSX xxlxor VSX Logical XOR

XX3 60 F0000090 VSX xxmrghw VSX Merge High Word

XX3 60 F0000190 VSX xxmrglw VSX Merge Low Word

XX3 60 F0000050 VSX xxpermdi VSX Permute Doubleword Immediate

XX4 60 F0000030 VSX xxsel VSX Select

XX3 60 F0000010 VSX xxsldwi VSX Shift Left Double by Word Immediate

XX2 60 F0000290 VSX xxspltw VSX Splat Word

Table B-1. POWER8 Instructions by Mnemonic (Sheet 24 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 363 of 450

Appendix C. POWER8 Instruction Summary by Opcode

Table C-1. lists the instructions implemented in the POWER8 processor in order by opcode. See Table A-1.
Category Listing on page 313 for a description of the categories.

Table C-1. POWER8 Instructions by Opcode (Sheet 1 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

D 2 08000000 64 tdi Trap Doubleword Immediate

D 3 0C000000 B twi Trap Word Immediate

VX 4 10000000 V vaddubm Vector Add Unsigned Byte Modulo

VX 4 10000002 V vmaxub Vector Maximum Unsigned Byte

VX 4 10000004 V vrlb Vector Rotate Left Byte

VC 4 10000006 V vcmpequb[.] Vector Compare Equal To Unsigned Byte

VX 4 10000008 V vmuloub Vector Multiply Odd Unsigned Byte

VA 4 10000020 V vmhaddshs Vector Multiply-High-Add Signed Halfword Saturate

VA 4 10000021 V vmhraddshs Vector Multiply-High-Round-Add Signed Halfword Saturate

VA 4 10000022 V vmladduhm Vector Multiply-Low-Add Unsigned Halfword Modulo

VA 4 10000024 V vmsumubm Vector Multiply-Sum Unsigned Byte Modulo

VA 4 10000025 V vmsummbm Vector Multiply-Sum Mixed Byte Modulo

VA 4 10000026 V vmsumuhm Vector Multiply-Sum Unsigned Halfword Modulo

VA 4 10000027 V vmsumuhs Vector Multiply-Sum Unsigned Halfword Saturate

VA 4 10000028 V vmsumshm Vector Multiply-Sum Signed Halfword Modulo

VA 4 10000029 V vmsumshs Vector Multiply-Sum Signed Halfword Saturate

VX 4 10000040 V vadduhm Vector Add Unsigned Halfword Modulo

VX 4 10000042 V vmaxuh Vector Maximum Unsigned Halfword

VX 4 10000044 V vrlh Vector Rotate Left Halfword

VC 4 10000046 V vcmpequh[.] Vector Compare Equal To Unsigned Halfword

VX 4 10000048 V vmulouh Vector Multiply Odd Unsigned Halfword

VX 4 10000080 V vadduwm Vector Add Unsigned Word Modulo

VX 4 10000082 V vmaxuw Vector Maximum Unsigned Word

VX 4 10000084 V vrlw Vector Rotate Left Word

VC 4 10000086 V vcmpequw[.] Vector Compare Equal To Unsigned Word

VX 4 10000088 V vmulouw Vector Multiply Odd Unsigned Word

VX 4 10000089 V vmuluwm Vector Multiply Unsigned Word Modulo

VX 4 10000100 V vadduqm Vector Add Unsigned Quadword Modulo

VX 4 10000102 V vmaxsb Vector Maximum Signed Byte

VX 4 10000104 V vslb Vector Shift Left Byte

VX 4 10000108 V vmulosb Vector Multiply Odd Signed Byte

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 364 of 450
Version 1.3

16 March 2016

VX 4 10000140 V vaddcuq Vector Add and Write Carry Unsigned Quadword

VX 4 10000142 V vmaxsh Vector Maximum Signed Halfword

VX 4 10000144 V vslh Vector Shift Left Halfword

VX 4 10000148 V vmulosh Vector Multiply Odd Signed Halfword

VX 4 10000180 V vaddcuw Vector Add and Write Carry-Out Unsigned Word

VX 4 10000182 V vmaxsw Vector Maximum Signed Word

VX 4 10000184 V vslw Vector Shift Left Word

VX 4 10000188 V vmulosw Vector Multiply Odd Signed Word

VX 4 10000200 V vaddubs Vector Add Unsigned Byte Saturate

VX 4 10000202 V vminub Vector Minimum Unsigned Byte

VX 4 10000204 V vsrb Vector Shift Right Byte

VC 4 10000206 V vcmpgtub[.] Vector Compare Greater Than Unsigned Byte

VX 4 10000208 V vmuleub Vector Multiply Even Unsigned Byte

VX 4 10000240 V vadduhs Vector Add Unsigned Halfword Saturate

VX 4 10000242 V vminuh Vector Minimum Unsigned Halfword

VX 4 10000244 V vsrh Vector Shift Right Halfword

VC 4 10000246 V vcmpgtuh[.] Vector Compare Greater Than Unsigned Halfword

VX 4 10000248 V vmuleuh Vector Multiply Even Unsigned Halfword

VX 4 10000280 V vadduws Vector Add Unsigned Word Saturate

VX 4 10000282 V vminuw Vector Minimum Unsigned Word

VX 4 10000284 V vsrw Vector Shift Right Word

VC 4 10000286 V vcmpgtuw[.] Vector Compare Greater Than Unsigned Word

VX 4 10000288 V vmuleuw Vector Multiply Even Unsigned Word

VX 4 10000300 V vaddsbs Vector Add Signed Byte Saturate

VX 4 10000302 V vminsb Vector Minimum Signed Byte

VX 4 10000304 V vsrab Vector Shift Right Algebraic Byte

VC 4 10000306 V vcmpgtsb[.] Vector Compare Greater Than Signed Byte

VX 4 10000308 V vmulesb Vector Multiply Even Signed Byte

VX 4 10000340 V vaddshs Vector Add Signed Halfword Saturate

VX 4 10000342 V vminsh Vector Minimum Signed Halfword

VX 4 10000344 V vsrah Vector Shift Right Algebraic Halfword

VC 4 10000346 V vcmpgtsh[.] Vector Compare Greater Than Signed Halfword

VX 4 10000348 V vmulesh Vector Multiply Even Signed Halfword

VX 4 10000380 V vaddsws Vector Add Signed Word Saturate

Table C-1. POWER8 Instructions by Opcode (Sheet 2 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 365 of 450

VX 4 10000382 V vminsw Vector Minimum Signed Word

VX 4 10000384 V vsraw Vector Shift Right Algebraic Word

VC 4 10000386 V vcmpgtsw[.] Vector Compare Greater Than Signed Word

VX 4 10000388 V vmulesw Vector Multiply Even Signed Word

VX 4 10000400 V vsububm Vector Subtract Unsigned Byte Modulo

VX 4 10000401 V bcdadd. Decimal Add Modulo

VX 4 10000402 V vavgub Vector Average Unsigned Byte

VX 4 10000404 V vand Vector Logical AND

VX 4 10000408 V vpmsumb Vector Polynomial Multiply-Sum Byte

VX 4 10000440 V vsubuhm Vector Subtract Unsigned Halfword Modulo

VX 4 10000441 V bcdsub. Decimal Subtract Modulo

VX 4 10000442 V vavguh Vector Average Unsigned Halfword

VX 4 10000444 V vandc Vector Logical AND with Complement

VX 4 10000448 V vpmsumh Vector Polynomial Multiply-Sum Halfword

VX 4 10000480 V vsubuwm Vector Subtract Unsigned Word Modulo

VX 4 10000482 V vavguw Vector Average Unsigned Word

VX 4 10000484 V vor Vector Logical OR

VX 4 10000488 V vpmsumw Vector Polynomial Multiply-Sum Word

VX 4 10000500 V vsubuqm Vector Subtract Unsigned Quadword Modulo

VX 4 10000502 V vavgsb Vector Average Signed Byte

VX 4 10000504 V vnor Vector Logical NOR

VX 4 10000508 V.AES vcipher Vector AES Cipher

VX 4 10000509 V.AES vcipherlast Vector AES Cipher Last

VX 4 10000540 V vsubcuq Vector Subtract and Write Carry Unsigned Quadword

VX 4 10000542 V vavgsh Vector Average Signed Halfword

VX 4 10000544 V vorc Vector OR with Complement

VX 4 10000548 V.AES vncipher Vector AES Inverse Cipher

VX 4 10000549 V.AES vncipherlast Vector AES Inverse Cipher Last

VX 4 10000580 V vsubcuw Vector Subtract and Write Carry-Out Unsigned Word

VX 4 10000582 V vavgsw Vector Average Signed Word

VX 4 10000584 V vnand Vector NAND

VX 4 10000600 V vsububs Vector Subtract Unsigned Byte Saturate

VX 4 10000604 V mfvscr Move From Vector Status and Control Register

VX 4 10000608 V vsum4ubs Vector Sum across Quarter Unsigned Byte Saturate

Table C-1. POWER8 Instructions by Opcode (Sheet 3 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 366 of 450
Version 1.3

16 March 2016

VX 4 10000640 V vsubuhs Vector Subtract Unsigned Halfword Saturate

VX 4 10000644 V mtvscr Move To Vector Status and Control Register

VX 4 10000648 V vsum4shs Vector Sum across Quarter Signed Halfword Saturate

VX 4 10000680 V vsubuws Vector Subtract Unsigned Word Saturate

VX 4 10000682 V.SHA2 vshasigmaw Vector SHA-256 Sigma Word

VX 4 10000684 V veqv Vector Equivalence

VX 4 10000688 V vsum2sws Vector Sum across Half Signed Word Saturate

VX 4 10000700 V vsubsbs Vector Subtract Signed Byte Saturate

VX 4 10000702 V vclzb Vector Count Leading Zeros Byte

VX 4 10000703 V vpopcntb Vector Population Count Byte

VX 4 10000708 V vsum4sbs Vector Sum across Quarter Signed Byte Saturate

VX 4 10000740 V vsubshs Vector Subtract Signed Halfword Saturate

VX 4 10000742 V vclzh Vector Count Leading Zeros Halfword

VX 4 10000743 V vpopcnth Vector Population Count Halfword

VX 4 10000780 V vsubsws Vector Subtract Signed Word Saturate

VX 4 10000782 V vclzw Vector Count Leading Zeros Word

VX 4 10000783 V vpopcntw Vector Population Count Word

VX 4 10000788 V vsumsws Vector Sum across Signed Word Saturate

VX 4 1000000A V vaddfp Vector Add Single-Precision

VX 4 1000000C V vmrghb Vector Merge High Byte

VX 4 1000000E V vpkuhum Vector Pack Unsigned Halfword Unsigned Modulo

VA 4 1000002A V vsel Vector Select

VA 4 1000002B V vperm Vector Permute

VA 4 1000002C V vsldoi Vector Shift Left Double by Octet Immediate

VA 4 1000002D V.RAID vpermxor Vector Permute and Exclusive-OR

VA 4 1000002E V vmaddfp Vector Multiply-Add Single-Precision

VA 4 1000002F V vnmsubfp Vector Negative Multiply-Subtract Single-Precision

VA 4 1000003C V vaddeuqm Vector Add Extended Unsigned Quadword Modulo

VA 4 1000003D V vaddecuq Vector Add Extended and Write Carry Unsigned Quadword

VA 4 1000003E V vsubeuqm Vector Subtract Extended Unsigned Quadword Modulo

VA 4 1000003F V vsubecuq Vector Subtract Extended and Write Carry Unsigned Quadword

VX 4 1000004A V vsubfp Vector Subtract Single-Precision

VX 4 1000004C V vmrghh Vector Merge High Halfword

VX 4 1000004E V vpkuwum Vector Pack Unsigned Word Unsigned Modulo

Table C-1. POWER8 Instructions by Opcode (Sheet 4 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 367 of 450

VX 4 1000008C V vmrghw Vector Merge High Word

VX 4 1000008E V vpkuhus Vector Pack Unsigned Halfword Unsigned Saturate

VX 4 100000C0 V vaddudm Vector Add Unsigned Doubleword Modulo

VX 4 100000C2 V vmaxud Vector Maximum Unsigned Doubleword

VX 4 100000C4 V vrld Vector Rotate Left Doubleword

VC 4 100000C6 V vcmpeqfp[.] Vector Compare Equal To Single-Precision

VC 4 100000C7 V vcmpequd[.] Vector Compare Equal To Unsigned Doubleword

VX 4 100000CE V vpkuwus Vector Pack Unsigned Word Unsigned Saturate

VX 4 1000010A V vrefp Vector Reciprocal Estimate Single-Precision

VX 4 1000010C V vmrglb Vector Merge Low Byte

VX 4 1000010E V vpkshus Vector Pack Signed Halfword Unsigned Saturate

VX 4 1000014A V vrsqrtefp Vector Reciprocal Square Root Estimate Single-Precision

VX 4 1000014C V vmrglh Vector Merge Low Halfword

VX 4 1000014E V vpkswus Vector Pack Signed Word Unsigned Saturate

VX 4 1000018A V vexptefp Vector 2 Raised to the Exponent Estimate Single-Precision

VX 4 1000018C V vmrglw Vector Merge Low Word

VX 4 1000018E V vpkshss Vector Pack Signed Halfword Signed Saturate

VX 4 100001C2 V vmaxsd Vector Maximum Signed Doubleword

VX 4 100001C4 V vsl Vector Shift Left

VC 4 100001C6 V vcmpgefp[.] Vector Compare Greater Than or Equal To Single-Precision

VX 4 100001CA V vlogefp Vector Log Base 2 Estimate Single-Precision

VX 4 100001CE V vpkswss Vector Pack Signed Word Signed Saturate

VX 4 1000020A V vrfin Vector Round to Single-Precision Integer Nearest

VX 4 1000020C V vspltb Vector Splat Byte

VX 4 1000020E V vupkhsb Vector Unpack High Signed Byte

VX 4 1000024A V vrfiz Vector Round to Single-Precision Integer toward Zero

VX 4 1000024C V vsplth Vector Splat Halfword

VX 4 1000024E V vupkhsh Vector Unpack High Signed Halfword

VX 4 1000028A V vrfip Vector Round to Single-Precision Integer toward +Infinity

VX 4 1000028C V vspltw Vector Splat Word

VX 4 1000028E V vupklsb Vector Unpack Low Signed Byte

VX 4 100002C2 V vminud Vector Minimum Unsigned Doubleword

VX 4 100002C4 V vsr Vector Shift Right

VC 4 100002C6 V vcmpgtfp[.] Vector Compare Greater Than Single-Precision

Table C-1. POWER8 Instructions by Opcode (Sheet 5 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 368 of 450
Version 1.3

16 March 2016

VC 4 100002C7 V vcmpgtud[.] Vector Compare Greater Than Unsigned Doubleword

VX 4 100002CA V vrfim Vector Round to Single-Precision Integer toward -Infinity

VX 4 100002CE V vupklsh Vector Unpack Low Signed Halfword

VX 4 1000030A V vcfux Vector Convert From Unsigned Fixed-Point Word

VX 4 1000030C V vspltisb Vector Splat Immediate Signed Byte

VX 4 1000030E V vpkpx Vector Pack Pixel

VX 4 1000034A V vcfsx Vector Convert From Signed Fixed-Point Word To Single-Preci-
sion

VX 4 1000034C V vspltish Vector Splat Immediate Signed Halfword

VX 4 1000034E V vupkhpx Vector Unpack High Pixel

VX 4 1000038A V vctuxs Vector Convert From Single-Precision To Unsigned Fixed-Point
Word Saturate

VX 4 1000038C V vspltisw Vector Splat Immediate Signed Word

X 4 100003C2 V vminsd Vector Minimum Signed Doubleword

VX 4 100003C4 V vsrad Vector Shift Right Algebraic Doubleword

VC 4 100003C6 V vcmpbfp[.] Vector Compare Bounds Single-Precision

VC 4 100003C7 V vcmpgtsd[.] Vector Compare Greater Than Signed Doubleword

VX 4 100003CA V vctsxs Vector Convert From Single-Precision To Signed Fixed-Point
Word Saturate

VX 4 100003CE V vupklpx Vector Unpack Low Pixel

VX 4 1000040A V vmaxfp Vector Maximum Single-Precision

VX 4 1000040C V vslo Vector Shift Left by Octet

VX 4 1000044A V vminfp Vector Minimum Single-Precision

VX 4 1000044C V vsro Vector Shift Right by Octet

VX 4 1000044E V vpkudum Vector Pack Unsigned Doubleword Unsigned Modulo

VX 4 100004C0 V vsubudm Vector Subtract Unsigned Doubleword Modulo

VX 4 100004C4 V vxor Vector Logical XOR

VX 4 100004C8 V vpmsumd Vector Polynomial Multiply-Sum Doubleword

VX 4 100004CE V vpkudus Vector Pack Unsigned Doubleword Unsigned Saturate

VX 4 1000050C V vgbbd Vector Gather Bits by Byte by Doubleword

VX 4 1000054C V vbpermq Vector Bit Permute Quadword

VX 4 1000054C V vbpermq Vector Bit Permute Quadword

VX 4 1000054E V vpksdus Vector Pack Signed Doubleword Unsigned Saturate

VX 4 100005C4 V vsld Vector Shift Left Doubleword

VX 4 100005C8 V.AES vsbox Vector AES S-Box

VX 4 100005CE V vpksdss Vector Pack Signed Doubleword Signed Saturate

Table C-1. POWER8 Instructions by Opcode (Sheet 6 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 369 of 450

VX 4 1000064E V vupkhsw Vector Unpack High Signed Word

VX 4 1000068C VSX vmrgow Vector Merge Odd Word

VX 4 100006C2 V.SHA2 vshasigmad Vector SHA-512 Sigma Doubleword

VX 4 100006C4 V vsrd Vector Shift Right Doubleword

VX 4 100006CE V vupklsw Vector Unpack Low Signed Word

VX 4 1000078C VSX vmrgew Vector Merge Even Word

VX 4 100007C2 V vclzd Vector Count Leading Zeros Doubleword

VX 4 100007C3 V vpopcntd Vector Population Count Doubleword

D 7 1C000000 B mulli Multiply Low Immediate

D 8 20000000 B subfic Subtract From Immediate Carrying

D 10 28000000 B cmpli Compare Logical Immediate

D 11 2C000000 B cmpi Compare Immediate

D 12 30000000 B addic Add Immediate Carrying

D 13 34000000 B addic. Add Immediate Carrying and Record CR0

D 14 38000000 B addi Add Immediate

D 15 3C000000 B addis Add Immediate Shifted

B 16 40000000 B bc[l][a] Branch Conditional

SC 17 44000002 B sc System Call

I 18 48000000 B b[l][a] Branch

XL 19 4C000000 B mcrf Move Condition Register Field

XL 19 4C000020 B bclr[l] Branch Conditional to Link Register

XL 19 4C000024 S rfid Return from Interrupt Doubleword

XL 19 4C000042 B crnor Condition Register NOR

XL 19 4C000102 B crandc Condition Register AND with Complement

XL 19 4C000124 S rfebb Return from Event Based Branch

XL 19 4C00012C B isync Instruction Synchronize

XL 19 4C000182 B crxor Condition Register XOR

XL 19 4C0001C2 B crnand Condition Register NAND

XL 19 4C000202 B crand Condition Register AND

XL 19 4C000224 S hrfid Return From Interrupt Doubleword Hypervisor

XL 19 4C000242 B creqv Condition Register Equivalent

XL 19 4C000324 S doze Doze

XL 19 4C000342 B crorc Condition Register OR with Complement

XL 19 4C000364 S nap Nap

Table C-1. POWER8 Instructions by Opcode (Sheet 7 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 370 of 450
Version 1.3

16 March 2016

XL 19 4C000382 B cror Condition Register OR

XL 19 4C0003A4 S sleep Sleep

XL 19 4C0003E4 S rvwinkle Rip Van Winkle

XL 19 4C000420 B bcctr[l] Branch Conditional to Count Register

X 19 4C000460 B bctar[l] Branch Conditional to Branch Target Address Register

M 20 50000000 B rlwimi[.] Rotate Left Word Immediate then Mask Insert

M 21 54000000 B rlwinm[.] Rotate Left Word Immediate then AND with Mask

M 23 5C000000 B rlwnm[.] Rotate Left Word then AND with Mask

D 24 60000000 B ori OR Immediate

D 25 64000000 B oris OR Immediate Shifted

X 26 68000000 B xnop Executed No Operation

D 26 68000000 B xori XOR Immediate

D 27 6C000000 B xoris XOR Immediate Shifted

D 28 70000000 B andi. AND Immediate and Record CR0

D 29 74000000 B andis. AND Immediate Shifted and Record CR0

MD 30 78000000 64 rldicl[.] Rotate Left Doubleword Immediate then Clear Left

MD 30 78000004 64 rldicr[.] Rotate Left Doubleword Immediate then Clear Right

MD 30 78000008 64 rldic[.] Rotate Left Doubleword Immediate then Clear

MDS 30 78000010 64 rldcl[.] Rotate Left Doubleword then Clear Left

MDS 30 78000012 64 rldcr[.] Rotate Left Doubleword then Clear Right

MD 30 7800000C 64 rldimi[.] Rotate Left Doubleword Immediate then Mask Insert

X 31 7C000000 B cmp Compare

X 31 7C000008 B tw Trap Word

X 31 7C00000C V lvsl Load Vector for Shift Left

X 31 7C00000E V lvebx Load Vector Element Byte Indexed

XO 31 7C000010 B subfc[.] Subtract From Carrying

XO 31 7C000012 64 mulhdu[.] Multiply High Doubleword Unsigned

XO 31 7C000014 B addc[.] Add Carrying

XO 31 7C000016 B mulhwu[.] Multiply High Word Unsigned

XX1 31 7C000018 VSX lxsiwzx Load VSX Scalar as Integer Word and Zero Indexed

A 31 7C00001E B isel Integer Select

XFX 31 7C000026 B mfcr Move From Condition Register

X 31 7C000028 B lwarx Load Word and Reserve Indexed

X 31 7C00002A 64 ldx Load Doubleword Indexed

Table C-1. POWER8 Instructions by Opcode (Sheet 8 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 371 of 450

X 31 7C00002C B icbt Instruction Cache Block Touch

X 31 7C00002E B lwzx Load Word and Zero Indexed

X 31 7C000030 B slw[.] Shift Left Word

X 31 7C000034 B cntlzw[.] Count Leading Zeros Word

X 31 7C000036 64 sld[.] Shift Left Doubleword

X 31 7C000038 B and[.] AND

X 31 7C00003A 64 ldepx Load Doubleword by External PID Indexed

X 31 7C000040 B cmpl Compare Logical

X 31 7C00004C V lvsr Load Vector for Shift Right

X 31 7C00004E V lvehx Load Vector Element Halfword Indexed

XO 31 7C000050 B subf[.] Subtract From

XX1 31 7C000066 VSX mfvsrd Move From VSR Doubleword

X 31 7C000068 B lbarx Load Byte And Reserve Indexed

X 31 7C00006A 64 ldux Load Doubleword with Update Indexed

X 31 7C00006C B dcbst Data Cache Block Store

X 31 7C00006E B lwzux Load Word and Zero with Update Indexed

X 31 7C000074 64 cntlzd[.] Count Leading Zeros Doubleword

X 31 7C000078 B andc[.] AND with Complement

X 31 7C000088 64 td Trap Doubleword

X 31 7C00008E V lvewx Load Vector Element Word Indexed

XO 31 7C000092 64 mulhd[.] Multiply High Doubleword

XO 31 7C000096 B mulhw[.] Multiply High Word

XX1 31 7C000098 VSX lxsiwax Load VSX Scalar as Integer Word Algebraic Indexed

X 31 7C0000A6 S mfmsr Move From Machine State Register

X 31 7C0000A8 64 ldarx Load Doubleword And Reserve Indexed

X 31 7C0000AC B dcbf Data Cache Block Flush

X 31 7C0000AE B lbzx Load Byte and Zero Indexed

X 31 7C0000CE V lvx Load Vector Indexed

XO 31 7C0000D0 B neg[.] Negate

XX1 31 7C0000E6 VSX mfvsrwz Move From VSR Word and Zero

X 31 7C0000E8 B lharx Load Halfword And Reserve Indexed Xform

X 31 7C0000EE B lbzux Load Byte and Zero with Update Indexed

X 31 7C0000F4 B popcntb Population Count Byte-wise

X 31 7C0000F8 B nor[.] NOR

Table C-1. POWER8 Instructions by Opcode (Sheet 9 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 372 of 450
Version 1.3

16 March 2016

X 31 7C00010E V stvebx Store Vector Element Byte Indexed

XO 31 7C000110 B subfe[.] Subtract From Extended

XO 31 7C000114 B adde[.] Add Extended

XX1 31 7C000118 VSX stxsiwx Store VSX Scalar as Integer Word Indexed

X 31 7C00011C S msgsndp Message Send Privileged

XFX 31 7C000120 B mtcrf Move To Condition Register Fields

X 31 7C000124 S mtmsr Move To Machine State Register

X 31 7C00012A 64 stdx Store Doubleword Indexed

X 31 7C00012D B stwcx. Store Word Conditional Indexed and Record CR0

X 31 7C00012E B stwx Store Word Indexed

X 31 7C000134 B prtyw Parity Word

X 31 7C00013A 64 stdepx Store Doubleword by External PID Indexed

X 31 7C00014E V stvehx Store Vector Element Halfword Indexed

X 31 7C00015C S msgclrp Message Clear Privileged

X 31 7C000164 S mtmsrd Move To Machine State Register Doubleword

XX1 31 7C000166 VSX mtvsrd Move To VSR Doubleword

X 31 7C00016A 64 stdux Store Doubleword with Update Indexed

X 31 7C00016D LSQ stqcx. Store Quadword Conditional Indexed and record CR0

X 31 7C00016E B stwux Store Word with Update Indexed

X 31 7C000174 64 prtyd Parity Doubleword

X 31 7C00018E V stvewx Store Vector Element Word Indexed

XO 31 7C000190 B subfze[.] Subtract From Zero Extended

XO 31 7C000194 B addze[.] Add to Zero Extended

X 31 7C00019C S msgsnd Message Send

X 31 7C0001A4 S mtsr Move To Segment Register

XX1 31 7C0001A6 VSX mtvsrwa Move To VSR Word Algebraic

X 31 7C0001AD 64 stdcx. Store Doubleword Conditional Indexed and Record CR0

X 31 7C0001AE B stbx Store Byte Indexed

X 31 7C0001CE V stvx Store Vector Indexed

XO 31 7C0001D0 B subfme[.] Subtract From Minus One Extended

XO 31 7C0001D2 64 mulld[.] Multiply Low Doubleword

XO 31 7C0001D4 B addme[.] Add to Minus One Extended

XO 31 7C0001D6 B mullw[.] Multiply Low Word

X 31 7C0001DC S msgclr Message Clear

Table C-1. POWER8 Instructions by Opcode (Sheet 10 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 373 of 450

X 31 7C0001E4 S mtsrin Move To Segment Register Indirect

XX1 31 7C0001E6 VSX mtvsrwz Move To VSR Word and Zero

X 31 7C0001EC B dcbtst Data Cache Block Touch for Store

X 31 7C0001EE B stbux Store Byte with Update Indexed

X 31 7C0001F8 64 bpermd Bit Permute Doubleword

XO 31 7C000214 B add[.] Add

X 31 7C000224 S tlbiel TLB Invalidate Entry Local

X 31 7C000228 LSQ lqarx Load Quadword And Reserve Indexed

X 31 7C00022C B dcbt Data Cache Block Touch

X 31 7C00022E B lhzx Load Halfword and Zero Indexed

X 31 7C000238 B eqv[.] Equivalent

XFX 31 7C00025C S mfbhrbe Move From Branch History Rolling Buffer

X 31 7C000264 S tlbie TLB Invalidate Entry

X 31 7C00026E B lhzux Load Halfword and Zero with Update Indexed

X 31 7C000278 B xor[.] XOR

XX1 31 7C000298 VSX lxvdsx Load VSR Vector Doubleword and Splat Indexed

XFX 31 7C0002A6 B mfspr Move From Special Purpose Register

X 31 7C0002AA 64 lwax Load Word Algebraic Indexed

X 31 7C0002AE B lhax Load Halfword Algebraic Indexed

X 31 7C0002CE V lvxl Load Vector Indexed Last

XFX 31 7C0002E6 S.out mftb Move From Time Base

X 31 7C0002EA 64 lwaux Load Word Algebraic with Update Indexed

X 31 7C0002EE B lhaux Load Halfword Algebraic with Update Indexed

X 31 7C0002F4 B popcntw Population Count Words

XO 31 7C000312 64 divdeu[.] Divide Doubleword Extended Unsigned

XO 31 7C000316 B divweu[.] Divide Word Extended Unsigned

X 31 7C000324 S slbmte SLB Move To Entry

X 31 7C00032E B sthx Store Halfword Indexed

X 31 7C000338 B orc[.] OR with Complement

XO 31 7C000352 64 divde[.] Divide Doubleword Extended

XO 31 7C000356 B divwe[.] Divide Word Extended

X 31 7C00035C S clrbhrb Clear BHRB

X 31 7C000364 S slbie SLB Invalidate Entry

X 31 7C00036E B sthux Store Halfword with Update Indexed

Table C-1. POWER8 Instructions by Opcode (Sheet 11 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 374 of 450
Version 1.3

16 March 2016

X 31 7C000378 B or[.] OR

XO 31 7C000392 64 divdu[.] Divide Doubleword Unsigned

XO 31 7C000396 B divwu[.] Divide Word Unsigned

XFX 31 7C0003A6 B mtspr Move To Special Purpose Register

X 31 7C0003B8 B nand[.] NAND

X 31 7C0003CE V stvxl Store Vector Indexed Last

XO 31 7C0003D2 64 divd[.] Divide Doubleword

XO 31 7C0003D6 B divw[.] Divide Word

X 31 7C0003E4 S slbia SLB Invalidate All

X 31 7C0003F4 64 popcntd Population Count Doubleword

X 31 7C0003F8 B cmpb Compare Byte

XO 31 7C000410 B subfco[.] Subtract From Carrying and Record OV

XO 31 7C000414 B addco[.] Add Carrying and Record OV

XX1 31 7C000418 VSX lxsspx Load VSX Scalar Single-Precision Indexed

X 31 7C000428 64 ldbrx Load Doubleword Byte-Reverse Indexed

X 31 7C00042A MA lswx Load String Word Indexed

X 31 7C00042C B lwbrx Load Word Byte-Reverse Indexed

X 31 7C00042E FP lfsx Load Floating-Point Single Indexed

X 31 7C000430 B srw[.] Shift Right Word

X 31 7C000436 64 srd[.] Shift Right Doubleword

XO 31 7C000450 B subfo[.] Subtract From and Record OV

X 31 7C00046C S tlbsync TLB Synchronize

X 31 7C00046E FP lfsux Load Floating-Point Single with Update Indexed

XX1 31 7C000498 VSX lxsdx Load VSR Scalar Doubleword Indexed

X 31 7C0004A6 S mfsr Move From Segment Register

X 31 7C0004AA MA lswi Load String Word Immediate

X 31 7C0004AC B sync Synchronize

X 31 7C0004AE FP lfdx Load Floating-Point Double Indexed

XO 31 7C0004D0 B nego[.] Negate and Record OV

X 31 7C0004EE FP lfdux Load Floating-Point Double with Update Indexed

XO 31 7C000510 B subfeo[.] Subtract From Extended and Record OV

XO 31 7C000514 B addeo[.] Add Extended and Record OV and Record OV

XX1 31 7C000518 VSX stxsspx Store VSR Scalar Word Indexed

X 31 7C00051D TM tbegin. Transaction Begin

Table C-1. POWER8 Instructions by Opcode (Sheet 12 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 375 of 450

X 31 7C000526 S mfsrin Move From Segment Register Indirect

X 31 7C000528 64 stdbrx Store Doubleword Byte-Reverse Indexed

X 31 7C00052A MA stswx Store String Word Indexed

X 31 7C00052C B stwbrx Store Word Byte-Reverse Indexed

X 31 7C00052E FP stfsx Store Floating-Point Single Indexed

X 31 7C00055C TM tend. Transaction End

X 31 7C00056D B stbcx. Store Byte Conditional Indexed

X 31 7C00056E FP stfsux Store Floating-Point Single with Update Indexed

XO 31 7C000590 B subfzeo[.] Subtract From Zero Extended and Record OV

XO 31 7C000594 B addzeo[.] Add to Zero Extended and Record OV

XX1 31 7C000598 VSX stxsdx Store VSR Scalar Doubleword Indexed

X 31 7C00059C TM tcheck Transaction Check

X 31 7C0005AA MA stswi Store String Word Immediate

X 31 7C0005AD B sthcx. Store Halfword Conditional Indexed Xform

X 31 7C0005AE FP stfdx Store Floating-Point Double Indexed

XO 31 7C0005D0 B subfmeo[.] Subtract From Minus One Extended and Record OV

XO 31 7C0005D2 64 mulldo[.] Multiply Low Doubleword and Record OV

XO 31 7C0005D4 B addmeo[.] Add to Minus One Extended and Record OV

XO 31 7C0005D6 B mullwo[.] Multiply Low Word and Record OV

X 31 7C0005EE FP stfdux Store Floating-Point Double with Update Indexed

XO 31 7C000614 B addo[.] Add and Record OV

XX1 31 7C000618 VSX lxvw4x Load VSR Vector Word*4 Indexed

X 31 7C00061D TM tabortwc. Transaction Abort Word Conditional

X 31 7C00062A S lwzcix Load Word and Zero Caching Inhibited Indexed

X 31 7C00062C B lhbrx Load Halfword Byte-Reverse Indexed

X 31 7C00062E FP.out lfdpx Load Floating-Point Double Pair Indexed

X 31 7C000630 B sraw[.] Shift Right Algebraic Word

X 31 7C000634 64 srad[.] Shift Right Algebraic Doubleword

X 31 7C00065D TM tabortdc. Transaction Abort Doubleword Conditional

X 31 7C00066A S lhzcix Load Halfword and Zero Caching Inhibited Indexed

X 31 7C000670 B srawi[.] Shift Right Algebraic Word Immediate

XS 31 7C000674 64 sradi[.] Shift Right Algebraic Doubleword Immediate

XX1 31 7C000698 VSX lxvd2x Load VSR Vector Doubleword*2 Indexed

X 31 7C00069D TM tabortwci. Transaction Abort Word Conditional Immediate

Table C-1. POWER8 Instructions by Opcode (Sheet 13 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 376 of 450
Version 1.3

16 March 2016

X 31 7C0006A6 S slbmfev SLB Move From Entry VSID

X 31 7C0006AA S lbzcix Load Byte and Zero Caching Inhibited Indexed

X 31 7C0006AC S eieio Enforce In-order Execution of I/O

X 31 7C0006AE FP lfiwax Load Floating-Point as Integer Word Algebraic Indexed

X 31 7C0006DD TM tabortdci. Transaction Abort Doubleword Conditional Immediate

X 31 7C0006EA S ldcix Load Doubleword Caching Inhibited Indexed

X 31 7C0006EE FP lfiwzx Load Floating-Point as Integer Word and Zero Indexed

XO 31 7C000712 64 divdeuo[.] Divide Doubleword Extended Unsigned and Record OV

XO 31 7C000716 B divweuo[.] Divide Word Extended Unsigned and Record OV

XX1 31 7C000718 VSX stxvw4x Store VSR Vector Word*4 Indexed

X 31 7C00071D TM tabort. Transaction Abort

X 31 7C000726 S slbmfee SLB Move From Entry ESID

X 31 7C00072A S stwcix Store Word and Zero Caching Inhibited Indexed

X 31 7C00072C B sthbrx Store Halfword Byte-Reverse Indexed

X 31 7C00072E FP.out stfdpx Store Floating-Point Double Pair Indexed

X 31 7C000734 B extsh[.] Extend Sign Halfword

XO 31 7C000752 64 divdeo[.] Divide Doubleword Extended and Record OV

XO 31 7C000756 B divweo[.] Divide Word Extended and Record OV

X 31 7C00075D TM treclaim. Transaction Reclaim

X 31 7C00076A S sthcix Store Halfword and Zero Caching Inhibited Indexed

X 31 7C000774 B extsb[.] Extend Sign Byte

XO 31 7C000792 64 divduo[.] Divide Doubleword Unsigned and Record OV

XO 31 7C000796 B divwuo[.] Divide Word Unsigned and Record OV

XX1 31 7C000798 VSX stxvd2x Store VSR Vector Doubleword*2 Indexed

X 31 7C0007A7 S slbfee. SLB Find Entry ESID

X 31 7C0007AA S stbcix Store Byte Caching Inhibited Indexed

X 31 7C0007AC B icbi Instruction Cache Block Invalidate

X 31 7C0007AE FP stfiwx Store Floating-Point as Integer Word Indexed

X 31 7C0007B4 64 extsw[.] Extend Sign Word

XO 31 7C0007D2 64 divdo[.] Divide Doubleword and Record OV

XO 31 7C0007D6 B divwo[.] Divide Word and Record OV

X 31 7C0007DD TM trechkpt. Transaction Recheckpoint

X 31 7C0007EA S stdcix Store Doubleword Caching Inhibited Indexed

X 31 7C0007EC B dcbz Data Cache Block Zero

Table C-1. POWER8 Instructions by Opcode (Sheet 14 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 377 of 450

XFX 31 7C100026 B mfocrf Move From One Condition Register Field

XFX 31 7C100120 B mtocrf Move To One Condition Register Field

D 32 80000000 B lwz Load Word and Zero

D 33 84000000 B lwzu Load Word and Zero with Update

D 34 88000000 B lbz Load Byte and Zero

D 35 8C000000 B lbzu Load Byte and Zero with Update

D 36 90000000 B stw Store Word

D 37 94000000 B stwu Store Word with Update

D 38 98000000 B stb Store Byte

D 39 9C000000 B stbu Store Byte with Update

D 40 A0000000 B lhz Load Halfword and Zero

D 41 A4000000 B lhzu Load Halfword and Zero with Update

D 42 A8000000 B lha Load Halfword Algebraic

D 43 AC000000 B lhau Load Halfword Algebraic with Update

D 44 B0000000 B sth Store Halfword

D 45 B4000000 B sthu Store Halfword with Update

D 46 B8000000 B lmw Load Multiple Word

D 47 BC000000 B stmw Store Multiple Word

D 48 C0000000 FP lfs Load Floating-Point Single

D 49 C4000000 FP lfsu Load Floating-Point Single with Update

D 50 C8000000 FP lfd Load Floating-Point Double

D 51 CC000000 FP lfdu Load Floating-Point Double with Update

D 52 D0000000 FP stfs Store Floating-Point Single

D 53 D4000000 FP stfsu Store Floating-Point Single with Update

D 54 D8000000 FP stfd Store Floating-Point Double

D 55 DC000000 FP stfdu Store Floating-Point Double with Update

DQ 56 E0000000 LSQ lq Load Quadword

DS 57 E4000000 FP.out lfdp Load Floating-Point Double Pair

DS 58 E8000000 64 ld Load Doubleword

DS 58 E8000001 64 ldu Load Doubleword with Update

DS 58 E8000002 64 lwa Load Word Algebraic

X 59 EC000004 DFP dadd[.] Decimal Floating Add

Z23 59 EC000006 DFP dqua[.] Decimal Quantize

A 59 EC000024 FP[R] fdivs[.] Floating Divide Single

Table C-1. POWER8 Instructions by Opcode (Sheet 15 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 378 of 450
Version 1.3

16 March 2016

A 59 EC000028 FP[R] fsubs[.] Floating Subtract Single

A 59 EC00002A FP[R] fadds[.] Floating Add Single

A 59 EC00002C FP[R] fsqrts[.] Floating Square Root Single

A 59 EC000030 FP[R] fres[.] Floating Reciprocal Estimate Single

A 59 EC000032 FP[R] fmuls[.] Floating Multiply Single

A 59 EC000034 FP[R].in frsqrtes[.] Floating Reciprocal Square Root Estimate Single

A 59 EC000038 FP[R] fmsubs[.] Floating Multiply-Subtract Single

A 59 EC00003A FP[R] fmadds[.] Floating Multiply-Add Single

A 59 EC00003C FP[R] fnmsubs[.] Floating Negative Multiply-Subtract Single

A 59 EC00003E FP[R] fnmadds[.] Floating Negative Multiply-Add Single

X 59 EC000044 DFP dmul[.] Decimal Floating Multiply

Z23 59 EC000046 DFP drrnd[.] Decimal Floating Reround

Z22 59 EC000084 DFP dscli[.] Decimal Floating Shift Coefficient Left Immediate

Z23 59 EC000086 DFP dquai[.] Decimal Quantize Immediate

Z22 59 EC0000C4 DFP dscri[.] Decimal Floating Shift Coefficient Right Immediate

Z23 59 EC0000C6 DFP drintx[.] Decimal Floating Round To FP Integer With Inexact

X 59 EC000104 DFP dcmpo Decimal Floating Compare Ordered

X 59 EC000144 DFP dtstex Decimal Floating Test Exponent

Z22 59 EC000184 DFP dtstdc Decimal Floating Test Data Class

Z22 59 EC0001C4 DFP dtstdg Decimal Floating Test Data Group

Z23 59 EC0001C6 DFP drintn[.] Decimal Floating Round To FP Integer Without Inexact

X 59 EC000204 DFP dctdp[.] Decimal Floating Convert To DFP Long

X 59 EC000244 DFP dctfix[.] Decimal Floating Convert To Fixed

X 59 EC000284 DFP ddedpd[.] Decimal Floating Decode DPD To BCD

X 59 EC0002C4 DFP dxex[.] Decimal Floating Extract Exponent

X 59 EC000404 DFP dsub[.] Decimal Floating Subtract

X 59 EC000444 DFP ddiv[.] Decimal Floating Divide

X 59 EC000504 DFP dcmpu Decimal Floating Compare Unordered

X 59 EC000544 DFP dtstsf Decimal Floating Test Significance

X 59 EC000604 DFP drsp[.] Decimal Floating Round To DFP Short

X 59 EC000644 DFP dcffix[.] Decimal Floating Convert From Fixed

X 59 EC000684 DFP denbcd[.] Decimal Floating Encode BCD To DPD

X 59 EC00069C FP[R] fcfids[.] Floating Convert From Integer Doubleword Single

X 59 EC0006C4 DFP diex[.] Decimal Floating Insert Exponent

Table C-1. POWER8 Instructions by Opcode (Sheet 16 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 379 of 450

X 59 EC00079C FP[R] fcfidus[.] Floating Convert From Integer Doubleword Unsigned Single

XX3 60 F0000000 VSX xsaddsp VSX Scalar Add Single-Precision

XX3 60 F0000008 VSX xsmaddasp VSX Scalar Multiply-Add Type-A Single-Precision

XX3 60 F0000010 VSX xxsldwi VSX Shift Left Double by Word Immediate

XX2 60 F0000028 VSX xsrsqrtesp VSX Scalar Reciprocal Square Root Estimate Single-Precision

XX2 60 F000002C VSX xssqrtsp VSX Scalar Square Root Single-Precision

XX4 60 F0000030 VSX xxsel VSX Select

XX3 60 F0000040 VSX xssubsp VSX Scalar Subtract Single-Precision

XX3 60 F0000048 VSX xsmaddmsp VSX Scalar Multiply-Add Type-M Single-Precision

XX3 60 F0000050 VSX xxpermdi VSX Permute Doubleword Immediate

XX2 60 F0000068 VSX xsresp VSX Scalar Reciprocal Estimate Single-Precision

XX3 60 F0000080 VSX xsmulsp VSX Scalar Multiply Single-Precision

XX3 60 F0000088 VSX xsmsubasp VSX Scalar Multiply-Subtract Type-A Single-Precision

XX3 60 F0000090 VSX xxmrghw VSX Merge High Word

XX3 60 F00000C0 VSX xsdivsp VSX Scalar Divide Single-Precision

XX3 60 F00000C8 VSX xsmsubmsp VSX Scalar Multiply-Subtract Type-M Single-Precision

XX3 60 F0000100 VSX xsadddp VSX Scalar Add Double-Precision

XX3 60 F0000108 VSX xsmaddadp VSX Scalar Multiply-Add Type-A Double-Precision

XX3 60 F0000118 VSX xscmpudp VSX Scalar Compare Unordered Double-Precision

XX2 60 F0000120 VSX xscvdpuxws VSX Scalar Convert Double-Precision to Unsigned Fixed-Point
Word Saturate

XX2 60 F0000124 VSX xsrdpi VSX Scalar Round to Double-Precision Integer

XX2 60 F0000128 VSX xsrsqrtedp VSX Scalar Reciprocal Square Root Estimate Double-Precision

XX2 60 F000012C VSX xssqrtdp VSX Scalar Square Root Double-Precision

XX3 60 F0000140 VSX xssubdp VSX Scalar Subtract Double-Precision

XX3 60 F0000148 VSX xsmaddmdp VSX Scalar Multiply-Add Type-M Double-Precision

XX3 60 F0000158 VSX xscmpodp VSX Scalar Compare Ordered Double-Precision

XX2 60 F0000160 VSX xscvdpsxws VSX Scalar Convert Double-Precision to Signed Fixed-Point
Word Saturate

XX2 60 F0000164 VSX xsrdpiz VSX Scalar Round to Double-Precision Integer toward Zero

XX1 60 F0000168 VSX xsredp VSX Scalar Reciprocal Estimate Double-Precision

XX3 60 F0000180 VSX xsmuldp VSX Scalar Multiply Double-Precision

XX3 60 F0000188 VSX xsmsubadp VSX Scalar Multiply-Subtract Type-A Double-Precision

XX3 60 F0000190 VSX xxmrglw VSX Merge Low Word

XX2 60 F00001A4 VSX xsrdpip VSX Scalar Round to Double-Precision Integer toward +Infinity

Table C-1. POWER8 Instructions by Opcode (Sheet 17 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 380 of 450
Version 1.3

16 March 2016

XX2 60 F00001A8 VSX xstsqrtdp VSX Scalar Test for Software Square Root Double-Precision

XX2 60 F00001AC VSX xsrdpic VSX Scalar Round to Double-Precision Integer using Current
Rounding Mode

XX3 60 F00001C0 VSX xsdivdp VSX Scalar Divide Double-Precision

XX3 60 F00001C8 VSX xsmsubmdp VSX Scalar Multiply-Subtract Type-M Double-Precision

XX2 60 F00001E4 VSX xsrdpim VSX Scalar Round to Double-Precision Integer toward -Infinity

XX3 60 F00001E8 VSX xstdivdp VSX Scalar Test for Software Divide Double-Precision

XX3 60 F0000200 VSX xvaddsp VSX Vector Add Single-Precision

XX3 60 F0000208 VSX xvmaddasp VSX Vector Multiply-Add Type-A Single-Precision

XX3 60 F0000218 VSX xvcmpeqsp VSX Vector Compare Equal To Single-Precision

XX2 60 F0000220 VSX xvcvspuxws VSX Vector Convert Single-Precision to Unsigned Fixed-Point
Word Saturate

XX2 60 F0000224 VSX xvrspi VSX Vector Round to Single-Precision Integer

XX2 60 F0000228 VSX xvrsqrtesp VSX Vector Reciprocal Square Root Estimate Single-Precision

XX2 60 F000022C VSX xvsqrtsp VSX Vector Square Root Single-Precision

XX3 60 F0000240 VSX xvsubsp VSX Vector Subtract Single-Precision

XX3 60 F0000248 VSX xvmaddmsp VSX Vector Multiply-Add Type-M Single-Precision

XX3 60 F0000258 VSX xvcmpgtsp VSX Vector Compare Greater Than Single-Precision

XX2 60 F0000260 VSX xvcvspsxws VSX Vector Convert Single-Precision to Signed Fixed-Point
Word Saturate

XX2 60 F0000264 VSX xvrspiz VSX Vector Round to Single-Precision Integer toward Zero

XX2 60 F0000268 VSX xvresp VSX Vector Reciprocal Estimate Single-Precision

XX3 60 F0000280 VSX xvmulsp VSX Vector Multiply Single-Precision

XX3 60 F0000288 VSX xvmsubasp VSX Vector Multiply-Subtract Type-A Single-Precision

XX2 60 F0000290 VSX xxspltw VSX Splat Word

XX3 60 F0000298 VSX xvcmpgesp VSX Vector Compare Greater Than or Equal To Single-Preci-
sion

XX2 60 F00002A0 VSX xvcvuxwsp VSX Vector Convert Unsigned Fixed-Point Word to Single-Pre-
cision

XX2 60 F00002A4 VSX xvrspip VSX Vector Round to Single-Precision Integer toward +Infinity

XX2 60 F00002A8 VSX xvtsqrtsp VSX Vector Test for Software Square Root Single-Precision

XX2 60 F00002AC VSX xvrspic VSX Vector Round to Single-Precision Integer using Current
Rounding Mode

XX3 60 F00002C0 VSX xvdivsp VSX Vector Divide Single-Precision

XX3 60 F00002C8 VSX xvmsubmsp VSX Vector Multiply-Subtract Type-M Single-Precision

XX2 60 F00002E0 VSX xvcvsxwsp VSX Vector Convert Signed Fixed-Point Word to Single-Preci-
sion

Table C-1. POWER8 Instructions by Opcode (Sheet 18 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 381 of 450

XX2 60 F00002E4 VSX xvrspim VSX Vector Round to Single-Precision Integer toward -Infinity

XX3 60 F00002E8 VSX xvtdivsp VSX Vector Test for Software Divide Single-Precision

XX3 60 F0000300 VSX xvadddp VSX Vector Add Double-Precision

XX3 60 F0000308 VSX xvmaddadp VSX Vector Multiply-Add Type-A Double-Precision

XX3 60 F0000318 VSX xvcmpeqdp VSX Vector Compare Equal To Double-Precision

XX2 60 F0000320 VSX xvcvdpuxws VSX Vector Convert Double-Precision to Unsigned Fixed-Point
Word Saturate

XX2 60 F0000324 VSX xvrdpi VSX Vector Round to Double-Precision Integer

XX2 60 F0000328 VSX xvrsqrtedp VSX Vector Reciprocal Square Root Estimate Double-Precision

XX2 60 F000032C VSX xvsqrtdp VSX Vector Square Root Double-Precision

XX3 60 F0000340 VSX xvsubdp VSX Vector Subtract Double-Precision

XX3 60 F0000348 VSX xvmaddmdp VSX Vector Multiply-Add Type-M Double-Precision

XX3 60 F0000358 VSX xvcmpgtdp VSX Vector Compare Greater Than Double-Precision

XX2 60 F0000360 VSX xvcvdpsxws VSX Vector Convert Double-Precision to Signed Fixed-Point
Word Saturate

XX2 60 F0000364 VSX xvrdpiz VSX Vector Round to Double-Precision Integer toward Zero

XX2 60 F0000368 VSX xvredp VSX Vector Reciprocal Estimate Double-Precision

XX3 60 F0000380 VSX xvmuldp VSX Vector Multiply Double-Precision

XX3 60 F0000388 VSX xvmsubadp VSX Vector Multiply-Subtract Type-A Double-Precision

XX3 60 F0000398 VSX xvcmpgedp VSX Vector Compare Greater Than or Equal To Double-Preci-
sion

XX2 60 F00003A0 VSX xvcvuxwdp VSX Vector Convert Unsigned Fixed-Point Word to Double-Pre-
cision

XX2 60 F00003A4 VSX xvrdpip VSX Vector Round to Double-Precision Integer toward +Infinity

XX2 60 F00003A8 VSX xvtsqrtdp VSX Vector Test for Software Square Root Double-Precision

XX2 60 F00003AC VSX xvrdpic VSX Vector Round to Double-Precision Integer using Current
Rounding Mode

XX3 60 F00003C0 VSX xvdivdp VSX Vector Divide Double-Precision

XX3 60 F00003C8 VSX xvmsubmdp VSX Vector Multiply-Subtract Type-M Double-Precision

XX2 60 F00003E0 VSX xvcvsxwdp VSX Vector Convert Signed Fixed-Point Word to Double-Preci-
sion

XX2 60 F00003E4 VSX xvrdpim VSX Vector Round to Double-Precision Integer toward -Infinity

XX3 60 F00003E8 VSX xvtdivdp VSX Vector Test for Software Divide Double-Precision

XX3 60 F0000408 VSX xsnmaddasp VSX Scalar Negative Multiply-Add Type-A Single-Precision

XX3 60 F0000410 VSX xxland VSX Logical AND

XX2 60 F0000424 VSX xscvdpsp VSX Scalar Convert Double-Precision to Single-Precision

Table C-1. POWER8 Instructions by Opcode (Sheet 19 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 382 of 450
Version 1.3

16 March 2016

XX2 60 F000042C VSX xscvdpspn VSX Scalar Convert Double-Precision to Single-Precision format
Non-signalling

XX3 60 F0000448 VSX xsnmaddmsp VSX Scalar Negative Multiply-Add Type-M Single-Precision

XX3 60 F0000450 VSX xxlandc VSX Logical AND with Complement

XX2 60 F0000464 VSX xsrsp VSX Scalar Round to Single-Precision

XX3 60 F0000488 VSX xsnmsubasp VSX Scalar Negative Multiply-Subtract Type-A Single-Precision

XX3 60 F0000490 VSX xxlor VSX Logical OR

XX2 60 F00004A0 VSX xscvuxdsp VSX Scalar Convert Unsigned Fixed-Point Doubleword to Sin-
gle-Precision

XX3 60 F00004C8 VSX xsnmsubmsp VSX Scalar Negative Multiply-Subtract Type-M Single-Precision

XX3 60 F00004D0 VSX xxlxor VSX Logical XOR

XX2 60 F00004E0 VSX xscvsxdsp VSX Scalar Convert Signed Fixed-Point Doubleword to Single-
Precision

XX3 60 F0000500 VSX xsmaxdp VSX Scalar Maximum Double-Precision

XX3 60 F0000508 VSX xsnmaddadp VSX Scalar Negative Multiply-Add Type-A Double-Precision

XX3 60 F0000510 VSX xxlnor VSX Logical NOR

XX2 60 F0000520 VSX xscvdpuxds VSX Scalar Convert Double-Precision to Unsigned Fixed-Point
Doubleword Saturate

XX2 60 F0000524 VSX xscvspdp VSX Scalar Convert Single-Precision to Double-Precision (p=1)

XX2 60 F000052C VSX xscvspdpn Scalar Convert Single-Precision to Double-Precision format
Non-signalling

XX3 60 F0000540 VSX xsmindp VSX Scalar Minimum Double-Precision

XX3 60 F0000548 VSX xsnmaddmdp VSX Scalar Negative Multiply-Add Type-M Double-Precision

XX3 60 F0000550 VSX xxlorc VSX Logical OR with Complement

XX2 60 F0000560 VSX xscvdpsxds VSX Scalar Convert Double-Precision to Signed Fixed-Point
Doubleword Saturate

XX2 60 F0000564 VSX xsabsdp VSX Scalar Absolute Value Double-Precision

XX3 60 F0000580 VSX xscpsgndp VSX Scalar Copy Sign Double-Precision

XX3 60 F0000588 VSX xsnmsubadp VSX Scalar Negative Multiply-Subtract Type-A Double-Precision

XX3 60 F0000590 VSX xxlnand VSX Logical NAND

XX2 60 F00005A0 VSX xscvuxddp VSX Scalar Convert Unsigned Fixed-Point Doubleword to Dou-
ble-Precision

XX2 60 F00005A4 VSX xsnabsdp VSX Scalar Negative Absolute Value Double-Precision

XX3 60 F00005C8 VSX xsnmsubmdp VSX Scalar Negative Multiply-Subtract Type-M Double-Preci-
sion

XX3 60 F00005D0 VSX xxleqv VSX Logical Equivalence

XX2 60 F00005E0 VSX xscvsxddp VSX Scalar Convert Signed Fixed-Point Doubleword to Double-
Precision

Table C-1. POWER8 Instructions by Opcode (Sheet 20 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 383 of 450

XX2 60 F00005E4 VSX xsnegdp VSX Scalar Negate Double-Precision

XX3 60 F0000600 VSX xvmaxsp VSX Vector Maximum Single-Precision

XX3 60 F0000608 VSX xvnmaddasp VSX Vector Negative Multiply-Add Type-A Single-Precision

XX3 60 F0000618 VSX xvcmpeqsp. VSX Vector Compare Equal To Single-Precision and Record
CR6

XX2 60 F0000620 VSX xvcvspuxds VSX Vector Convert Single-Precision to Unsigned Fixed-Point
Doubleword Saturate

XX2 60 F0000624 VSX xvcvdpsp VSX Vector Convert Double-Precision to Single-Precision

XX3 60 F0000640 VSX xvminsp VSX Vector Minimum Single-Precision

XX3 60 F0000648 VSX xvnmaddmsp VSX Vector Negative Multiply-Add Type-M Single-Precision

XX3 60 F0000658 VSX xvcmpgtsp. VSX Vector Compare Greater Than Single-Precision and
Record CR6

XX2 60 F0000660 VSX xvcvspsxds VSX Vector Convert Single-Precision to Signed Fixed-Point
Doubleword Saturate

XX2 60 F0000664 VSX xvabssp VSX Vector Absolute Value Single-Precision

XX3 60 F0000680 VSX xvcpsgnsp VSX Vector Copy Sign Single-Precision

XX3 60 F0000688 VSX xvnmsubasp VSX Vector Negative Multiply-Subtract Type-A Single-Precision

XX3 60 F0000698 VSX xvcmpgesp. VSX Vector Compare Greater Than or Equal To Single-Preci-
sion and Record CR6

XX2 60 F00006A0 VSX xvcvuxdsp VSX Vector Convert Unsigned Fixed-Point Doubleword to Sin-
gle-Precision

XX2 60 F00006A4 VSX xvnabssp VSX Vector Negative Absolute Value Single-Precision

XX3 60 F00006C8 VSX xvnmsubmsp VSX Vector Negative Multiply-Subtract Type-M Single-Precision

XX2 60 F00006E0 VSX xvcvsxdsp VSX Vector Convert Signed Fixed-Point Doubleword to Single-
Precision

XX2 60 F00006E4 VSX xvnegsp VSX Vector Negate Single-Precision

XX3 60 F0000700 VSX xvmaxdp VSX Vector Maximum Double-Precision

XX3 60 F0000708 VSX xvnmaddadp VSX Vector Negative Multiply-Add Type-A Double-Precision

XX3 60 F0000718 VSX xvcmpeqdp. VSX Vector Compare Equal To Double-Precision and Record
CR6

XX2 60 F0000720 VSX xvcvdpuxds VSX Vector Convert Double-Precision to Unsigned Fixed-Point
Doubleword Saturate

XX2 60 F0000724 VSX xvcvspdp VSX Vector Convert Single-Precision to Double-Precision

XX3 60 F0000740 VSX xvmindp VSX Vector Minimum Double-Precision

XX3 60 F0000748 VSX xvnmaddmdp VSX Vector Negative Multiply-Add Type-M Double-Precision

XX3 60 F0000758 VSX xvcmpgtdp. VSX Vector Compare Greater Than Double-Precision and
Record CR6

XX2 60 F0000760 VSX xvcvdpsxds VSX Vector Convert Double-Precision to Signed Fixed-Point
Doubleword Saturate

Table C-1. POWER8 Instructions by Opcode (Sheet 21 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 384 of 450
Version 1.3

16 March 2016

XX2 60 F0000764 VSX xvabsdp VSX Vector Absolute Value Double-Precision

XX3 60 F0000780 VSX xvcpsgndp VSX Vector Copy Sign Double-Precision

XX3 60 F0000788 VSX xvnmsubadp VSX Vector Negative Multiply-Subtract Type-A Double-Preci-
sion

XX3 60 F0000798 VSX xvcmpgedp. VSX Vector Compare Greater Than or Equal To Double-Preci-
sion and Record CR6

XX2 60 F00007A0 VSX xvcvuxddp VSX Vector Convert Unsigned Fixed-Point Doubleword to Dou-
ble-Precision

XX2 60 F00007A4 VSX xvnabsdp VSX Vector Negative Absolute Value Double-Precision

XX3 60 F00007C8 VSX xvnmsubmdp VSX Vector Negative Multiply-Subtract Type-M Double-Preci-
sion

XX2 60 F00007E0 VSX xvcvsxddp VSX Vector Convert Signed Fixed-Point Doubleword to Double-
Precision

XX2 60 F00007E4 VSX xvnegdp VSX Vector Negate Double-Precision

DS 61 F4000000 FP.out stfdp Store Floating-Point Double Pair

DS 62 F8000002 LSQ stq Store Quadword

DS 62 F8000000 64 std Store Doubleword

DS 62 F8000001 64 stdu Store Doubleword with Update

X 63 FC000000 FP fcmpu Floating Compare Unordered

X 63 FC000004 DFP daddq[.] Decimal Floating Add Quad

Z23 63 FC000006 DFP dquaq[.] Decimal Quantize Quad

X 63 FC000010 FP[R] fcpsgn[.] Floating Copy Sign

X 63 FC000018 FP[R] frsp[.] Floating Round to Single-Precision

X 63 FC00001C FP[R] fctiw[.] Floating Convert To Integer Word

X 63 FC00001E FP[R] fctiwz[.] Floating Convert To Integer Word with round to Zero

A 63 FC000024 FP[R] fdiv[.] Floating Divide

A 63 FC000028 FP[R] fsub[.] Floating Subtract

A 63 FC00002A FP[R] fadd[.] Floating Add

A 63 FC00002C FP[R] fsqrt[.] Floating Square Root

A 63 FC00002E FP[R] fsel[.] Floating Select

A 63 FC000030 FP[R].in fre[.] Floating Reciprocal Estimate

A 63 FC000032 FP[R] fmul[.] Floating Multiply

A 63 FC000034 FP[R] frsqrte[.] Floating Reciprocal Square Root Estimate

A 63 FC000038 FP[R] fmsub[.] Floating Multiply-Subtract

A 63 FC00003A FP[R] fmadd[.] Floating Multiply-Add

A 63 FC00003C FP[R] fnmsub[.] Floating Negative Multiply-Subtract

A 63 FC00003E FP[R] fnmadd[.] Floating Negative Multiply-Add

Table C-1. POWER8 Instructions by Opcode (Sheet 22 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

POWER8 Instruction Summary by Opcode

Page 385 of 450

X 63 FC000040 FP fcmpo Floating Compare Ordered

X 63 FC000044 DFP dmulq[.] Decimal Floating Multiply Quad

Z23 63 FC000046 DFP drrndq[.] Decimal Floating Reround Quad

X 63 FC00004C FP[R] mtfsb1[.] Move To FPSCR Bit 1

X 63 FC000050 FP[R] fneg[.] Floating Negate

X 63 FC000080 FP mcrfs Move To Condition Register from FPSCR

Z22 63 FC000084 DFP dscliq[.] Decimal Floating Shift Coefficient Left Immediate Quad

Z23 63 FC000086 DFP dquaiq[.] Decimal Quantize Immediate Quad

X 63 FC00008C FP[R] mtfsb0[.] Move To FPSCR Bit 0

X 63 FC000090 FP[R] fmr[.] Floating Move Register

Z22 63 FC0000C4 DFP dscriq[.] Decimal Floating Shift Coefficient Right Immediate Quad

Z23 63 FC0000C6 DFP drintxq[.] Decimal Floating Round To FP Integer With Inexact Quad

X 63 FC000100 FP ftdiv Floating Test for Software Divide

X 63 FC000104 DFP dcmpoq Decimal Floating Compare Ordered Quad

X 63 FC00010C FP[R] mtfsfi[.] Move To FPSCR Field Immediate

X 63 FC000110 FP[R] fnabs[.] Floating Negative Absolute Value

X 63 FC00011C FP[R] fctiwu[.] Floating Convert To Integer Word Unsigned

X 63 FC00011E FP[R] fctiwuz[.] Floating Convert To Integer Word Unsigned with Round Toward
Zero

X 63 FC000140 FP ftsqrt Floating Test for Software Square Root

X 63 FC000144 DFP dtstexq Decimal Floating Test Exponent Quad

Z22 63 FC000184 DFP dtstdcq Decimal Floating Test Data Class Quad

Z22 63 FC0001C4 DFP dtstdgq Decimal Floating Test Data Group Quad

Z23 63 FC0001C6 DFP drintnq[.] Decimal Floating Round To FP Integer Without Inexact Quad

X 63 FC000204 DFP dctqpq[.] Decimal Floating Convert To DFP Extended

X 63 FC000210 FP[R] fabs[.] Floating Absolute Value

X 63 FC000244 DFP dctfixq[.] Decimal Floating Convert To Fixed Quad

X 63 FC000284 DFP ddedpdq[.] Decimal Floating Decode DPD To BCD Quad

X 63 FC0002C4 DFP dxexq[.] Decimal Floating Extract Exponent Quad

X 63 FC000310 FP[R].in frin[.] Floating Round To Integer Nearest

X 63 FC000350 FP[R].in friz[.] Floating Round To Integer toward Zero

X 63 FC000390 FP[R].in frip[.] Floating Round To Integer Plus

X 63 FC0003D0 FP[R].in frim[.] Floating Round To Integer Minus

X 63 FC000404 DFP dsubq[.] Decimal Floating Subtract Quad

X 63 FC000444 DFP ddivq[.] Decimal Floating Divide Quad

Table C-1. POWER8 Instructions by Opcode (Sheet 23 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

POWER8 Instruction Summary by Opcode

Page 386 of 450
Version 1.3

16 March 2016

X 63 FC00048E FP[R] mffs[.] Move From FPSCR

X 63 FC000504 DFP dcmpuq Decimal Floating Compare Unordered Quad

X 63 FC000544 DFP dtstsfq Decimal Floating Test Significance Quad

XFL 63 FC00058E FP[R] mtfsf[.] Move To FPSCR Fields

X 63 FC000604 DFP drdpq[.] Decimal Floating Round To DFP Long

X 63 FC000644 DFP dcffixq[.] Decimal Floating Convert From Fixed Quad

X 63 FC00065C FP[R] fctid[.] Floating Convert To Integer Doubleword

X 63 FC00065E FP[R] fctidz[.] Floating Convert To Integer Doubleword with Round Toward
Zero

X 63 FC000684 DFP denbcdq[.] Decimal Floating Encode BCD To DPD Quad

X 63 FC00068C VSX fmrgow Floating Merge Odd Word

X 63 FC00069C FP[R] fcfid[.] Floating Convert From Integer Doubleword

X 63 FC0006C4 DFP diexq[.] Decimal Floating Insert Exponent Quad

X 63 FC00075C FP[R] fctidu[.] Floating Convert To Integer Doubleword Unsigned

X 63 FC00075E FP[R] fctiduz[.] Floating Convert To Integer Doubleword Unsigned with Round
Toward Zero

X 63 FC00078C VSX fmrgew Floating Merge Even Word

X 63 FC00079C FP[R] fcfidu[.] Floating Convert From Integer Doubleword Unsigned

Table C-1. POWER8 Instructions by Opcode (Sheet 24 of 24)

Format

Opcode

Category Mnemonic InstructionPrimary
(Decimal)

Instruction Image
(operands set to 0’s)

(Hexadecimal)

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Performance Monitoring Events

Page 387 of 523

Appendix D. Performance Monitoring Events

The POWER8 processor has a built-in performance monitoring unit (PMU) for each hardware thread that
provides instrumentation to aid in performance monitoring, workload characterization, system characteriza-
tion and code analysis.

There are six thread-level performance monitor counters (PMC) in a PMU. PMC1 – PMC4 are program-
mable, PMC5 counts nonidle completed instructions, and PMC6 counts nonidle cycles.

The thread-level and core-level instrumentation have access to a set of performance events that cover
essential statistics such as:

• Miss rates
• Unit utilization
• Thread balance
• Hazard conditions
• Translation-related misses
• Stall analysis
• Instruction mix
• L1 I-cache and D-cache reload source
• Effective cache counts
• Memory latency counts

This document covers all of the performance monitoring events supported by the POWER8 PMU. These
events can be measured using hpmcount (AIX) and perf (Linux).

Table D-1. on page 388 lists all of the performance monitoring events for the POWER8 processor in alpha-
betical order by event name. Each event entry includes the event code used to program the PMU and a short
description.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 388 of 523

V
ersion 1.3

16 M
arch 2016

Table D-1. POWER8 Event List by Event Name (Sheet 1 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

000001F05E PM_1LPAR_CYC Number of cycles in single LPAR mode. All threads in the core are assigned to the same
LPAR.

00000100F2 PM_1PLUS_PPC_CMPL One or more PowerPC instructions finished.

00000400F2 PM_1PLUS_PPC_DISP Number of cycles that at least one instruction is dispatched. A group can be only microcode.

000002006E PM_2LPAR_CYC Number of cycles in 2 LPAR mode. Threads 0 - 3 belong to LPAR0 and threads 4 - 7 belong
to LPAR1.

000004E05E PM_4LPAR_CYC Number of cycles in 4 LPAR mode. Threads 0 - 1 belong to LPAR0.

0000610050 PM_ALL_CHIP_PUMP_CPRED Initial and final pump scope was chip pump (prediction is correct) for all data types (demand
load).

0000520050 PM_ALL_GRP_PUMP_CPRED Initial and final pump scope and data sourced across this scope was group pump for all data
types (demand load).

0000620052 PM_ALL_GRP_PUMP_MPRED Final pump scope (group) was either larger or smaller than initial pump scope for all data
types (demand load).

0000610052 PM_ALL_GRP_PUMP_MPRED_RTY Final pump scope (group) was larger than the initial pump scope (chip) for all data types
(demand load).

0000610054 PM_ALL_PUMP_CPRED Pump prediction correct. Counts are across all types of pumps for all data types (demand
load).

0000640052 PM_ALL_PUMP_MPRED Pump misprediction. Counts are across all types of pumps for all data types (demand load).

0000630050 PM_ALL_SYS_PUMP_CPRED Initial and final pump scope was system pump for all data types (demand load).

0000630052 PM_ALL_SYS_PUMP_MPRED Final pump scope (system) mispredicted. Either the original scope was too small (chip/group)
or the original scope was system and it should have been smaller. Counts are for all data
types (demand load).

0000640050 PM_ALL_SYS_PUMP_MPRED_RTY Final pump scope (system) was larger than initial pump scope (chip/group) for all data types
(demand load).

00000100FA PM_ANY_THRD_RUN_CYC One or more threads (or at least one thread) is in run_cycles.

000002505E PM_BACK_BR_CMPL Branch instruction completed with a target address less than the current instruction address.

0000004082 0000004082 0000004082 0000004082 PM_BANK_CONFLICT Read blocked due to interleave conflict. The ifar logic detects an interleave conflict and kills
the data that was read in that cycle.

0000020036 0000040036 PM_BR_2PATH Two-path branch.

0000005086 0000005086 0000005086 0000005086 PM_BR_BC_8 Pairable BC+8 branch that has not been converted to a Resolve Finished in the BRU pipe-
line.

0000005084 0000005084 0000005084 0000005084 PM_BR_BC_8_CONV Pairable BC+8 branch that was converted to a resolve finished in the BRU pipeline.

0000040060 PM_BR_CMPL Branch instruction completed.

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 389 of 523

00000040AC 00000040AC 00000040AC 00000040AC PM_BR_MPRED_CCACHE Conditional branch completed that was mispredicted due to the count cache target predic-
tion.

00000400F6 PM_BR_MPRED_CMPL Number of branch mispredicts.

00000040B8 00000040B8 00000040B8 00000040B8 PM_BR_MPRED_CR Conditional branch completed that was mispredicted due to the BHT direction prediction
(taken/not taken).

00000040AE 00000040AE 00000040AE 00000040AE PM_BR_MPRED_LSTACK Conditional branch completed that was mispredicted due to the link stack target prediction.

00000040BA 00000040BA 00000040BA 00000040BA PM_BR_MPRED_TA Conditional branch completed that was mispredicted due to the target address prediction
from the count cache or link stack. Only XL-form branches that resolved taken set this event.

0000010138 0000040138 PM_BR_MRK_2PATH Marked 2-path branch.

000000489C 000000489C 000000489C 000000489C PM_BR_PRED_BR_CMPL Completion time event.

000000409C 000000409C 000000409C 000000409C PM_BR_PRED_BR0 Conditional branch completed on BR0 (first branch in the group) in which the hardware pre-
dicted the direction or target.

000000409E 000000409E 000000409E 000000409E PM_BR_PRED_BR1 Conditional branch completed on BR1 (second branch in the group) in which the hardware
predicted the direction or target.
Note: BR1 can only be used in single-thread mode in all of the SMT modes.

00000040A4 00000040A4 00000040A4 00000040A4 PM_BR_PRED_CCACHE_BR0 Conditional branch completed on BR0 that used the count cache for target prediction.

00000040A6 00000040A6 00000040A6 00000040A6 PM_BR_PRED_CCACHE_BR1 Conditional branch completed on BR1 that used the count cache for target prediction.

00000048A4 00000048A4 00000048A4 00000048A4 PM_BR_PRED_CCACHE_CMPL Completion time event.

00000040B0 00000040B0 00000040B0 00000040B0 PM_BR_PRED_CR_BR0 Conditional branch completed on BR0 that had its direction predicted. I-form branches do not
set this event.

00000040B2 00000040B2 00000040B2 00000040B2 PM_BR_PRED_CR_BR1 Conditional branch completed on BR1 that had its direction predicted. I-form branches do not
set this event.

00000048B0 00000048B0 00000048B0 00000048B0 PM_BR_PRED_CR_CMPL Completion time event.

00000040A8 00000040A8 00000040A8 00000040A8 PM_BR_PRED_LSTACK_BR0 Conditional branch completed on BR0 that used the link stack for target prediction.

00000040AA 00000040AA 00000040AA 00000040AA PM_BR_PRED_LSTACK_BR1 Conditional branch completed on BR1 that used the link stack for target prediction.

00000048A8 00000048A8 00000048A8 00000048A8 PM_BR_PRED_LSTACK_CMPL Completion time event.

00000040B4 00000040B4 00000040B4 00000040B4 PM_BR_PRED_TA_BR0 Conditional branch completed on BR0 that had its target address predicted. Only XL-form
branches set this event.

00000040B6 00000040B6 00000040B6 00000040B6 PM_BR_PRED_TA_BR1 Conditional branch completed on BR1 that had its target address predicted. Only XL-form
branches set this event.

00000048B4 00000048B4 00000048B4 00000048B4 PM_BR_PRED_TA_CMPL Completion time event.

00000200FA PM_BR_TAKEN_CMPL New event for branch taken.

Table D-1. POWER8 Event List by Event Name (Sheet 2 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

Simultaneous multithreading

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 390 of 523

V
ersion 1.3

16 M
arch 2016

00000040A0 00000040A0 00000040A0 00000040A0 PM_BR_UNCOND_BR0 Unconditional branch completed on BR0. Hardware branch prediction was not used for this
branch. This can be an I-form branch.

00000040A2 00000040A2 00000040A2 00000040A2 PM_BR_UNCOND_BR1 Unconditional branch completed on BR1. Hardware branch prediction was not used for this
branch. This can be an I-form branch.

00000048A0 00000048A0 00000048A0 00000048A0 PM_BR_UNCOND_CMPL Completion time event. This event can also be calculated from the direct bus as follows:
if_pc_br0_br_pred = ‘00’ and if_pc_br0_completed.

0000010068 PM_BRU_FIN Branch instruction finished.

0000003094 0000003094 0000003094 0000003094 PM_CASTOUT_ISSUED Register file castout issued for both GPRs and VRs.

0000003096 0000003096 0000003096 0000003096 PM_CASTOUT_ISSUED_GPR Register file castout issued for GPRs only.

0000010050 PM_CHIP_PUMP_CPRED Initial and final pump scope was chip pump (prediction is correct) for all data types excluding
data prefetch (demand load.

0000002090 0000002090 0000002090 0000002090 PM_CLB_HELD CLB hold: any reason.

000001E054 PM_CMPLU_STALL1 Completion stall. No groups completed.

000004000A

000004D018 PM_CMPLU_STALL_BRU Completion stall due to a branch unit.

000002D018 PM_CMPLU_STALL_BRU_CRU Completion stall due to an IFU instruction.

0000030026 PM_CMPLU_STALL_COQ_FULL Completion stall due to CO queue full.

000002C012 PM_CMPLU_STALL_DCACHE_MISS Completion stall due to a D-cache miss.

000002C018 PM_CMPLU_STALL_DMISS_L21_L31 Completion stall due to a D-cache miss that resolves on chip (excluding the local L2 or L3
cache).

000002C016 PM_CMPLU_STALL_DMISS_L2L3 Completion stall due to a D-cache miss that resolves in the L2 or L3 cache.

000004C016 PM_CMPLU_STALL_DMISS_L2L3_
CONFLICT

Completion stall due to a cache miss that resolves in the L2 or L3 cache with a conflict.

000004C01A PM_CMPLU_STALL_DMISS_L3MISS Completion stall due to a cache miss that resolves in the L3 cache.

000004C018 PM_CMPLU_STALL_DMISS_LMEM Completion stall due to a cache miss that resolves in the core’s local memory.

000002C01C PM_CMPLU_STALL_DMISS_REMOTE Completion stall due to a D-cache miss that resolves on chip (excluding the local L2 or L3
cache).

000004C012 PM_CMPLU_STALL_ERAT_MISS Completion stall due to an LSU reject ERAT miss.

0000030038 PM_CMPLU_STALL_FLUSH Completion stall due to flush by own thread.

000004D016 PM_CMPLU_STALL_FXLONG Completion stall due to a long latency fixed-point instruction.

000002D016 PM_CMPLU_STALL_FXU Completion stall due to an FXU instruction.

Table D-1. POWER8 Event List by Event Name (Sheet 3 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 391 of 523

0000030036 PM_CMPLU_STALL_HWSYNC Completion stall due to an hwsync.

000004D014 PM_CMPLU_STALL_LOAD_FINISH Completion stall due to a load finish.

000002C010 PM_CMPLU_STALL_LSU Completion stall due to an LSU instruction.

0000010036 PM_CMPLU_STALL_LWSYNC Completion stall due to an isync/lwsync.

0000030028 PM_CMPLU_STALL_MEM_ECC_
DELAY

Completion stall due to a memory ECC delay.

000002E01C PM_CMPLU_STALL_NO_NTF Completion stall due to a NOP.

000002E01E PM_CMPLU_STALL_NTCG_FLUSH Completion stall because the NTC instruction was flushed.

0000030006 PM_CMPLU_STALL_OTHER_CMPL Number of instructions completed by all other threads while this thread was stalled.

000004C014 PM_CMPLU_STALL_REJ_LMQ_FULL Completion stall due to an LSU reject because the LMQ is full.

000004C010 PM_CMPLU_STALL_REJECT Completion stall due to an LSU reject.

000002C01A PM_CMPLU_STALL_REJECT_LHS Completion stall due to a reject (load-hit-store).

000004D010 PM_CMPLU_STALL_SCALAR Completion stall due to a VSU scalar instruction.

000002D010 PM_CMPLU_STALL_SCALAR_LONG Completion stall due to a VSU scalar long-latency instruction.

000004C01C PM_CMPLU_STALL_ST_FWD Completion stall due to a store forward.

000002C014 PM_CMPLU_STALL_STORE Completion stall by store instructions, which include store agen finishes in pipe LS0 or LS1
and store data finishes in the LS2 or LS3.

000001001C PM_CMPLU_STALL_THRD Completion stalled because of thread conflict. Group is ready to complete but it was another
thread’s turn.

000002D014 PM_CMPLU_STALL_VECTOR Completion stall due to a VSU vector instruction.

000004D012 PM_CMPLU_STALL_VECTOR_LONG Completion stall due to a VSU vector long instruction.

000002D012 PM_CMPLU_STALL_VSU Completion stall due to a VSU instruction.

0000517082 PM_CO_DISP_FAIL CO dispatch failed due to all CO machines being busy.

0000527084 PM_CO_TM_SC_FOOTPRINT L2 did a clean-if-dirty CO to the L3 cache (for example, created a store clean (SC) line in the
L3 cache).

000003608A PM_CO_USAGE1 Continuous 16-cycle (2:1) window where this signal rotates through sampling each L2 CO
machine busy. The PMU uses this wave to then do a 16-cycle count to sample the total num-
ber of machines running.000073608A

0000016083 PM_CO0_ALLOC CO mach 0 busy. Used by the PMU to sample average RC lifetime (mach0 used as sample
point).

Table D-1. POWER8 Event List by Event Name (Sheet 4 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

Error correcting code

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 392 of 523

V
ersion 1.3

16 M
arch 2016

0000016082 PM_CO0_BUSY1 CO machine 0 busy. Used by the PMU to sample average RC lifetime (mach0 used as a
sample point).

0000716082

0000040066 PM_CRU_FIN IFU finished a nonbranch instruction.

000001001E 000002001E 000003001E 000004001E PM_CYC1 Cycles.

00000100F0

000061C050 PM_DATA_ALL_CHIP_PUMP_CPRED Initial and final pump scope was chip pump (prediction is correct) for a demand load or a data
prefetch.

000064C048 PM_DATA_ALL_FROM_DL2L3_MOD The processor’s data cache was reloaded with modified (M) data from another chip’s L2 or L3
cache on a different Node or Group (distant).

000063C048 PM_DATA_ALL_FROM_DL2L3_SHR The processor’s data cache was reloaded with shared (S) data from another chip’s L2 or L3
cache on a different Node or Group (distant).

000064C04C PM_DATA_ALL_FROM_DMEM The processor’s data cache was reloaded from another chip's memory on the same Node or
Group (distant) due to a demand load or a data prefetch.

000061C042 PM_DATA_ALL_FROM_L2 The processor’s data cache was reloaded from the local core’s L2 cache due to a demand
load or a data prefetch.

000063C040 PM_DATA_ALL_FROM_L2_DISP_
CONFLICT_LDHITST

The processor’s data cache was reloaded from the local core’s L2 cache with a load-hit-store
conflict due to either demand loads or a data prefetch.

000064C040 PM_DATA_ALL_FROM_L2_DISP_
CONFLICT_OTHER

The processor’s data cache was reloaded from the local core’s L2 cache with a dispatch con-
flict due to a demand load or a data prefetch.

000062C040 PM_DATA_ALL_FROM_L2_MEPF The processor’s data cache was reloaded from the local core’s L2 hit without a dispatch con-
flict on an Mepf state due to a demand load or a data prefetch.

000061C040 PM_DATA_ALL_FROM_L2_NO_
CONFLICT

The processor’s data cache was reloaded from the local core’s L2 cache without conflict due
to a demand load or a data prefetch.

000064C046 PM_DATA_ALL_FROM_L21_MOD The processor’s data cache was reloaded with modified (M) data from another core’s L2
cache on the same chip due to a demand load or a data prefetch.

000063C046 PM_DATA_ALL_FROM_L21_SHR The processor’s data cache was reloaded with shared (S) data from another core’s L2 cache
on the same chip due to a demand load or a data prefetch.

000061C04E PM_DATA_ALL_FROM_L2MISS_MOD The processor’s data cache was reloaded from a location other than the local core’s L2
cache due to a demand load or a data prefetch.

000064C042 PM_DATA_ALL_FROM_L3 The processor’s data cache was reloaded from the local core’s L3 cache due to a demand
load or a data prefetch.

000063C042 PM_DATA_ALL_FROM_L3_DISP_
CONFLICT

The processor’s data cache was reloaded from the local core’s L3 cache with a dispatch con-
flict due to a demand load or a data prefetch.

000062C042 PM_DATA_ALL_FROM_L3_MEPF The processor’s data cache was reloaded from the local core’s L3 cache without dispatch
conflict hits on an Mepf state due to a demand load or a data prefetch.

Table D-1. POWER8 Event List by Event Name (Sheet 5 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 393 of 523

000061C044 PM_DATA_ALL_FROM_L3_NO_
CONFLICT

The processor’s data cache was reloaded from the local core’s L3 cache without conflict due
to a demand load or a data prefetch.

000064C044 PM_DATA_ALL_FROM_L31_ECO_
MOD

The processor’s data cache was reloaded with modified (M) data from another core’s ECO
L3 on the same chip due to a demand load or a data prefetch.

000063C044 PM_DATA_ALL_FROM_L31_ECO_
SHR

The processor’s data cache was reloaded with shared (S) data from another core’s ECO L3
on the same chip due to a demand load or a data prefetch.

000062C044 PM_DATA_ALL_FROM_L31_MOD The processor’s data cache was reloaded with modified (M) data from another core’s L3
cache on the same chip due to a demand load or a data prefetch.

000061C046 PM_DATA_ALL_FROM_L31_SHR The processor’s data cache was reloaded with shared (S) data from another core’s L3 cache
on the same chip due to a demand load or a data prefetch.

000064C04E PM_DATA_ALL_FROM_L3MISS_MOD The processor’s data cache was reloaded from a location other than the local core’s L3
cache due to either a demand load s or a data prefetch.

000062C048 PM_DATA_ALL_FROM_LMEM The processor’s data cache was reloaded from the local chip’s memory due to a demand
load or a data prefetch.

000062C04C PM_DATA_ALL_FROM_MEMORY The processor’s data cache was reloaded from a memory location from a local remote or dis-
tant due to a demand load or a data prefetch.

000064C04A PM_DATA_ALL_FROM_OFF_CHIP_
CACHE

The processor’s data cache was reloaded with either shared or modified data from another
core’s L2 or L3 cache on a different chip (remote or distant) due to a demand load or a data
prefetch.

000061C048 PM_DATA_ALL_FROM_ON_CHIP_
CACHE

The processor’s data cache was reloaded with either shared or modified data from another
core’s L2 or L3 cache on the same chip due to a demand load or a data prefetch.

000062C046 PM_DATA_ALL_FROM_RL2L3_MOD The processor’s data cache was reloaded with modified (M) data from another chip’s L2 or L3
cache on the same Node or Group (remote).

000061C04A PM_DATA_ALL_FROM_RL2L3_SHR The processor’s data cache was reloaded with shared (S) data from another chip’s L2 or L3
cache on the same Node or Group (remote).

000063C04A PM_DATA_ALL_FROM_RMEM The processor’s data cache was reloaded from another chip’s memory on the same Node or
Group (remote) due to a demand load or a data prefetch.

000062C050 PM_DATA_ALL_GRP_PUMP_CPRED Initial and final pump scope was group pump (prediction is correct) for a demand load or a
data prefetch.

000062C052 PM_DATA_ALL_GRP_PUMP_MPRED Final pump scope (group) was either larger or smaller than initial pump scope for a demand
load or a data prefetch. Final pump scope (group) to get data sourced.

000061C052 PM_DATA_ALL_GRP_PUMP_
MPRED_RTY

Final pump scope (group) was larger than the initial pump scope (chip) for a demand load or
a data prefetch.

000061C054 PM_DATA_ALL_PUMP_CPRED Pump prediction correct. Counts across all types of pumps for a demand load or a data
prefetch.

000064C052 PM_DATA_ALL_PUMP_MPRED Pump misprediction. Counts are across all types of pumps for a demand load or a data
prefetch.

Table D-1. POWER8 Event List by Event Name (Sheet 6 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 394 of 523

V
ersion 1.3

16 M
arch 2016

000063C050 PM_DATA_ALL_SYS_PUMP_CPRED Initial and final pump scope was system pump (prediction = correct) for a demand load or a
data prefetch.

000063C052 PM_DATA_ALL_SYS_PUMP_MPRED Final pump scope (system) mispredicted. Either the original scope was too small (chip/group)
or the original scope was system and it should have been smaller. Counts are for a demand
load or a data prefetch. Final pump scope (system) to get data sourced.

000064C050 PM_DATA_ALL_SYS_PUMP_MPRED_
RTY

Final pump scope (system) was larger than initial pump scope (chip/group) for a demand
load or a data prefetch. Final pump scope (system) to get data sourced.

000001C050 PM_DATA_CHIP_PUMP_CPRED Initial and final pump scope was chip pump (prediction is correct) for a demand load.

000004C048 PM_DATA_FROM_DL2L3_MOD The processor’s data cache was reloaded with modified (M) data from another chip’s L2 or L3
cache on a different Node or Group (distant).

000003C048 PM_DATA_FROM_DL2L3_SHR The processor’s data cache was reloaded with shared (S) data from another chip’s L2 or L3
cache on a different Node or Group (distant).

000004C04C PM_DATA_FROM_DMEM The processor’s data cache was reloaded from another chip’s memory on the same Node or
Group (distant) due to either only demand loads or demand loads plus prefetches if
MMCR1[16] = ‘1’.

000001C042 PM_DATA_FROM_L2 The processor’s data cache was reloaded from the local core’s L2 cache due to either a
demand load or demand loads plus prefetches if MMCR1[16] = ‘1’.

000003C040 PM_DATA_FROM_L2_DISP_CONFLICT
_LDHITST

The processor’s data cache was reloaded from the local core’s L2 cache with a load-hit-store
conflict due to either only demand loads or demand loads plus prefetches if MMCR1[16] = ‘1’.

000004C040 PM_DATA_FROM_L2_DISP_CONFLICT
_OTHER

The processor’s data cache was reloaded from the local core’s L2 cache with a dispatch con-
flict due to either only demand loads or demand loads plus prefetches if MMCR1[16] = ‘1’.

000002C040 PM_DATA_FROM_L2_MEPF The processor’s data cache was reloaded from a local core’s L2 hit without dispatch conflicts
on an Mepf state due to a demand load or demand loads plus prefetches if MMCR1[16] = ‘1’.

000001C040 PM_DATA_FROM_L2_NO_CONFLICT The processor’s data cache was reloaded from the local core’s L2 cache without conflict due
to either demand loads or demand loads plus prefetches if MMCR1[16] = ‘1’.

000004C046 PM_DATA_FROM_L21_MOD The processor’s data cache was reloaded with modified (M) data from another core’s L2 on
the same chip due to either only demand loads or demand loads plus prefetches if
MMCR1[16] = ‘1’.

000003C046 PM_DATA_FROM_L21_SHR The processor’s data cache was reloaded with shared (S) data from another core’s L2 cache
on the same chip due to either only demand loads or demand loads plus prefetches if
MMCR1[16] = ‘1’.

00000200FE PM_DATA_FROM_L2MISS Demand LD - L2 miss (not an L2 hit). The processor’s data cache was reloaded but not from
the local L2 cache.

000001C04E PM_DATA_FROM_L2MISS_MOD The processor's data cache was reloaded from a location other than the local core’s L2
cache due to either only demand loads or demand loads plus prefetches if MMCR1[16] = ‘1’.

000004C042 PM_DATA_FROM_L3 The processor’s data cache was reloaded from the local core’s L3 cache due to either only
demand loads or demand loads plus prefetches if MMCR1[16] = ‘1’.

000003C042 PM_DATA_FROM_L3_DISP_
CONFLICT

The processor’s data cache was reloaded from the local core’s L3 cache with dispatch con-
flict due to either only demand loads or demand loads plus prefetches if MMCR1[16] = ‘1’.

Table D-1. POWER8 Event List by Event Name (Sheet 7 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 395 of 523

000002C042 PM_DATA_FROM_L3_MEPF The processor’s data cache was reloaded from a local core’s L3 cache without dispatch con-
flicts hit on an Mepf state due to a demand load or demand loads plus prefetches if
MMCR1[16] = ‘1’.

000001C044 PM_DATA_FROM_L3_NO_CONFLICT The processor’s data cache was reloaded from the local core’s L3 cache without conflict due
to a demand load or demand load plus prefetch if MMCR1[16] = ‘1’.

000004C044 PM_DATA_FROM_L31_ECO_MOD The processor’s data cache was reloaded with modified (M) data from another core’s ECO
L3 on the same chip due to either only demand loads or demand loads plus prefetches if
MMCR1[16] = ‘1’.

000003C044 PM_DATA_FROM_L31_ECO_SHR The processor’s data cache was reloaded with shared (S) data from another core’s ECO L3
on the same chip due to either only a demand load or demand loads plus prefetches if
MMCR1[16] = ‘1’.

000002C044 PM_DATA_FROM_L31_MOD The processor’s data cache was reloaded with modified (M) data from another core’s L3
cache on the same chip due to a demand load or demand loads plus prefetches if
MMCR1[16] = ‘1’.

000001C046 PM_DATA_FROM_L31_SHR The processor’s data cache was reloaded with shared (S) data from another core's L3 cache
on the same chip due to either only demand loads or demand loads plus prefetches if
MMCR1[16] = ‘1’.

00000300FE PM_DATA_FROM_L3MISS Demand load - L3 miss (not an L2 hit and not an L3 hit). The processor’s data cache was
reloaded but not from the local L3 cache.

000004C04E PM_DATA_FROM_L3MISS_MOD The processor’s data cache was reloaded from a location other than the local core’s L3
cache due to either only demand loads or demand loads plus prefetches if MMCR1[16] = ‘1’.

000002C048 PM_DATA_FROM_LMEM The processor's data cache was reloaded from the local chip’s memory due to a demand
load or demand loads plus prefetches if MMCR1[16] = ‘1’.

00000400FE PM_DATA_FROM_MEM The processor’s data cache was reloaded from a memory location including from a local
remote or distant due to a demand load.

000002C04C PM_DATA_FROM_MEMORY The processor’s data cache was reloaded from a memory location from local remote or dis-
tant due to only demand loads or demand loads plus prefetches if MMCR1[16] = ‘1’.

000004C04A PM_DATA_FROM_OFF_CHIP_CACHE The processor’s data cache was reloaded with either shared or modified data from another
core’s L2 or L3 cache on a different chip (remote or distant) due to either only demand loads
or demand loads plus prefetches if MMCR1[16] = ‘1’.

000001C048 PM_DATA_FROM_ON_CHIP_CACHE The processor’s data cache was reloaded with either shared or modified data from another
core’s L2/L3 cache on the same chip due to either only demand loads or demand loads plus
prefetches if MMCR1[16] = ‘1’.

000002C046 PM_DATA_FROM_RL2L3_MOD The processor’s data cache was reloaded with modified (M) data from another chip’s L2 or L3
cache on the same Node or Group (remote).

000001C04A PM_DATA_FROM_RL2L3_SHR The processor's data cache was reloaded with Shared (S) data from another chip’s L2 or L3
cache on the same Node or Group (remote).

000003C04A PM_DATA_FROM_RMEM The processor’s data cache was reloaded from another chip’s memory on the same Node or
Group (remote) due to either only a demand load or demand loads plus prefetches if
MMCR1[16] = ‘1’.

Table D-1. POWER8 Event List by Event Name (Sheet 8 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 396 of 523

V
ersion 1.3

16 M
arch 2016

000002C050 PM_DATA_GRP_PUMP_CPRED Initial and final pump scope and data sourced across this scope was group pump (prediction
is correct) for a demand load.

000002C052 PM_DATA_GRP_PUMP_MPRED Final pump scope (group) was either larger or smaller than initial pump scope for a demand
load. Final pump scope (group) to get data sourced.

000001C052 PM_DATA_GRP_PUMP_MPRED_RTY Final pump scope (Group) was larger than initial pump scope (chip) for a demand load.

000001C054 PM_DATA_PUMP_CPRED Pump prediction correct. Counts across all types of pumps for a demand load.

000004C052 PM_DATA_PUMP_MPRED Pump misprediction. Counts across all types of pumps for a demand load.

000003C050 PM_DATA_SYS_PUMP_CPRED Initial and final pump scope and data sourced across this scope was system pump (predic-
tion is correct) for a demand load.

000003C052 PM_DATA_SYS_PUMP_MPRED Final Pump Scope (system) mispredicted. Either the original scope was too small
(Chip/Group) or the original scope was System and it should have been smaller. Counts for a
demand load.

000004C050 PM_DATA_SYS_PUMP_MPRED_RTY Final pump scope (system) was larger than initial pump scope (chip/group) for a demand
load.

000003001A PM_DATA_TABLEWALK_CYC Tablewalk cycles (one or two cycles are active).

000000E0BC 000000E0BC 000000E0BC 000000E0BC PM_DC_COLLISIONS Data cache collisions.

000001E050 PM_DC_PREF_STREAM_ALLOC Stream marked valid. The stream could have been allocated through the hardware prefetch
mechanism or through software. This is combined LS0 and LS1.

000002E050 PM_DC_PREF_STREAM_CONF A demand load referenced a line in an active prefetch stream. The stream might have been
allocated through the hardware prefetch mechanism or through software. Combine up and
down.

000004E050 PM_DC_PREF_STREAM_FUZZY_
CONF

A demand load referenced a line in an active fuzzy prefetch stream. The stream might have
been allocated through the hardware prefetch mechanism or through software.

000003E050 PM_DC_PREF_STREAM_
STRIDED_CONF

A demand load referenced a line in an active strided prefetch stream. The stream might have
been allocated through the hardware prefetch mechanism or through software.

000004C054 PM_DERAT_MISS_16G Data ERAT miss (data TLB access) page size 16 GB.

000003C054 PM_DERAT_MISS_16M Data ERAT miss (data TLB access) page size 16 MB.

000001C056 PM_DERAT_MISS_4K Data ERAT miss (data TLB access) page size 4 KB.

000002C054 PM_DERAT_MISS_64K Data ERAT miss (data TLB access) page size 64 KB.

000000B0BA 000000B0BA 000000B0BA 000000B0BA PM_DFU Finish DFU (all finish).

000000B0BE 000000B0BE 000000B0BE 000000B0BE PM_DFU_DCFFIX Convert from fixed-opcode finish (dcffix).

000000B0BC 000000B0BC 000000B0BC 000000B0BC PM_DFU_DENBCD BCD-to-DPD opcode finish (denbcd).

000000B0B8 000000B0B8 000000B0B8 000000B0B8 PM_DFU_MC Finish DFU multicycle.

0000002092 0000002092 0000002092 0000002092 PM_DISP_CLB_HELD_BAL Dispatch/CLB hold: balance.

Table D-1. POWER8 Event List by Event Name (Sheet 9 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

binary coded decimal

densely packed decimal

decimal floating-point unit

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 397 of 523

0000002094 0000002094 0000002094 0000002094 PM_DISP_CLB_HELD_RES Dispatch/CLB held: resource.

00000020A8 00000020A8 00000020A8 00000020A8 PM_DISP_CLB_HELD_SB Dispatch/CLB held: scoreboard.

0000002098 0000002098 0000002098 0000002098 PM_DISP_CLB_HELD_SYNC Dispatch/CLB held: sync type instruction. An instruction group is held at dispatch in the IBuf-
fer due to a sync type instruction.

0000002096 0000002096 0000002096 0000002096 PM_DISP_CLB_HELD_TLBIE An instruction group is held at dispatch in the IBuffer due to a tlbie instruction.

0000010006 PM_DISP_HELD Dispatch held. The number of cycles that the dispatch to pipeline is held.

0000020006 PM_DISP_HELD_IQ_FULL Dispatch held because the issue queue is full.

000001002A PM_DISP_HELD_MAP_FULL Dispatch for this thread was held because the mappers are full.

0000030018 PM_DISP_HELD_SRQ_FULL Dispatch held because the SRQ has no space.

000004003C PM_DISP_HELD_SYNC_HOLD Dispatch held due to a sync hold.

00000030A6 00000030A6 00000030A6 00000030A6 PM_DISP_HOLD_GCT_FULL Dispatch held due to no space in the GCT.

0000030008 PM_DISP_WT Dispatched starved (not held).

000004E048 PM_DPTEG_FROM_DL2L3_MOD A PTE was loaded into the TLB with modified (M) data from another chip’s L2 or L3 cache on
a different Node or Group (distant).

000003E048 PM_DPTEG_FROM_DL2L3_SHR A PTE was loaded into the TLB with shared (S) data from another chip’s L2 or L3 cache on a
different Node or Group (distant).

000004E04C PM_DPTEG_FROM_DMEM A PTE was loaded into the TLB from another chip’s memory on the same Node or Group
(distant) due to a data-side request.

000001E042 PM_DPTEG_FROM_L2 A PTE was loaded into the TLB from a local core’s L2 cache due to a data-side request.

000003E040 PM_DPTEG_FROM_L2_DISP_
CONFLICT_LDHITST

A PTE was loaded into the TLB from the local core’s L2 cache with a load-hit-store conflict
due to a data-side request.

000004E040 PM_DPTEG_FROM_L2_DISP_
CONFLICT_OTHER

A PTE was loaded into the TLB from the local core’s L2 cache with a dispatch conflict due to
a data-side request.

000002E040 PM_DPTEG_FROM_L2_MEPF A PTE was loaded into the TLB from the local core’s L2 hit without a dispatch conflict on an
Mepf state due to a data-side request.

000001E040 PM_DPTEG_FROM_L2_NO_
CONFLICT

A PTE was loaded into the TLB from a local core’s L2 cache without a conflict due to a data-
side request.

000004E046 PM_DPTEG_FROM_L21_MOD A PTE was loaded into the TLB with modified (M) data from another core’s L2 cache on the
same chip due to a data-side request.

000003E046 PM_DPTEG_FROM_L21_SHR A PTE was loaded into the TLB with shared (S) data from another core’s L2 cache on the
same chip due to a data-side request.

000001E04E PM_DPTEG_FROM_L2MISS A PTE was loaded into the TLB from a location other than the local core’s L2 due to a data-
side request.

000004E042 PM_DPTEG_FROM_L3 A PTE was loaded into the TLB from local core’s L3 cache due to a data-side request.

Table D-1. POWER8 Event List by Event Name (Sheet 10 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 398 of 523

V
ersion 1.3

16 M
arch 2016

000003E042 PM_DPTEG_FROM_L3_DISP_
CONFLICT

A PTE was loaded into the TLB from the local core’s L3 cache with a dispatch conflict due to
a data-side request.

000002E042 PM_DPTEG_FROM_L3_MEPF A PTE was loaded into the TLB from the local core’s L3 cache without a dispatch conflict hit
on an Mepf state due to a data-side request.

000001E044 PM_DPTEG_FROM_L3_NO_
CONFLICT

A PTE was loaded into the TLB from local core’s L3 cache without conflict due to a data-side
request.

000004E044 PM_DPTEG_FROM_L31_ECO_MOD A PTE was loaded into the TLB with modified (M) data from another core’s ECO L3 on the
same chip due to a data-side request.

000003E044 PM_DPTEG_FROM_L31_ECO_SHR A PTE was loaded into the TLB with shared (S) data from another core’s ECO L3 on the
same chip due to a data-side request.

000002E044 PM_DPTEG_FROM_L31_MOD A PTE was loaded into the TLB with modified (M) data from another core’s L3 cache on the
same chip due to a data-side request.

000001E046 PM_DPTEG_FROM_L31_SHR A PTE was loaded into the TLB with shared (S) data from another core’s L3 cache on the
same chip due to a data-side request.

000004E04E PM_DPTEG_FROM_L3MISS A PTE was loaded into the TLB from a location other than the local core’s L3 cache due to a
data-side request.

000002E048 PM_DPTEG_FROM_LMEM A PTE was loaded into the TLB from the local chip’s memory due to a data-side request.

000002E04C PM_DPTEG_FROM_MEMORY A PTE was loaded into the TLB from a memory location from a local remote or distant due to
a data-side request.

000004E04A PM_DPTEG_FROM_OFF_CHIP_
CACHE

A PTE was loaded into the TLB either shared or modified data from another core’s L2 or L3
cache on a different chip (remote or distant) due to a data-side request.

000001E048 PM_DPTEG_FROM_ON_CHIP_
CACHE

A PTE was loaded into the TLB with either shared or modified data from another core’s L2 or
L3 cache on the same chip due to a data-side request.

000002E046 PM_DPTEG_FROM_RL2L3_MOD A PTE was loaded into the TLB with modified (M) data from another chip’s L2 or L3 cache on
the same Node or Group (remote).

000001E04A PM_DPTEG_FROM_RL2L3_SHR A PTE was loaded into the TLB with shared (S) data from another chip’s L2 or L3 cache on
the same Node or Group (remote).

000003E04A PM_DPTEG_FROM_RMEM A PTE was loaded into the TLB from another chip’s memory on the same Node or Group
(remote) due to a data-side request.

0000010016 PM_DSLB_MISS1 Data SLB miss; total of all segment sizes. An SLB miss for a data request occurred. SLB
misses trap to the operating system to resolve. This is a total count for all segment sizes.

000000D094 000000D094 000000D094 000000D094

00000300FC PM_DTLB_MISS Data PTEG reloaded (DTLB miss).

000001C058 PM_DTLB_MISS_16G Data TLB miss page size 16 GB.

000004C056 PM_DTLB_MISS_16M Data TLB miss page size 16 MB.

000002C056 PM_DTLB_MISS_4K Data TLB miss page size 4 KB.

Table D-1. POWER8 Event List by Event Name (Sheet 11 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 399 of 523

000003C056 PM_DTLB_MISS_64K Data TLB miss page size 64 KB.

00000050A8 00000050A8 00000050A8 00000050A8 PM_EAT_FORCE_MISPRED The XL-form branch was mispredicted due to the predicted target address missing from the
EAT. The EAT forces a mispredict in this case because there is no predicated target to vali-
date. This rare case can occur when the EAT is full and a branch is issue

0000004084 0000004084 0000004084 0000004084 PM_EAT_FULL_CYC Cycles the thread was blocked because the EAT was full.

0000002080 0000002080 0000002080 0000002080 PM_EE_OFF_EXT_INT EE off and external interrupt. Cycles when an interrupt due to an external exception is pend-
ing but external exceptions were masked.

00000200F8 PM_EXT_INT External interrupt.

00000020B4 00000020B4 00000020B4 00000020B4 PM_FAV_TBEGIN Dispatch time favored tbegin.

00000100F4 PM_FLOP Floating-point operation finished.

000000A0AE 000000A0AE 000000A0AE 000000A0AE PM_FLOP_SUM_SCALAR Flops summary scalar instructions.

000000A0AC 000000A0AC 000000A0AC 000000A0AC PM_FLOP_SUM_VEC Flops summary vector instructions.

00000400F8 PM_FLUSH Flush (any type). A flush has occurred. This includes all types of flushes such as branch mis-
predicts, load store unit flushes, partial flushes, and completion flushes.

0000002084 0000002084 0000002084 0000002084 PM_FLUSH_BR_MPRED A flush was caused by a branch mispredict.

0000030012 PM_FLUSH_COMPLETION Completion flush.

0000002082 0000002082 0000002082 0000002082 PM_FLUSH_DISP A dispatch flush occurred.

000000208C 000000208C 000000208C 000000208C PM_FLUSH_DISP_SB Dispatch flush: scoreboard. An instruction with the scoreboard bit set caused a dispatch flush
to flush the decode pipe.

0000002088 0000002088 0000002088 0000002088 PM_FLUSH_DISP_SYNC Dispatch flush: sync. A sync/lwsync/ptesync/tlbsync caused a dispatch flush to flush the
decode pipe.

000000208A 000000208A 000000208A 000000208A PM_FLUSH_DISP_TLBIE Dispatch flush: tlbie. A tlbie caused a dispatch flush to flush the decode pipe.

000000208E 000000208E 000000208E 000000208E PM_FLUSH_LSU Flush initiated by the LSU.

0000002086 0000002086 0000002086 0000002086 PM_FLUSH_PARTIAL Partial flush.

000000A0B0 000000A0B0 000000A0B0 000000A0B0 PM_FPU0_FCONV Convert instruction executed.

000000A0B8 000000A0B8 000000A0B8 000000A0B8 PM_FPU0_FEST Estimate instruction executed.

000000A0B4 000000A0B4 000000A0B4 000000A0B4 PM_FPU0_FRSP Round to single-precision instruction executed.

000000A0B2 000000A0B2 000000A0B2 000000A0B2 PM_FPU1_FCONV Convert instruction executed.

000000A0BA 000000A0BA 000000A0BA 000000A0BA PM_FPU1_FEST Estimate instruction executed.

000000A0B6 000000A0B6 000000A0B6 000000A0B6 PM_FPU1_FRSP Round to single-precision instruction executed.

Table D-1. POWER8 Event List by Event Name (Sheet 12 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

external exception

effective address translation

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 400 of 523

V
ersion 1.3

16 M
arch 2016

000003000C PM_FREQ_DOWN Power management is below threshold B. Frequency is slewed down due to power manage-
ment.

000004000C PM_FREQ_UP Frequency is being slewed up due to power management.

00000050B0 00000050B0 00000050B0 00000050B0 PM_FUSION_TOC_GRP0_1 One pair of instructions fused with the TOC in Group0.

00000050AE 00000050AE 00000050AE 00000050AE PM_FUSION_TOC_GRP0_2 Two pairs of instructions fused with the TOC in Group0.

00000050AC 00000050AC 00000050AC 00000050AC PM_FUSION_TOC_GRP0_3 Three pairs of instructions fused with the TOC in Group0.

00000050B2 00000050B2 00000050B2 00000050B2 PM_FUSION_TOC_GRP1_1 One pair of instructions fused with the TOC in Group1.

00000050B8 00000050B8 00000050B8 00000050B8 PM_FUSION_VSX_GRP0_1 One pair of instructions fused with the VSX in Group0.

00000050B6 00000050B6 00000050B6 00000050B6 PM_FUSION_VSX_GRP0_2 Two pairs of instructions fused with the VSX in Group0.

00000050B4 00000050B4 00000050B4 00000050B4 PM_FUSION_VSX_GRP0_3 Three pairs of instructions fused with VSX in Group0.

00000050BA 00000050BA 00000050BA 00000050BA PM_FUSION_VSX_GRP1_1 One pair of instructions fused with the VSX in Group1.

000002000E PM_FXU_BUSY Cycles when both fixed point units (FXU0 and FXU1) are busy.

000001000E PM_FXU_IDLE FXU0 is idle and FXU1 is idle.

000003000E PM_FXU0_BUSY_FXU1_IDLE FXU0 is busy and FXU1 is idle.

0000010004 PM_FXU0_FIN FXU0 finished an instruction. Instructions that finish might not complete.

000004000E PM_FXU1_BUSY_FXU0_IDLE Number of cycles when FXU0 is idle and FXU1 is busy.

0000040004 PM_FXU1_FIN FXU1 finished an instruction. Instructions that finish might not complete.

0000020008 PM_GCT_EMPTY_CYC No itags assigned with either thread (GCT is empty).

00000030A4 00000030A4 00000030A4 00000030A4 PM_GCT_MERGE Group dispatched on a merged GCT empty. GCT entries can be merged only within the
same thread.

000004D01E PM_GCT_NOSLOT_BR_MPRED GCT is empty for this thread due to branch mispredict.

000004D01A PM_GCT_NOSLOT_BR_MPRED_
ICMISS

GCT is empty for this thread due to an I-cache miss and branch mispredicted.

00000100F8 PM_GCT_NOSLOT_CYC Pipeline is empty. No itags assigned.

000002D01E PM_GCT_NOSLOT_DISP_HELD_ISSQ GCT is empty for this thread because a dispatch hold on this thread is due to the issue queue
being full.

000004D01C PM_GCT_NOSLOT_DISP_HELD_MAP GCT is empty for this thread due to a dispatch hold on this thread due to the mapper being
full.

000002E010 PM_GCT_NOSLOT_DISP_HELD_
OTHER

GCT is empty for this thread because adispatch hold on this thread is due to a sync instruc-
tion.

Table D-1. POWER8 Event List by Event Name (Sheet 13 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

fixed-point unit

table of contents

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 401 of 523

000002D01C PM_GCT_NOSLOT_DISP_HELD_SRQ GCT is empty for this thread because a dispatch hold on this thread is due to the SRQ being
full.

000004E010 PM_GCT_NOSLOT_IC_L3MISS GCT is empty for this thread due to an I-cache L3 miss.

000002D01A PM_GCT_NOSLOT_IC_MISS GCT is empty for this thread due to an I-cache miss.

000000209C 000000209C 000000209C 000000209C PM_GCT_UTIL_1_2_ENTRIES GCT utilization 1 - 2 entries.

00000020A2 00000020A2 00000020A2 00000020A2 PM_GCT_UTIL_11_14_ENTRIES GCT utilization 11 - 14 entries.

00000020A4 00000020A4 00000020A4 00000020A4 PM_GCT_UTIL_15_17_ENTRIES GCT utilization 15 - 17 entries.

00000020A6 00000020A6 00000020A6 00000020A6 PM_GCT_UTIL_18_ENTRIES GCT utilization 18+ entries.

000000209E 000000209E 000000209E 000000209E PM_GCT_UTIL_3_6_ENTRIES GCT utilization 3 - 6 entries.

00000020A0 00000020A0 00000020A0 00000020A0 PM_GCT_UTIL_7_10_ENTRIES GCT utilization 7 - 10 entries.

000001000A PM_GRP_BR_MPRED_NONSPEC Group experienced nonspeculative branch redirect (mispredict).

0000030004 PM_GRP_CMPL Group completed.

000003000A PM_GRP_DISP Dispatch success; group dispatched.

000001000C PM_GRP_IC_MISS_NONSPEC Group experienced nonspeculative I-cache miss.

0000010130 PM_GRP_MRK Instruction marked in the IDU.

000000509C 000000509C 000000509C 000000509C PM_GRP_NON_FULL_GROUP Number of groups that dispatched with less than six nonbranch instructions (ST mode).

0000020050 PM_GRP_PUMP_CPRED Initial and final pump scope and data sourced across this scope was group pump for all data
types excluding data prefetch (demand load).

0000020052 PM_GRP_PUMP_MPRED Final pump scope (group) was either larger or smaller than initial pump scope for all data
types excluding data prefetch (demand load).

0000010052 PM_GRP_PUMP_MPRED_RTY Final pump scope (Group) was larger than initial pump scope (chip) for all data types exclud-
ing data prefetch (demand load).

00000050A4 00000050A4 00000050A4 00000050A4 PM_GRP_TERM_2ND_BRANCH There were enough instructions in the IBuffer.

00000050A6 00000050A6 00000050A6 00000050A6 PM_GRP_TERM_FPU_AFTER_BR There were enough instructions in the IBuffer.

000000509E 000000509E 000000509E 000000509E PM_GRP_TERM_NOINST Do not fill every slot in the group.

00000050A0 00000050A0 00000050A0 00000050A0 PM_GRP_TERM_OTHER There were enough instructions in the IBuffer.

00000050A2 00000050A2 00000050A2 00000050A2 PM_GRP_TERM_SLOT_LIMIT There were enough instructions in the IBuffer.

000002000A PM_HV_CYC Cycles in which MSR[HV] is high (cycles in hypervisor mode). Note that this event does not
take MSR[PR] into consideration.

0000004086 0000004086 0000004086 0000004086 PM_IBUF_FULL_CYC Number of cycles that the thread was blocked because the instruction fetch buffer was full.

Table D-1. POWER8 Event List by Event Name (Sheet 14 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 402 of 523

V
ersion 1.3

16 M
arch 2016

0000010018 PM_IC_DEMAND_CYC Number of cycles when a demand instruction fetch is pending.

0000004098 0000004098 0000004098 0000004098 PM_IC_DEMAND_L2_BHT_
REDIRECT

An instruction cache demand request was sent to the L2 cache because of a BHT redirect.

000000409A 000000409A 000000409A 000000409A PM_IC_DEMAND_L2_BR_REDIRECT An instruction cache demand request was sent to the L2 cache because of a branch mispre-
dict (15-cycle path).

0000004088 0000004088 0000004088 0000004088 PM_IC_DEMAND_REQ Demand instruction fetch request.

000000508A 000000508A 000000508A 000000508A PM_IC_INVALIDATE Instruction cache line invalidated.

0000004092 0000004092 0000004092 0000004092 PM_IC_PREF_CANCEL_HIT Prefetch canceled due to an I-cache hit.

0000004094 0000004094 0000004094 0000004094 PM_IC_PREF_CANCEL_L2 The L2 squashed either a demand or prefetch request that was no longer required by the
instruction fetch unit.

0000004090 0000004090 0000004090 0000004090 PM_IC_PREF_CANCEL_PAGE Prefetch canceled due to page boundary. A request to prefetch a line to the I-cache was can-
celed because of a page boundary crossing.

000000408A 000000408A 000000408A 000000408A PM_IC_PREF_REQ Instruction prefetch request.

000000408E 000000408E 000000408E 000000408E PM_IC_PREF_WRITE Instruction prefetch written into the instruction L1 cache.

0000004096 0000004096 0000004096 0000004096 PM_IC_RELOAD_PRIVATE Reloading line was brought in private for a specific thread. Most lines are brought in shared
for all eight threads. If the RA does not match the invalidates, bring it shared to the other
thread. For the POWER8 processor, the line is brought in private.

00000100F6 PM_IERAT_RELOAD Number of I-ERAT reloads.

000004006A PM_IERAT_RELOAD_16M IERAT reloaded (miss) for a 16 MB page.

0000020064 PM_IERAT_RELOAD_4K IERAT reloaded (miss) for a 4 KB page.

000003006A PM_IERAT_RELOAD_64K IERAT reloaded (miss) for a 64 KB page.

000003405E PM_IFETCH_THROTTLE Number of cycles that the instruction fetch throttle was active in the IFU.

0000005088 0000005088 0000005088 0000005088 PM_IFU_L2_TOUCH L2 touch to update MRU on a line.

0000514050 PM_INST_ALL_CHIP_PUMP_CPRED Initial and final pump scope was chip pump (prediction is correct) for instruction fetches and
prefetches.

0000544048 PM_INST_ALL_FROM_DL2L3_MOD The processor’s instruction cache was reloaded with modified (M) data from another chip’s
L2 or L3 cache on a different Node or Group (distant).

0000534048 PM_INST_ALL_FROM_DL2L3_SHR The processor’s instruction cache was reloaded with shared (S) data from another chip’s L2
or L3 cache on a different Node or Group (distant).

000054404C PM_INST_ALL_FROM_DMEM The processor’s instruction cache was reloaded from another chip’s memory on the same
Node or Group (distant) due to instruction fetches and prefetches.

0000514042 PM_INST_ALL_FROM_L2 The processor’s instruction cache was reloaded from the local core’s L2 cache due to instruc-
tion fetches and prefetches.

Table D-1. POWER8 Event List by Event Name (Sheet 15 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

branch history table

real address

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 403 of 523

0000534040 PM_INST_ALL_FROM_L2_DISP_
CONFLICT_LDHITST

The processor’s instruction cache was reloaded from the local core’s L2 cache with a load-
hit-store conflict due to instruction fetches and prefetches.

0000544040 PM_INST_ALL_FROM_L2_DISP_
CONFLICT_OTHER

The processor’s instruction cache was reloaded from the local core’s L2 cache with a dis-
patch conflict due to instruction fetches and prefetches.

0000524040 PM_INST_ALL_FROM_L2_MEPF The processor’s instruction cache was reloaded from the local core’s L2 hit without a dis-
patch conflict on an Mepf state due to instruction fetches and prefetches.

0000514040 PM_INST_ALL_FROM_L2_NO_
CONFLICT

The processor’s instruction cache was reloaded from local core’s L2 cache without a conflict
due to instruction fetches and prefetches.

0000544046 PM_INST_ALL_FROM_L21_MOD The processor’s instruction cache was reloaded with modified (M) data from another core’s
L2 cache on the same chip due to instruction fetches and prefetches.

0000534046 PM_INST_ALL_FROM_L21_SHR The processor’s instruction cache was reloaded with shared (S) data from another core’s L2
cache on the same chip due to instruction fetches and prefetches.

000051404E PM_INST_ALL_FROM_L2MISS The processor’s instruction cache was reloaded from a location other than the local core’s L2
cache due to instruction fetches and prefetches.

0000544042 PM_INST_ALL_FROM_L3 The processor’s instruction cache was reloaded from the local core’s L3 cache due to instruc-
tion fetches and prefetches.

0000534042 PM_INST_ALL_FROM_L3_DISP_
CONFLICT

The processor’s instruction cache was reloaded from the local core’s L3 cache with a dis-
patch conflict due to instruction fetches and prefetches.

0000524042 PM_INST_ALL_FROM_L3_MEPF The processor’s instruction cache was reloaded from the local core’s L3 cache without a dis-
patch conflict hit on an Mepf state due to instruction fetches and prefetches.

0000514044 PM_INST_ALL_FROM_L3_NO_
CONFLICT

The processor’s instruction cache was reloaded from local core’s L3 cache without a conflict
due to instruction fetches and prefetches.

0000544044 PM_INST_ALL_FROM_L31_ECO_
MOD

The processor’s instruction cache was reloaded with modified (M) data from another core’s
ECO L3 on the same chip due to instruction fetches and prefetches.

0000534044 PM_INST_ALL_FROM_L31_ECO_SHR The processor’s instruction cache was reloaded with shared (S) data from another core’s
ECO L3 on the same chip due to instruction fetches and prefetches.

0000524044 PM_INST_ALL_FROM_L31_MOD The processor’s instruction cache was reloaded with modified (M) data from another core’s
L3 cache on the same chip due to instruction fetches and prefetches.

0000514046 PM_INST_ALL_FROM_L31_SHR The processor’s instruction cache was reloaded with shared (S) data from another core’s L3
cache on the same chip due to instruction fetches and prefetches.

000054404E PM_INST_ALL_FROM_L3MISS_MOD The processor’s instruction cache was reloaded from a location other than the local core’s L3
cache due to a instruction fetch.

0000524048 PM_INST_ALL_FROM_LMEM The processor’s instruction cache was reloaded from the local chip’s memory due to instruc-
tion fetches and prefetches.

000052404C PM_INST_ALL_FROM_MEMORY The processor’s instruction cache was reloaded from a memory location from local remote or
distant due to instruction fetches and prefetches.

Table D-1. POWER8 Event List by Event Name (Sheet 16 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 404 of 523

V
ersion 1.3

16 M
arch 2016

000054404A PM_INST_ALL_FROM_OFF_CHIP_
CACHE

The processor’s instruction cache was reloaded with either shared or modified data from
another core’s L2 or L3 cache on a different chip (remote or distant) due to instruction fetches
and prefetches.

0000514048 PM_INST_ALL_FROM_ON_CHIP_
CACHE

The processor’s instruction cache was reloaded with either shared or modified data from
another core’s L2 or L3 cache on the same chip due to instruction fetches and prefetches.

0000524046 PM_INST_ALL_FROM_RL2L3_MOD The processor’s instruction cache was reloaded with modified (M) data from another chip’s
L2 or L3 cache on the same Node or Group (remote).

000051404A PM_INST_ALL_FROM_RL2L3_SHR The processor’s instruction cache was reloaded with shared (S) data from another chip’s L2
or L3 cache on the same Node or Group (remote).

000053404A PM_INST_ALL_FROM_RMEM The processor’s instruction cache was reloaded from another chip’s memory on the same
Node or Group (remote) due to instruction fetches and prefetches.

0000524050 PM_INST_ALL_GRP_PUMP_CPRED Initial and final pump scope was group pump (prediction = correct) for instruction fetches and
prefetches.

0000524052 PM_INST_ALL_GRP_PUMP_MPRED Final pump scope (group) was either larger or smaller than initial pump scope for instruction
fetches and prefetches. Final pump scope (group) to get data sourced.

0000514052 PM_INST_ALL_GRP_PUMP_MPRED_R
TY

Final pump scope (group) was larger than the initial pump scope (chip) for instruction fetches
and prefetches.

0000514054 PM_INST_ALL_PUMP_CPRED Pump prediction correct. Counts are across all types of pumps for instruction fetches and
prefetches.

0000544052 PM_INST_ALL_PUMP_MPRED Pump misprediction. Counts are across all types of pumps for instruction fetches and
prefetches.

0000534050 PM_INST_ALL_SYS_PUMP_CPRED Initial and final pump scope was system pump (prediction = correct) for instruction fetches
and prefetches. Initial and final pump scope and data sourced across this scope was system
pump for an instruction fetch.

0000534052 PM_INST_ALL_SYS_PUMP_MPRED Final pump scope (system) mispredicted. Either the original scope was too small (chip/group)
or the original scope was system and it should have been smaller. Counts are for instruction
fetches and prefetches. Final pump scope (system) to get data sourced.

0000544050 PM_INST_ALL_SYS_PUMP_MPRED_
RTY

Final pump scope (system) was larger than initial pump scope (chip/group) for instruction
fetches and prefetches. Final pump scope (system) to get data sourced.

0000014050 PM_INST_CHIP_PUMP_CPRED Initial and final pump scope was chip pump (prediction is correct) for an instruction fetch.

0000010002 0000020002 0000030002 0000040002 PM_INST_CMPL Number of PowerPC instructions that completed.

00000200F2 00000300F2 PM_INST_DISP Number of PowerPC instructions that were successfully dispatched.

0000044048 PM_INST_FROM_DL2L3_MOD The processor’s instruction cache was reloaded with modified (M) data from another chip’s
L2 or L3 cache on a different Node or Group (distant).

0000034048 PM_INST_FROM_DL2L3_SHR The processor’s instruction cache was reloaded with shared (S) data from another chip’s L2
or L3 cache on a different Node or Group (distant).

Table D-1. POWER8 Event List by Event Name (Sheet 17 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 405 of 523

000004404C PM_INST_FROM_DMEM The processor’s instruction cache was reloaded from another chip’s memory on the same
Node or Group (distant) due to an instruction fetch (not prefetch) or an instruction fetch plus
prefetch if MMCR1[17] = ‘1’.

0000004080 0000004080 0000004080 0000004080 PM_INST_FROM_L1 Instruction fetches from L1 cache.

0000014042 PM_INST_FROM_L2 The processor’s instruction cache was reloaded from local core’s L2 cache due to an instruc-
tion fetch (not prefetch) or an instruction fetch plus prefetch if MMCR1[17] = ‘1’.

0000034040 PM_INST_FROM_L2_DISP_CONFLICT
_LDHITST

The processor’s instruction cache was reloaded from the local core’s L2 cache with a load-
hit-store conflict due to an instruction fetch (not prefetch) or an instruction fetch plus prefetch
if MMCR1[17] = ‘1’.

0000044040 PM_INST_FROM_L2_DISP_CONFLICT
_OTHER

The processor’s instruction cache was reloaded from the local core’s L2 cache with dispatch
conflict due to an instruction fetch (not prefetch) or an instruction fetch plus prefetch if
MMCR1[17] = ‘1’.

0000024040 PM_INST_FROM_L2_MEPF The processor’s instruction cache was reloaded from a local core’s L2 hit without dispatch
conflicts on an Mepf state. due to either an instruction fetch (not prefetch) or an instruction
fetch plus prefetch if MMCR1[17] = ‘1’.

0000014040 PM_INST_FROM_L2_NO_CONFLICT The processor’s instruction cache was reloaded from local core’s L2 cache without conflict
due to an instruction fetch (not prefetch) or an instruction fetch plus prefetch if
MMCR1[17] = ‘1’.

0000044046 PM_INST_FROM_L21_MOD The processor's instruction cache was reloaded with modified (M) data from another core’s
L2 cache on the same chip due to an instruction fetch (not prefetch) or an instruction fetch
plus prefetch if MMCR1[17] = ‘1’.

0000034046 PM_INST_FROM_L21_SHR The processor’s instruction cache was reloaded with shared (S) data from another core’s L2
cache on the same chip due to an instruction fetch (not prefetch) or an instruction fetch plus
prefetch if MMCR1[17] = ‘1’.

000001404E PM_INST_FROM_L2MISS The processor’s instruction cache was reloaded from a location other than the local core’s L2
cache due to an instruction fetch (not prefetch) or an instruction fetch plus prefetch if
MMCR1[17] = ‘1’.

0000044042 PM_INST_FROM_L3 The processor’s instruction cache was reloaded from the local core’s L3 cache due to an
instruction fetch (not prefetch) or an instruction fetch plus prefetch if MMCR1[17] = ‘1’.

0000034042 PM_INST_FROM_L3_DISP_CONFLICT The processor’s instruction cache was reloaded from the local core’s L3 cache with dispatch
conflict due to an instruction fetch (not prefetch) or an instruction fetch plus prefetch if
MMCR1[17] = ‘1’.

0000024042 PM_INST_FROM_L3_MEPF The processor’s Instruction cache was reloaded from the local core’s L3 cache without dis-
patch conflicts hit on an Mepf state, due to either an instruction fetch (not prefetch) or an
instruction fetch plus prefetch if MMCR1[17] = ‘1’.

0000014044 PM_INST_FROM_L3_NO_CONFLICT The processor’s instruction cache was reloaded from local core’s L3 cache without conflict
due to an instruction fetch (not prefetch) or an instruction fetch plus prefetch if
MMCR1[17] = ‘1’.

0000044044 PM_INST_FROM_L31_ECO_MOD The processor’s instruction cache was reloaded with modified (M) data from another core’s
ECO L3 on the same chip due to an instruction fetch (not prefetch) or an instruction fetch plus
prefetch if MMCR1[17] = ‘1’.

Table D-1. POWER8 Event List by Event Name (Sheet 18 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 406 of 523

V
ersion 1.3

16 M
arch 2016

0000034044 PM_INST_FROM_L31_ECO_SHR The processor’s instruction cache was reloaded with shared (S) data from another core’s
ECO L3 on the same chip due to an instruction fetch (not prefetch) or an instruction fetch plus
prefetch if MMCR1[17] = ‘1’.

0000024044 PM_INST_FROM_L31_MOD The processor’s instruction cache was reloaded with modified (M) data from another core’s
L3 cache on the same chip due to an instruction fetch (not prefetch) or an instruction fetch
plus prefetch if MMCR1[17] = ‘1’.

0000014046 PM_INST_FROM_L31_SHR The processor’s instruction cache was reloaded with shared (S) data from another core’s L3
cache on the same chip due to an instruction fetch (not prefetch) or an instruction fetch plus
prefetch if MMCR1[17] = ‘1’.

00000300FA PM_INST_FROM_L3MISS Marked instruction was reloaded from a location beyond the local chiplet. Instruction from an
L3 miss.

000004404E PM_INST_FROM_L3MISS_MOD The processor’s instruction cache was reloaded from a location other than the local core’s L3
cache due to an instruction fetch or an instruction fetch plus prefetch if MMCR1[17] = ‘1’.

0000024048 PM_INST_FROM_LMEM The processor’s instruction cache was reloaded from the local chip’s memory due to either
an instruction fetch (not prefetch) or an instruction fetch plus prefetch if MMCR1[17] = ‘1’.

000002404C PM_INST_FROM_MEMORY The processor’s instruction cache was reloaded from a memory location from local remote or
distant due to either an instruction fetch (not prefetch) or an instruction fetch plus prefetch if
MMCR1[17] = ‘1’.

000004404A PM_INST_FROM_OFF_CHIP_CACHE The processor’s instruction cache was reloaded with either shared or modified data from
another core’s L2 or L3 cache on a different chip (remote or distant) due to an instruction
fetch (not prefetch) or an instruction fetch plus prefetch if MMCR1[17] = ‘1’.

0000014048 PM_INST_FROM_ON_CHIP_CACHE The processor’s instruction cache was reloaded with either shared or modified data from
another core’s L2 or L3 cache on the same chip due to an instruction fetch (not prefetch) or
an instruction fetch plus prefetch if MMCR1[17] = ‘1’.

0000024046 PM_INST_FROM_RL2L3_MOD The processor’s instruction cache was reloaded with modified (M) data from another chip’s
L2 or L3 cache on the same Node or Group (remote).

000001404A PM_INST_FROM_RL2L3_SHR The processor’s instruction cache was reloaded with shared (S) data from another chip’s L2
or L3 cache on the same Node or Group (remote).

000003404A PM_INST_FROM_RMEM The processor’s instruction cache was reloaded from another chip’s memory on the same
Node or Group (remote) due to an instruction fetch (not prefetch) or an instruction fetch plus
prefetch if MMCR1[17] = ‘1’.

0000024050 PM_INST_GRP_PUMP_CPRED Initial and final pump scope and data sourced across this scope was group pump (prediction
is correct) for an instruction fetch.

0000024052 PM_INST_GRP_PUMP_MPRED Final pump scope (group) was either larger or smaller than initial pump scope for an instruc-
tion fetch. Final pump scope (group) to get data sourced.

0000014052 PM_INST_GRP_PUMP_MPRED_RTY Final pump scope (Group) was larger than initial pump scope (chip) for an instruction fetch.

0000030016 PM_INST_IMC_MATCH_DISP Matched instructions (IMC matches) dispatched.

0000014054 PM_INST_PUMP_CPRED Pump prediction correct. Counts across all types of pumps for an instruction fetch.

0000044052 PM_INST_PUMP_MPRED Pump misprediction. Counts across all types of pumps for an instruction fetch.

Table D-1. POWER8 Event List by Event Name (Sheet 19 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 407 of 523

0000034050 PM_INST_SYS_PUMP_CPRED Initial and final pump scope and data sourced across this scope was system pump (predic-
tion is correct) for an instruction fetch.

0000034052 PM_INST_SYS_PUMP_MPRED Final pump scope (system) mispredicted (data sourced). Either the original scope was too
small (Chip/Group) or the original scope was System and it should have been smaller.
Counts for an instruction fetch.

0000044050 PM_INST_SYS_PUMP_MPRED_RTY Final pump scope (system) was larger than initial pump scope (chip/group) for an instruction
fetch. Final pump scope (system) to get data sourced.

0000010014 PM_IOPS_CMPL Number of internal operations (IOPs) that completed.

0000030014 PM_IOPS_DISP Number of internal operations (IOPs) dispatched.

0000045048 PM_IPTEG_FROM_DL2L3_MOD A PTE was loaded into the TLB with modified (M) data from another chip’s L2 or L3 cache on
a different Node or Group (distant).

0000035048 PM_IPTEG_FROM_DL2L3_SHR A PTE was loaded into the TLB with shared (S) data from another chip’s L2 or L3 cache on a
different Node or Group (distant).

000004504C PM_IPTEG_FROM_DMEM A PTE was loaded into the TLB from another chip’s memory on the same Node or Group
(distant) due to an instruction-side request.

0000015042 PM_IPTEG_FROM_L2 A PTE was loaded into the TLB from the local core’s L2 cache due to an instruction-side
request.

0000035040 PM_IPTEG_FROM_L2_DISP_
CONFLICT_LDHITST

A PTE was loaded into the TLB from the local core’s L2 cache with a load-hit-store conflict
due to an instruction-side request.

0000045040 PM_IPTEG_FROM_L2_DISP_
CONFLICT_OTHER

A PTE was loaded into the TLB from the local core’s L2 cache with dispatch conflict due to an
instruction-side request.

0000025040 PM_IPTEG_FROM_L2_MEPF A PTE was loaded into the TLB from the local core’s L2 hit without dispatch conflicts on an
Mepf state. due to an instruction-side request.

0000015040 PM_IPTEG_FROM_L2_NO_
CONFLICT

A page table entry (PTE) was loaded into the TLB from a local core’s L2 cache without con-
flict due to an instruction-side request.

0000045046 PM_IPTEG_FROM_L21_MOD A PTE was loaded into the TLB with modified (M) data from another core’s L2 cache on the
same chip due to an instruction-side request.

0000035046 PM_IPTEG_FROM_L21_SHR A PTE was loaded into the TLB with shared (S) data from another core’s L2 cache on the
same chip due to an instruction-side request.

000001504E PM_IPTEG_FROM_L2MISS A PTE was loaded into the TLB from a location other than the local core’s L2 cache due to an
instruction-side request

0000045042 PM_IPTEG_FROM_L3 A PTE was loaded into the TLB from the local core’s L3 cache due to an instruction-side
request.

0000035042 PM_IPTEG_FROM_L3_DISP_
CONFLICT

A PTE was loaded into the TLB from the local core’s L3 cache with a dispatch conflict due to
an instruction-side request.

0000025042 PM_IPTEG_FROM_L3_MEPF A PTE was loaded into the TLB from the local core’s L3 cache without dispatch conflicts hit
on an Mepf state due to an instruction-side request

Table D-1. POWER8 Event List by Event Name (Sheet 20 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 408 of 523

V
ersion 1.3

16 M
arch 2016

0000015044 PM_IPTEG_FROM_L3_NO_CONFLICT A PTE was loaded into the TLB from a local core’s L3 cache without conflict due to an
instruction-side request.

0000045044 PM_IPTEG_FROM_L31_ECO_MOD A PTE was loaded into the TLB with modified (M) data from another core’s ECO L3 on the
same chip due to an instruction-side request.

0000035044 PM_IPTEG_FROM_L31_ECO_SHR A PTE was loaded into the TLB with shared (S) data from another core’s ECO L3 on the
same chip due to an instruction-side request.

0000025044 PM_IPTEG_FROM_L31_MOD A PTE was loaded into the TLB with modified (M) data from another core's L3 cache on the
same chip due to an instruction-side request.

0000015046 PM_IPTEG_FROM_L31_SHR A PTE was loaded into the TLB with shared (S) data from another core’s L3 cache on the
same chip due to an instruction-side request.

000004504E PM_IPTEG_FROM_L3MISS A PTE was loaded into the TLB from a location other than the local core’s L3 cache due to an
instruction-side request.

0000025048 PM_IPTEG_FROM_LMEM A PTE was loaded into the TLB from the local chip’s memory due to an instruction-side
request.

000002504C PM_IPTEG_FROM_MEMORY A PTE was loaded into the TLB from a memory location from a local remote or distant due to
an instruction-side request.

000004504A PM_IPTEG_FROM_OFF_CHIP_
CACHE

A PTE was loaded into the TLB either shared or modified data from another core’s L2 or L3
cache on a different chip (remote or distant) due to an instruction-side request.

0000015048 PM_IPTEG_FROM_ON_CHIP_CACHE A PTE was loaded into the TLB with either shared or modified data from another core’s L2 or
L3 cache on the same chip due to an instruction-side request.

0000025046 PM_IPTEG_FROM_RL2L3_MOD A PTE was loaded into the TLB with modified (M) data from another chip’s L2 or L3 cache on
the same Node or Group (remote).

000001504A PM_IPTEG_FROM_RL2L3_SHR A PTE was loaded into the TLB with shared (S) data from another chip’s L2 or L3 cache on
the same Node or Group (remote).

000003504A PM_IPTEG_FROM_RMEM A PTE was loaded into the TLB from another chip’s memory on the same Node or Group
(remote) due to an instruction-side request.

0000617082 PM_ISIDE_DISP All instruction-side dispatch attempts.

0000627084 PM_ISIDE_DISP_FAIL All instruction-side dispatch attempts that failed due to an address collision with another
machine.

0000627086 PM_ISIDE_DISP_FAIL_OTHER All instruction-side dispatch attempts that failed due to a reason other than an address colli-
sion.

000004608E PM_ISIDE_L2MEMACC1 Valid when the first beat of data comes in for an instruction-side fetch where data came from
memory.

000074608E

000044608E PM_ISIDE_MRU_TOUCH Instruction-side L2 MRU touch.

0000040006 PM_ISLB_MISS1 Instruction SLB miss. An SLB miss for an instruction fetch has occurred. SLB misses trap to
the operating system to resolve. This is a total count for all segment sizes.

000000D096 000000D096 000000D096 000000D096

Table D-1. POWER8 Event List by Event Name (Sheet 21 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 409 of 523

00000038AC 00000038AC 00000038AC 00000038AC PM_ISU_REF_FXU FXU ISU reject from either pipe.

00000030AC 00000030AC 00000030AC 00000030AC PM_ISU_REJ_FX0 FX0 ISU reject.

00000030AE 00000030AE 00000030AE 00000030AE PM_ISU_REJ_FX1 FX1 ISU reject.

00000030B0 00000030B0 00000030B0 00000030B0 PM_ISU_REJ_LS0 LS0 ISU reject.

00000030B2 00000030B2 00000030B2 00000030B2 PM_ISU_REJ_LS1 LS1 ISU reject.

00000030B4 00000030B4 00000030B4 00000030B4 PM_ISU_REJ_LS2 LS2 ISU reject.

00000030B6 00000030B6 00000030B6 00000030B6 PM_ISU_REJ_LS3 LS3 ISU reject.

00000030A8 00000030A8 00000030A8 00000030A8 PM_ISU_REJ_VS0 VS0 ISU reject.

00000030AA 00000030AA 00000030AA 00000030AA PM_ISU_REJ_VS1 VS1 ISU reject.

00000038A8 00000038A8 00000038A8 00000038A8 PM_ISU_REJ_VSU VSU ISU reject from either pipe.

00000030A2 00000030A2 00000030A2 00000030A2 PM_ISU_REJECT_RES_NA ISU reject due to resource not available.

000000309E 000000309E 000000309E 000000309E PM_ISU_REJECT_SAR_BYPASS Reject because of SAR bypass.

00000030A0 00000030A0 00000030A0 00000030A0 PM_ISU_REJECT_SRC_NA ISU reject due to source not available.

000000309C 000000309C 000000309C 000000309C PM_ISU_REJECTS_ALL All ISU rejects could be more than one per cycle.

00000030B8 00000030B8 00000030B8 00000030B8 PM_ISYNC Completion count per thread for isync.

00000400FC PM_ITLB_MISS Instruction TLB is reloaded. A TLB miss for an instruction fetch has occurred.

00000300F6 PM_L1_DCACHE_RELOAD_VALID DL1 reloaded due to demand load.

000001002C PM_L1_DCACHE_RELOADED_ALL L1 data cache reloaded for demand or prefetch.

000000408C 000000408C 000000408C 000000408C PM_L1_DEMAND_WRITE The count of instruction demand sectors written in the instruction L1 cache. Writes are
always written as LRU and a subsequent read makes it an MRU.

00000200FD PM_L1_ICACHE_MISS Demand I-cache miss.

0000040012 PM_L1_ICACHE_RELOADED_ALL Counts all I-cache reloads (includes demands).

0000030068 PM_L1_ICACHE_RELOADED_PREF Counts all I-cache prefetch reloads (includes demand turned into prefetch).

67200301EA PM_L1MISS_LAT_EXC_1024 L1 misses that took longer than 1024 cycles to resolve (miss to reload). Reload latency
exceeded 1024 cycles.

67200401EC PM_L1MISS_LAT_EXC_2048 L1 misses that took longer than 2048 cycles to resolve (miss to reload). Reload latency
exceeded 2048 cycles.

67200101E8 PM_L1MISS_LAT_EXC_256 L1 misses that took longer than 256 cycles to resolve (miss to reload). Reload latency
exceeded 256 cycles.

Table D-1. POWER8 Event List by Event Name (Sheet 22 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

least-recently used

most recently used

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 410 of 523

V
ersion 1.3

16 M
arch 2016

67200201E6 PM_L1MISS_LAT_EXC_32 L1 misses that took longer than 32 cycles to resolve (miss to reload). Reload latency
exceeded 32 cycles.

0000026086 PM_L1PF_L2MEMACC1 Valid when the first beat of data comes in for an L1 prefetch where data came from memory.

0000726086

0000417080 PM_L2_CASTOUT_MOD L2 castouts (modified).

0000417082 PM_L2_CASTOUT_SHR L2 castouts (shared).

0000027084 PM_L2_CHIP_PUMP1 RC requests that were local on chip pump attempts.

000064608C

0000427086 PM_L2_DC_INV D-cache invalidates from the L2 cache.

000044608C PM_L2_DISP_ALL_L2MISS All successful load/store dispatches for this thread that were an L2 miss.

0000027086 PM_L2_GROUP_PUMP1 RC requests that were on node pump attempts.

000064608E

0000626084 PM_L2_GRP_GUESS_CORRECT L2 guess group and guess is correct.

0000626086 PM_L2_GRP_GUESS_WRONG L2 guess group and guess is not correct.

0000427084 PM_L2_IC_INV I-cache invalidates from the L2 cache.

0000436088 PM_L2_INST All successful instruction-side dispatches for this thread (excludes i_l2mru_tch requests).

000043608A PM_L2_INST_MISS All successful instruction-side dispatches that were an L2 miss for this thread.

0000416080 PM_L2_LD All successful data-side load dispatches for this thread.

0000437088 PM_L2_LD_DISP All successful load dispatches.

000043708A PM_L2_LD_HIT All successful load dispatches that were L2 hits.

0000426084 PM_L2_LD_MISS All successful data-side load dispatches that were an L2 miss for this thread.

0000616080 PM_L2_LOC_GUESS_CORRECT L2 guess location (loc) and guess is correct.

0000616082 PM_L2_LOC_GUESS_WRONG L2 guess location and guess is not correct.

0000537088 PM_L2_RC_ST_DONE RC stored to a line that was Tx or Sx.

0000516080 PM_L2_RCLD_DISP L2 RC load dispatch attempt.

0000516082 PM_L2_RCLD_DISP_FAIL_ADDR L2 RC load dispatch attempt failed due to an address collision with RC/CO/SN/SQ.

0000526084 PM_L2_RCLD_DISP_FAIL_OTHER L2 RC load dispatch attempt failed due to other reasons.

0000536088 PM_L2_RCST_DISP L2 RC store dispatch attempt.

Table D-1. POWER8 Event List by Event Name (Sheet 23 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

transactional state

shared state

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 411 of 523

000053608A PM_L2_RCST_DISP_FAIL_ADDR L2 RC store dispatch attempt failed due to an address collision with RC/CO/SN/SQ.

000054608C PM_L2_RCST_DISP_FAIL_OTHER L2 RC store dispatch attempt failed due to other reasons.

000004708C PM_L2_RTY_LD1 RC retries on the SMP interconnect for any load from the core.

000063708A

000003708A PM_L2_RTY_ST RC retries on SMP interconnect for any store from the core.

0000637088 PM_L2_RTY_ST RC retries on the SMP interconnect for any store from the core.

000054708C PM_L2_SN_M_RD_DONE A snoop machine was dispatched for a read and was in a modified (M) state.

000054708E PM_L2_SN_M_WR_DONE A snoop machine was dispatched for a write and was in a modified (M) state.

000053708A PM_L2_SN_SX_I_DONE A snoop machine was dispatched and went from Sx or Tx to Ix.

0000017080 PM_L2_ST1 All successful data-side store dispatches for this thread.

0000416082

000044708C PM_L2_ST_DISP All successful store dispatches.

000044708E PM_L2_ST_HIT All successful store dispatches that were L2 hits.

0000017082 PM_L2_ST_MISS1 All successful data-side store dispatches for this thread that were an L2 miss.

0000426086

0000636088 PM_L2_SYS_GUESS_CORRECT L2 guess system and guess is correct.

000063608A PM_L2_SYS_GUESS_WRONG L2 guess system and guess was not correct.

0000037088 PM_L2_SYS_PUMP1 RC requests that were system pump attempts.

0000617080

000001E15E PM_L2_TM_REQ_ABORT TM abort.

000003E15C PM_L2_TM_ST_ABORT_SISTER TM marked store abort.

0000128084 PM_L3_CI_HIT Total count of L3 castin hits.

0000128086 PM_L3_CI_MISS Total count of L3 castin misses.

0000819082 PM_L3_CI_USAGE Rotating sample of 16 CI or CO actives.

000023808A PM_L3_CINJ L3 castin of cache inject.

0000438088 PM_L3_CO L3 castout occurring (does not include casthrough or log writes).

0000028086 PM_L3_CO_L31 L3 CO to L3.1 or of port 0 and port 1 (lossy).

0000238088 PM_L3_CO_LCO Total L3 castouts occurred on LCO.

Table D-1. POWER8 Event List by Event Name (Sheet 24 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

transactional memory

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 412 of 523

V
ersion 1.3

16 M
arch 2016

0000028084 PM_L3_CO_MEM L3 CO to memory or of port 0 and port 1 (lossy).

000003E05E PM_L3_CO_MEPF1 L3 CO of a line in the Mepf state (includes casthrough).

0000018082

000083908B PM_L3_CO0_ALLOC Lifetime.

000083908A PM_L3_CO0_BUSY Lifetime.

0000B19082 PM_L3_GRP_GUESS_CORRECT Initial scope is the group and data from same group (near). Prediction is successful.

0000B3908A PM_L3_GRP_GUESS_WRONG_HIGH Initial scope is the group but data from the local node. Prediction is too high.

0000B39088 PM_L3_GRP_GUESS_WRONG_LOW Initial scope is the group but data from outside the group (far or remote). Prediction is too low.

0000218080 PM_L3_HIT L3 hits.

0000138088 PM_L3_L2_CO_HIT L2 castout hits.

000013808A PM_L3_L2_CO_MISS L2 castout misses.

000014808C PM_L3_LAT_CI_HIT L3 lateral castin hits.

000014808E PM_L3_LAT_CI_MISS L3 lateral castin misses.

0000228084 PM_L3_LD_HIT L3 demand load hits.

0000228086 PM_L3_LD_MISS L3 demand load miss.

000001E052 PM_L3_LD_PREF L3 load prefetches.

0000B19080 PM_L3_LOC_GUESS_CORRECT Initial scope is the node/chip and data from the local node (local). Prediction is successful.

0000B29086 PM_L3_LOC_GUESS_WRONG Initial scope is the node but data from outside the local node (near or far or remote). Predic-
tion is too low.

0000218082 PM_L3_MISS L3 misses.

000054808C PM_L3_P0_CO_L31 L3 CO to L3.1 port 0.

0000538088 PM_L3_P0_CO_MEM L3 CO to memory port 0.

0000929084 PM_L3_P0_CO_RTY L3 CO received retry port 0.

0000A29084 PM_L3_P0_GRP_PUMP L3 prefetch sent with group scope port 0.

0000528084 PM_L3_P0_LCO_DATA LCO sent with data port 0.

0000518080 PM_L3_P0_LCO_NO_DATA Dataless L3 LCO sent to port 0.

0000A4908C PM_L3_P0_LCO_RTY L3 LCO received retry port 0.

0000A19080 PM_L3_P0_NODE_PUMP L3 prefetch sent with nodal scope port 0.

Table D-1. POWER8 Event List by Event Name (Sheet 25 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 413 of 523

0000919080 PM_L3_P0_PF_RTY L3 PF received retry port 0.

0000939088 PM_L3_P0_SN_HIT L3 snoop hit port 0.

0000118080 PM_L3_P0_SN_INV Port 0 snooper detects a store to a line that is in any shared state (Sx).

000094908C PM_L3_P0_SN_MISS L3 snoop miss port 0.

0000A39088 PM_L3_P0_SYS_PUMP L3 prefetch sent with system scope port 0.

000054808E PM_L3_P1_CO_L31 L3 CO to L3.1 port 1.

000053808A PM_L3_P1_CO_MEM L3 CO to memory port 1.

0000929086 PM_L3_P1_CO_RTY L3 CO received retry port 1.

0000A29086 PM_L3_P1_GRP_PUMP L3 prefetch sent with group scope port 1.

0000528086 PM_L3_P1_LCO_DATA LCO sent with data port 1.

0000518082 PM_L3_P1_LCO_NO_DATA Dataless L3 LCO sent to port 1.

0000A4908E PM_L3_P1_LCO_RTY L3 LCO received retry port 1.

0000A19082 PM_L3_P1_NODE_PUMP L3 prefetch sent with nodal scope port 1.

0000919082 PM_L3_P1_PF_RTY L3 PF received retry port 1.

000093908A PM_L3_P1_SN_HIT L3 snoop hit port 1.

0000118082 PM_L3_P1_SN_INV Port1 snooper detects a store to a line that is in any shared state.

000094908E PM_L3_P1_SN_MISS L3 snoop miss port 1.

0000A3908A PM_L3_P1_SYS_PUMP L3 prefetch sent with system scope port 1.

0000428084 PM_L3_PF_HIT_L3 L3 prefetch hit in L3 cache.

0000018080 PM_L3_PF_MISS_L3 L3 prefetch missed in L3 cache.

000003808A PM_L3_PF_OFF_CHIP_CACHE L3 prefetch from off-chip cache.

000004808E PM_L3_PF_OFF_CHIP_MEM L3 prefetch from off-chip memory.

0000038088 PM_L3_PF_ON_CHIP_CACHE L3 prefetch from on-chip cache.

000004808C PM_L3_PF_ON_CHIP_MEM L3 prefetch from on-chip memory.

0000829084 PM_L3_PF_USAGE Rotating sample of 32 prefetch actives.

000084908D PM_L3_PF0_ALLOC Lifetime.

000084908C PM_L3_PF0_BUSY Lifetime.

000004E052 PM_L3_PREF_ALL Total hardware L3 prefetches (load and store).

Table D-1. POWER8 Event List by Event Name (Sheet 26 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 414 of 523

V
ersion 1.3

16 M
arch 2016

0000829086 PM_L3_RD_USAGE Rotating sample of 16 read actives.

000084908F PM_L3_RD0_ALLOC Lifetime.

000084908E PM_L3_RD0_BUSY Lifetime.

0000819080 PM_L3_SN_USAGE Rotating sample of eight snoop valids.

0000839089 PM_L3_SN0_ALLOC Lifetime.

0000839088 PM_L3_SN0_BUSY Lifetime.

000002E052 PM_L3_ST_PREF L3 store prefetches.

000003E052 PM_L3_SW_PREF Data stream touch to L3 cache.

0000B29084 PM_L3_SYS_GUESS_CORRECT Initial scope is the system and data from outside the group (far or remote). Prediction is suc-
cessful.

0000B4908C PM_L3_SYS_GUESS_WRONG Initial scope is the system but data from local or near. Prediction is too high.

000024808E PM_L3_TRANS_PF L3 transient prefetch.

0000418082 PM_L3_WI_USAGE Rotating sample of eight write inject (WI) actives.

0000018081 PM_L3_WI0_ALLOC Lifetime.

0000418080 PM_L3_WI0_BUSY Lifetime.

000003C058 PM_LARX_FIN Larx finished.

000001002E PM_LD_CMPL Count of loads completed.

0000010062 PM_LD_L3MISS_PEND_CYC Number of cycles an L3 miss was pending for this thread.

000003E054 PM_LD_MISS_L11 Load missed L1 cache.

00000400F0

00000100EE PM_LD_REF_L1 All L1 D-cache load references counted at finish.

000000C080 000000C080 000000C080 000000C080 PM_LD_REF_L1_LSU0 LS0 L1 D-cache load references counted at finish.

000000C082 000000C082 000000C082 000000C082 PM_LD_REF_L1_LSU1 LS1 L1 D-cache load references counted at finish.

000000C094 000000C094 000000C094 000000C094 PM_LD_REF_L1_LSU2 LS2 L1 D-cache load references counted at finish.

000000C096 000000C096 000000C096 000000C096 PM_LD_REF_L1_LSU3 LS3 L1 D-cache load references counted at finish.

000000509A 000000509A 000000509A 000000509A PM_LINK_STACK_INVALID_PTR A flush where the LS pointer is invalid.

0000005098 0000005098 0000005098 0000005098 PM_LINK_STACK_WRONG_ADD_
PRED

Link stack predicts a wrong address, because of link stack design limitations.

000000E080 000000E080 000000E080 000000E080 PM_LS0_ERAT_MISS_PREF LS0 ERAT miss due to prefetch.

Table D-1. POWER8 Event List by Event Name (Sheet 27 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

link stack

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 415 of 523

000000D0B8 000000D0B8 000000D0B8 000000D0B8 PM_LS0_L1_PREF LS0 L1 cache data prefetches.

000000C098 000000C098 000000C098 000000C098 PM_LS0_L1_SW_PREF Software L1 prefetches.

000000E082 000000E082 000000E082 000000E082 PM_LS1_ERAT_MISS_PREF LS1 ERAT miss due to prefetch.

000000D0BA 000000D0BA 000000D0BA 000000D0BA PM_LS1_L1_PREF LS1 L1 cache data prefetches.

000000C09A 000000C09A 000000C09A 000000C09A PM_LS1_L1_SW_PREF Software L1 prefetches.

00000200F6 PM_LSU_DERAT_MISS DERAT reloaded due to a DERAT miss.

000000E880 000000E880 000000E880 000000E880 PM_LSU_ERAT_MISS_PREF ERAT miss due to prefetch.

0000030066 PM_LSU_FIN LSU finished an instruction (up to two per cycle).

000000C8AC 000000C8AC 000000C8AC 000000C8AC PM_LSU_FLUSH_UST Unaligned store flush on either pipe.

000000D0A4 000000D0A4 000000D0A4 000000D0A4 PM_LSU_FOUR_TABLEWALK_CYC Cycles when four tablewalks are pending on this thread.

0000010066 PM_LSU_FX_FIN LSU finished an FX operation (up to two per cycle).

000000D8B8 000000D8B8 000000D8B8 000000D8B8 PM_LSU_L1_PREF Hardware initiated.

000000C898 000000C898 000000C898 000000C898 PM_LSU_L1_SW_PREF Software L1 prefetches.

000000C884 000000C884 000000C884 000000C884 PM_LSU_LDF FPU loads only on LS2/LS3 (that is, LU0/LU1).

000000C888 000000C888 000000C888 000000C888 PM_LSU_LDX Vector loads can issue only on LS2/LS3.

000000D0A2 000000D0A2 000000D0A2 000000D0A2 PM_LSU_LMQ_FULL_CYC LMQ is full.

000000D0A1 000000D0A1 000000D0A1 000000D0A1 PM_LSU_LMQ_S0_ALLOC Per thread: use edge detect to count allocates on a per-thread basis.

000000D0A0 000000D0A0 000000D0A0 000000D0A0 PM_LSU_LMQ_S0_VALID Slot 0 of LMQ is valid.

000003001C PM_LSU_LMQ_SRQ_EMPTY_ALL_
CYC

All threads LSU are empty (LMQ and SRQ empty).

000002003E PM_LSU_LMQ_SRQ_EMPTY_CYC LSU empty (LMQ and SRQ empty).

000000D09F 000000D09F 000000D09F 000000D09F PM_LSU_LRQ_S0_ALLOC Use edge detect to count allocates on a per-thread basis.

000000D09E 000000D09E 000000D09E 000000D09E PM_LSU_LRQ_S0_VALID Slot 0 of LRQ is valid.

000000F091 000000F091 000000F091 000000F091 PM_LSU_LRQ_S43_ALLOC LRQ slot 43 was released.

000000F090 000000F090 000000F090 000000F090 PM_LSU_LRQ_S43_VALID LRQ slot 43 is busy.

0004030162 PM_LSU_MRK_DERAT_MISS D-ERAT reloaded (miss).

000000C88C 000000C88C 000000C88C 000000C88C PM_LSU_NCLD Count at finish so it can return only on LS0 or LS1.

000000C092 000000C092 000000C092 000000C092 PM_LSU_NCST Noncacheable stores sent to nest.

Table D-1. POWER8 Event List by Event Name (Sheet 28 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 416 of 523

V
ersion 1.3

16 M
arch 2016

0000010064 PM_LSU_REJECT LSU reject (up to four per cycle).

000002E05C PM_LSU_REJECT_ERAT_MISS LSU reject due to an ERAT (up to four per cycles).

000004E05C PM_LSU_REJECT_LHS LSU reject due to LHS (up to 4 per cycle).

000001E05C PM_LSU_REJECT_LMQ_FULL LSU reject due to LMQ full (4 per cycle).

000000D082 000000D082 000000D082 000000D082 PM_LSU_SET_MPRED Line already in cache at reload time.

0000040008 PM_LSU_SRQ_EMPTY_CYC Number of cycles the store reorder queue (SRQ) was empty for all threads.

000001001A PM_LSU_SRQ_FULL_CYC Storage reorder queue (SRQ) is full and is blocking dispatch.

000000D09D 000000D09D 000000D09D 000000D09D PM_LSU_SRQ_S0_ALLOC Per thread: use edge detect to count allocates on a per-thread basis.

000000D09C 000000D09C 000000D09C 000000D09C PM_LSU_SRQ_S0_VALID Slot 0 of SRQ is valid.

000000F093 000000F093 000000F093 000000F093 PM_LSU_SRQ_S39_ALLOC SRQ slot 39 was released.

000000F092 000000F092 000000F092 000000F092 PM_LSU_SRQ_S39_VALID SRQ slot 39 is busy.

000000D09B 000000D09B 000000D09B 000000D09B PM_LSU_SRQ_SYNC A sync in the SRQ ended.

000000D09A 000000D09A 000000D09A 000000D09A PM_LSU_SRQ_SYNC_CYC Number of cycles a sync is in the SRQ (edge detect to count).

000000F084 000000F084 000000F084 000000F084 PM_LSU_STORE_REJECT Store reject on either pipe.

000000D0A6 000000D0A6 000000D0A6 000000D0A6 PM_LSU_TWO_TABLEWALK_CYC Cycles when two tablewalks are pending on this thread.

000000C0B0 000000C0B0 000000C0B0 000000C0B0 PM_LSU0_FLUSH_LRQ LSU0 flush: LRQ.

000000C0B8 000000C0B8 000000C0B8 000000C0B8 PM_LSU0_FLUSH_SRQ LSU0 flush: SRQ load-hit-store flushes.

000000C0A4 000000C0A4 000000C0A4 000000C0A4 PM_LSU0_FLUSH_ULD LSU0 flush: unaligned load.

000000C0AC 000000C0AC 000000C0AC 000000C0AC PM_LSU0_FLUSH_UST LS0 flush: unaligned store.

000000F088 000000F088 000000F088 000000F088 PM_LSU0_L1_CAM_CANCEL LSU0 L1 TM CAM cancel.

000001E056 PM_LSU0_LARX_FIN Larx finished in LSU Pipe0.

000000D08C 000000D08C 000000D08C 000000D08C PM_LSU0_LMQ_LHR_MERGE LSU0 load merged with another cache-line request.

000000C08C 000000C08C 000000C08C 000000C08C PM_LSU0_NCLD LS0 noncacheable loads counted at finish.

000000E090 000000E090 000000E090 000000E090 PM_LSU0_PRIMARY_ERAT_HIT Primary ERAT hit.

000001E05A PM_LSU0_REJECT LSU0 reject.

000000C09C 000000C09C 000000C09C 000000C09C PM_LSU0_SRQ_STFWD LSU0 SRQ forwarded data to a load.

000000F084 000000F084 000000F084 000000F084 PM_LSU0_STORE_REJECT LSU0 store reject.

000000E098 000000E098 000000E098 000000E098 PM_LSU0_TM_L1_HIT Load TM hit in L1 cache.

Table D-1. POWER8 Event List by Event Name (Sheet 29 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

load-hit-store

load miss queue

content addressable memory

transactional memory

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 417 of 523

000000E0A0 000000E0A0 000000E0A0 000000E0A0 PM_LSU0_TM_L1_MISS Load TM L1 miss.

000000E0A8 000000E0A8 000000E0A8 000000E0A8 PM_LSU0_TMA_REQ_L2 Address-only requests to the L2 cache. Multiple requests to the same line are only reported
once.

000000C0B2 000000C0B2 000000C0B2 000000C0B2 PM_LSU1_FLUSH_LRQ LSU1 flush: LRQ.

000000C0BA 000000C0BA 000000C0BA 000000C0BA PM_LSU1_FLUSH_SRQ LSU1 flush: SRQ load-hit-store flushes.

000000C0A6 000000C0A6 000000C0A6 000000C0A6 PM_LSU1_FLUSH_ULD LSU1 flush: unaligned load.

000000C0AE 000000C0AE 000000C0AE 000000C0AE PM_LSU1_FLUSH_UST LSU1 flush: unaligned store.

000000F08A 000000F08A 000000F08A 000000F08A PM_LSU1_L1_CAM_CANCEL LSU1 L1 TM CAM cancel.

000002E056 PM_LSU1_LARX_FIN Larx finished in LSU Pipe1.

000000D08E 000000D08E 000000D08E 000000D08E PM_LSU1_LMQ_LHR_MERGE LSU1 load merge with another cache-line request.

000000C08E 000000C08E 000000C08E 000000C08E PM_LSU1_NCLD LS1 noncacheable loads counted at finish.

000000E092 000000E092 000000E092 000000E092 PM_LSU1_PRIMARY_ERAT_HIT Primary ERAT hit.

000002E05A PM_LSU1_REJECT LSU1 reject.

000000C09E 000000C09E 000000C09E 000000C09E PM_LSU1_SRQ_STFWD LSU1 SRQ forwarded data to a load.

000000F086 000000F086 000000F086 000000F086 PM_LSU1_STORE_REJECT LSU1 store reject.

000000E09A 000000E09A 000000E09A 000000E09A PM_LSU1_TM_L1_HIT Load TM hit in L1 cache.

000000E0A2 000000E0A2 000000E0A2 000000E0A2 PM_LSU1_TM_L1_MISS Load TM L1 miss.

000000E0AA 000000E0AA 000000E0AA 000000E0AA PM_LSU1_TMA_REQ_L2 Address-only requests to the L2 cache. Multiple requests to the same line are only reported
once.

000000C0B4 000000C0B4 000000C0B4 000000C0B4 PM_LSU2_FLUSH_LRQ LSU2 flush: LRQ.

000000C0BC 000000C0BC 000000C0BC 000000C0BC PM_LSU2_FLUSH_SRQ LSU2 flush: SRQ.

000000C0A8 000000C0A8 000000C0A8 000000C0A8 PM_LSU2_FLUSH_ULD LSU2 flush: unaligned load.

000000F08C 000000F08C 000000F08C 000000F08C PM_LSU2_L1_CAM_CANCEL LSU2 L1 TM CAM cancel.

000003E056 PM_LSU2_LARX_FIN Larx finished in LSU Pipe2.

000000C084 000000C084 000000C084 000000C084 PM_LSU2_LDF LS2 scalar loads.

000000C088 000000C088 000000C088 000000C088 PM_LSU2_LDX LS0 vector loads.

000000D090 000000D090 000000D090 000000D090 PM_LSU2_LMQ_LHR_MERGE LSU2 load merged with another cache-line request.

000000E094 000000E094 000000E094 000000E094 PM_LSU2_PRIMARY_ERAT_HIT Primary ERAT hit.

000003E05A PM_LSU2_REJECT LSU2 reject.

Table D-1. POWER8 Event List by Event Name (Sheet 30 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 418 of 523

V
ersion 1.3

16 M
arch 2016

000000C0A0 000000C0A0 000000C0A0 000000C0A0 PM_LSU2_SRQ_STFWD LSU2 SRQ forwarded data to a load.

000000E09C 000000E09C 000000E09C 000000E09C PM_LSU2_TM_L1_HIT Load TM hit in L1 cache.

000000E0A4 000000E0A4 000000E0A4 000000E0A4 PM_LSU2_TM_L1_MISS Load TM L1 miss.

000000E0AC 000000E0AC 000000E0AC 000000E0AC PM_LSU2_TMA_REQ_L2 Address-only requests to the L2 cache. Multiple requests to the same line are only reported
once.

000000C0B6 000000C0B6 000000C0B6 000000C0B6 PM_LSU3_FLUSH_LRQ LSU3 flush: LRQ.

000000C0BE 000000C0BE 000000C0BE 000000C0BE PM_LSU3_FLUSH_SRQ LSU3 flush: SRQ.

000000C0AA 000000C0AA 000000C0AA 000000C0AA PM_LSU3_FLUSH_ULD LSU3 flush: unaligned load.

000000F08E 000000F08E 000000F08E 000000F08E PM_LSU3_L1_CAM_CANCEL LSU3 L1 TM CAM cancel.

000004E056 PM_LSU3_LARX_FIN Larx finished in LSU Pipe3.

000000C086 000000C086 000000C086 000000C086 PM_LSU3_LDF LS3 scalar loads

000000C08A 000000C08A 000000C08A 000000C08A PM_LSU3_LDX LS1 vector loads

000000D092 000000D092 000000D092 000000D092 PM_LSU3_LMQ_LHR_MERGE LSU3 load merged with another cache-line request.

000000E096 000000E096 000000E096 000000E096 PM_LSU3_PRIMARY_ERAT_HIT Primary ERAT hit.

000004E05A PM_LSU3_REJECT LSU3 reject.

000000C0A2 000000C0A2 000000C0A2 000000C0A2 PM_LSU3_SRQ_STFWD LSU3 SRQ forwarded data to a load.

000000E09E 000000E09E 000000E09E 000000E09E PM_LSU3_TM_L1_HIT Load TM hit in L1 cache.

000000E0A6 000000E0A6 000000E0A6 000000E0A6 PM_LSU3_TM_L1_MISS Load TM L1 miss.

000000E0AE 000000E0AE 000000E0AE 000000E0AE PM_LSU3_TMA_REQ_L2 Address-only requests to the L2 cache. Multiple requests to the same line are only reported
once.

0000005094 0000005094 0000005094 0000005094 PM_LWSYNC1 Threaded version. An lwsync count (which is easier to use than IMC). An lwsync issued to
the LSU was sent to the L2 cache. An lwsync does not require a sync_ack back from the L2
cache. Therefore, the store can be completed in the core and the SRQ entry can be released
like other stores.

000000D098 000000D098 000000D098 000000D098

000000209A 000000209A 000000209A 000000209A PM_LWSYNC_HELD Cycles an lwsync instruction was held at dispatch.

000004C058 PM_MEM_CO Memory castouts from this LPAR.

0000010058 PM_MEM_LOC_THRESH_IFU Local memory above threshold for IFU speculation control.

0000040056 PM_MEM_LOC_THRESH_LSU_HIGH Local memory above threshold for LSU medium.

000001C05E PM_MEM_LOC_THRESH_LSU_MED Local memory above threshold for data prefetch.

000002C058 PM_MEM_PREF Memory prefetch for this LPAR.

Table D-1. POWER8 Event List by Event Name (Sheet 31 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 419 of 523

0000010056 PM_MEM_READ Reads from memory from this LPAR (includes demand data/instruction/translate /L1
prefetch/instruction prefetch).

000003C05E PM_MEM_RWITM Memory rwitm for this LPAR.

000003515E PM_MRK_BACK_BR_CMPL Marked branch instruction completed with a target address less than the current instruction
address.

000001016E PM_MRK_BR_CMPL Branch instruction completed.

00020301E4 PM_MRK_BR_MPRED_CMPL Marked branch mispredicted.

000E0101E2 PM_MRK_BR_TAKEN_CMPL Marked branch taken completed.

000002013A PM_MRK_BRU_FIN BRU marked instruction finish.

000003013A PM_MRK_CRU_FIN IFU non-branch marked instruction finished.

000104D148 PM_MRK_DATA_FROM_DL2L3_MOD The processor’s data cache was reloaded with modified (M) data from another chip’s L2 or L3
cache on a different Node or Group (distant).

000102D128 PM_MRK_DATA_FROM_DL2L3_MOD_
CYC

Duration in cycles to reload with modified (M) data from another chip’s L2 or L3 cache on a
different Node or Group (distant).

000103D148 PM_MRK_DATA_FROM_DL2L3_SHR The processor’s data cache was reloaded with shared (S) data from another chip’s L2 or L3
cache on a different Node or Group (distant).

000102C128 PM_MRK_DATA_FROM_DL2L3_SHR_
CYC

Duration in cycles to reload with shared (S) data from another chip’s L2 or L3 cache on a dif-
ferent Node or Group (distant).

000104D14C PM_MRK_DATA_FROM_DMEM The processor’s data cache was reloaded from another chip’s memory on the same Node or
Group (distant) due to a marked load.

000102D12C PM_MRK_DATA_FROM_DMEM_CYC Duration in cycles to reload from another chip’s memory on the same Node or Group (distant)
due to a marked load.

000101D142 PM_MRK_DATA_FROM_L2 The processor’s data cache was reloaded from the local core’s L2 cache due to a marked
load.

000104C122 PM_MRK_DATA_FROM_L2_CYC Duration in cycles to reload from the local core’s L2 cache due to a marked load.

000103D140 PM_MRK_DATA_FROM_L2_DISP_
CONFLICT_LDHITST

The processor's data cache was reloaded from the local core’s L2 cache with a load-hit-store
conflict due to a marked load.

000102C120 PM_MRK_DATA_FROM_L2_DISP_
CONFLICT_LDHITST_CYC

Duration in cycles to reload from the local core’s L2 cache with a load-hit-store conflict due to
a marked load.

000104D140 PM_MRK_DATA_FROM_L2_DISP_
CONFLICT_OTHER

The processor’s data cache was reloaded from the local core’s L2 cache with a dispatch con-
flict due to a marked load.

000102D120 PM_MRK_DATA_FROM_L2_DISP_
CONFLICT_OTHER_CYC

Duration in cycles to reload from the local core’s L2 cache with a dispatch conflict due to a
marked load.

000102D140 PM_MRK_DATA_FROM_L2_MEPF The processor’s data cache was reloaded from the local core’s L2 hit without a dispatch con-
flict on an Mepf state due to a marked load.

Table D-1. POWER8 Event List by Event Name (Sheet 32 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

read-with-intent-to-modify

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 420 of 523

V
ersion 1.3

16 M
arch 2016

000104D120 PM_MRK_DATA_FROM_L2_MEPF_
CYC

Duration in cycles to reload from the local core’s L2 hit without a dispatch conflict on an Mepf
state due to a marked load.

000101D140 PM_MRK_DATA_FROM_L2_
NO_CONFLICT

The processor’s data cache was reloaded from local core’s L2 cache without conflict due to a
marked load.

000104C120 PM_MRK_DATA_FROM_L2_
NO_CONFLICT_CYC

Duration in cycles to reload from the local core’s L2 cache without conflict due to a marked
load.

000104D146 PM_MRK_DATA_FROM_L21_MOD The processor’s data cache was reloaded with modified (M) data from another core’s L2
cache on the same chip due to a marked load.

000102D126 PM_MRK_DATA_FROM_L21_MOD_
CYC

Duration in cycles to reload with modified (M) data from another core’s L2 cache on the same
chip due to a marked load.

000103D146 PM_MRK_DATA_FROM_L21_SHR The processor’s data cache was reloaded with shared (S) data from another core’s L2 cache
on the same chip due to a marked load.

000102C126 PM_MRK_DATA_FROM_L21_SHR_
CYC

Duration in cycles to reload with shared (S) data from another core’s L2 cache on the same
chip due to a marked load.

000101D14E PM_MRK_DATA_FROM_L2MISS1 The processor’s data cache was reloaded from a location other than the local core’s L2
cache due to a marked load.

00010401E8

000104C12E PM_MRK_DATA_FROM_L2MISS_CYC Duration in cycles to reload from a location other than the local core’s L2 cache due to a
marked load.

000104D142 PM_MRK_DATA_FROM_L3 The processor’s data cache was reloaded from the local core’s L3 cache due to a marked
load.

000102D122 PM_MRK_DATA_FROM_L3_CYC Duration in cycles to reload from the local core’s L3 cache due to a marked load.

000103D142 PM_MRK_DATA_FROM_L3_DISP_
CONFLICT

The processor's data cache was reloaded from the local core’s L3 cache with a dispatch con-
flict due to a marked load.

000102C122 PM_MRK_DATA_FROM_L3_DISP_
CONFLICT_CYC

Duration in cycles to reload from the local core’s L3 cache with a dispatch conflict due to a
marked load.

000102D142 PM_MRK_DATA_FROM_L3_MEPF The processor’s data cache was reloaded from the local core’s L3 cache without dispatch
conflicts hit on an Mepf state due to a marked load.

000104D122 PM_MRK_DATA_FROM_L3_MEPF_
CYC

Duration in cycles to reload from the local core’s L3 cache without a dispatch conflict hit on an
Mepf state due to a marked load.

000101D144 PM_MRK_DATA_FROM_L3_
NO_CONFLICT

The processor’s data cache was reloaded from the local core’s L3 cache without conflict due
to a marked load.

000104C124 PM_MRK_DATA_FROM_L3_
NO_CONFLICT_CYC

Duration in cycles to reload from the local core’s L3 cache without conflict due to a marked
load.

000104D144 PM_MRK_DATA_FROM_L31_ECO_
MOD

The processor’s data cache was reloaded with modified (M) data from another core’s ECO
L3 on the same chip due to a marked load.

000102D124 PM_MRK_DATA_FROM_L31_ECO_
MOD_CYC

Duration in cycles to reload with modified (M) data from another core’s ECO L3 on the same
chip due to a marked load.

Table D-1. POWER8 Event List by Event Name (Sheet 33 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 421 of 523

000103D144 PM_MRK_DATA_FROM_L31_ECO_
SHR

The processor’s data cache was reloaded with shared (S) data from another core’s ECO L3
on the same chip due to a marked load.

000102C124 PM_MRK_DATA_FROM_L31_ECO_
SHR_CYC

Duration in cycles to reload with shared (S) data from another core’s ECO L3 on the same
chip due to a marked load.

000102D144 PM_MRK_DATA_FROM_L31_MOD The processor’s data cache was reloaded with modified (M) data from another core’s L3
cache on the same chip due to a marked load.

000104D124 PM_MRK_DATA_FROM_L31_MOD_
CYC

Duration in cycles to reload with modified (M) data from another core’s L3 cache on the same
chip due to a marked load.

000101D146 PM_MRK_DATA_FROM_L31_SHR The processor’s data cache was reloaded with shared (S) data from another core’s L3 cache
on the same chip due to a marked load.

000104C126 PM_MRK_DATA_FROM_L31_SHR_
CYC

Duration in cycles to reload with shared (S) data from another core’s L3 cache on the same
chip due to a marked load.

00010201E4 PM_MRK_DATA_FROM_L3MISS1 The processor’s data cache was reloaded from a location other than the local core’s L3
cache due to a marked load.

000104D14E

000102D12E PM_MRK_DATA_FROM_L3MISS_CYC Duration in cycles to reload from a location other than the local core’s L3 cache due to a
marked load.

000102D148 PM_MRK_DATA_FROM_LMEM The processor’s data cache was reloaded from the local chip’s memory due to a marked
load.

000104D128 PM_MRK_DATA_FROM_LMEM_CYC Duration in cycles to reload from the local chip’s memory due to a marked load.

00010201E0 PM_MRK_DATA_FROM_MEM The processor’s data cache was reloaded from a memory location from a local remote or dis-
tant due to a marked load.

000102D14C PM_MRK_DATA_FROM_MEMORY The processor’s data cache was reloaded from a memory location from local remote or dis-
tant due to a marked load.

000104D12C PM_MRK_DATA_FROM_
MEMORY_CYC

Duration in cycles to reload from a memory location from the local remote or distant due to a
marked load.

000104D14A PM_MRK_DATA_FROM_OFF_CHIP_
CACHE

The processor’s data cache was reloaded with either shared or modified data from another
core’s L2 or L3 cache on a different chip (remote or distant) due to a marked load.

000102D12A PM_MRK_DATA_FROM_OFF_CHIP_
CACHE_CYC

Duration in cycles to reload either shared or modified data from another core’s L2 or L3
cache on a different chip (remote or distant) due to a marked load.

000101D148 PM_MRK_DATA_FROM_ON_CHIP_
CACHE

The processor’s data cache was reloaded with either shared or modified data from another
core’s L2 or L3 cache on the same chip due to a marked load.

000104C128 PM_MRK_DATA_FROM_ON_CHIP_
CACHE_CYC

Duration in cycles to reload either shared or modified data from another core’s L2 or L3
cache on the same chip due to a marked load.

000102D146 PM_MRK_DATA_FROM_RL2L3_MOD The processor’s data cache was reloaded with modified (M) data from another chip’s L2 or L3
cache on the same Node or Group (remote).

000104D126 PM_MRK_DATA_FROM_RL2L3_MOD
_CYC

Duration in cycles to reload with modified (M) data from another chip’s L2 or L3 cache on the
same Node or Group (remote).

Table D-1. POWER8 Event List by Event Name (Sheet 34 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

extended cache option

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 422 of 523

V
ersion 1.3

16 M
arch 2016

000101D14A PM_MRK_DATA_FROM_RL2L3_SHR The processor’s data cache was reloaded with shared (S) data from another chip’s L2 or L3
cache on the same Node or Group (remote).

000104C12A PM_MRK_DATA_FROM_RL2L3_SHR
_CYC

Duration in cycles to reload with shared (S) data from another chip’ s L2 or L3 cache on the
same Node or Group (remote).

000103D14A PM_MRK_DATA_FROM_RMEM The processor’s data cache was reloaded from another chip’s memory on the same Node or
Group (remote) due to a marked load.

000102C12A PM_MRK_DATA_FROM_RMEM_CYC Duration in cycles to reload from another chip’s memory on the same Node or Group
(remote) due to a marked load.

0001040118 PM_MRK_DCACHE_RELOAD_INTV Combined intervention event.

00040301E6 PM_MRK_DERAT_MISS ERAT miss (TLB access) all page sizes.

000404D154 PM_MRK_DERAT_MISS_16G Marked data ERAT miss (data TLB access) page size 16 GB.

000403D154 PM_MRK_DERAT_MISS_16M Marked data ERAT miss (data TLB access) page size 16 MB.

000401D156 PM_MRK_DERAT_MISS_4K Marked data ERAT miss (data TLB access) page size is 4 KB.

000402D154 PM_MRK_DERAT_MISS_64K Marked data ERAT miss (data TLB access) page size 64 KB.

0000020132 PM_MRK_DFU_FIN Decimal unit marked instruction finish.

000404F148 PM_MRK_DPTEG_FROM_DL2L3_
MOD

A PTE was loaded into the TLB with modified (M) data from another chip’s L2 or L3 cache on
a different Node or Group (distant).

000403F148 PM_MRK_DPTEG_FROM_DL2L3_SHR A PTE was loaded into the TLB with shared (S) data from another chip’s L2 or L3 cache on a
different Node or Group (distant).

000404F14C PM_MRK_DPTEG_FROM_DMEM A PTE was loaded into the TLB from another chip’s memory on the same Node or Group
(distant) due to a marked data-side request.

000401F142 PM_MRK_DPTEG_FROM_L2 A PTE was loaded into the TLB from local core’s L2 cache due to a marked data-side
request.

000403F140 PM_MRK_DPTEG_FROM_L2_DISP_
CONFLICT_LDHITST

A PTE was loaded into the TLB from the local core’s L2 cache with a load-hit-store conflict
due to a marked data-side request.

000404F140 PM_MRK_DPTEG_FROM_L2_DISP_
CONFLICT_OTHER

A PTE was loaded into the TLB from local core’s L2 cache with dispatch conflict due to a
marked data-side request.

000402F140 PM_MRK_DPTEG_FROM_L2_MEPF A PTE was loaded into the TLB from the local core’s L2 hit without dispatch conflicts on an
Mepf state due to a marked data-side request.

000401F140 PM_MRK_DPTEG_FROM_L2_NO_
CONFLICT

A PTE was loaded into the TLB from local core’s L2 cache without conflict due to a marked
data-side request.

000404F146 PM_MRK_DPTEG_FROM_L21_MOD A PTE was loaded into the TLB with modified (M) data from another core’s L2 cache on the
same chip due to a marked data-side request.

000403F146 PM_MRK_DPTEG_FROM_L21_SHR A PTE was loaded into the TLB with shared (S) data from another core’s L2 cache on the
same chip due to a marked data-side request.

Table D-1. POWER8 Event List by Event Name (Sheet 35 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 423 of 523

000401F14E PM_MRK_DPTEG_FROM_L2MISS A PTE was loaded into the TLB from a location other than the local core’s L2 cache due to a
marked data-side request.

000404F142 PM_MRK_DPTEG_FROM_L3 A PTE was loaded into the TLB from local core’s L3 cache due to a marked data-side
request.

000403F142 PM_MRK_DPTEG_FROM_L3_DISP_
CONFLICT

A PTE was loaded into the TLB from the local core’s L3 cache with a dispatch conflict due to
a marked data-side request.

000402F142 PM_MRK_DPTEG_FROM_L3_MEPF A PTE was loaded into the TLB from the local core’s L3 cache without dispatch conflicts hit
on an Mepf state due to a marked data-side request.

000401F144 PM_MRK_DPTEG_FROM_L3_NO_
CONFLICT

A PTE was loaded into the TLB from local core’s L3 cache without conflict due to a marked
data-side request.

000404F144 PM_MRK_DPTEG_FROM_L31_ECO_M
OD

A PTE was loaded into the TLB with modified (M) data from another core’s ECO L3 on the
same chip due to a marked data-side request.

000403F144 PM_MRK_DPTEG_FROM_L31_ECO_S
HR

A PTE was loaded into the TLB with shared (S) data from another core’s ECO L3 on the
same chip due to a marked data-side request.

000402F144 PM_MRK_DPTEG_FROM_L31_MOD A PTE was loaded into the TLB with modified (M) data from another core’s L3 cache on the
same chip due to a marked data-side request.

000401F146 PM_MRK_DPTEG_FROM_L31_SHR A PTE was loaded into the TLB with shared (S) data from another core’s L3 cache on the
same chip due to a marked data-side request.

000404F14E PM_MRK_DPTEG_FROM_L3MISS A PTE was loaded into the TLB from a location other than the local core’s L3 cache due to a
marked data-side request.

000402F148 PM_MRK_DPTEG_FROM_LMEM A PTE was loaded into the TLB from the local chip’s memory due to a marked data-side
request.

000402F14C PM_MRK_DPTEG_FROM_MEMORY A PTE was loaded into the TLB from a memory location from a local remote or distant due to
a marked data-side request.

000404F14A PM_MRK_DPTEG_FROM_OFF_CHIP_
CACHE

A PTE was loaded into the TLB either shared or modified data from another core’s L2 or L3
cache on a different chip (remote or distant) due to a marked data-side request.

000401F148 PM_MRK_DPTEG_FROM_ON_CHIP_C
ACHE

A PTE was loaded into the TLB with either shared or modified data from another core’s L2 or
L3 cache on the same chip due to a marked data-side request.

000402F146 PM_MRK_DPTEG_FROM_
RL2L3_MOD

A PTE was loaded into the TLB with modified (M) data from another chip’s L2 or L3 cache on
the same Node or Group (remote).

000401F14A PM_MRK_DPTEG_FROM_RL2L3_
SHR

A PTE was loaded into the TLB with shared (S) data from another chip’s L2 or L3 cache on
the same Node or Group (remote).

000403F14A PM_MRK_DPTEG_FROM_RMEM A PTE was loaded into the TLB from another chip’s memory on the same Node or Group
(remote) due to a marked data-side request.

00040401E4 PM_MRK_DTLB_MISS Marked DTLB miss.

000401D158 PM_MRK_DTLB_MISS_16G Marked data TLB miss page size 16 GB.

000404D156 PM_MRK_DTLB_MISS_16M Marked data TLB miss page size 16 MB.

Table D-1. POWER8 Event List by Event Name (Sheet 36 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 424 of 523

V
ersion 1.3

16 M
arch 2016

000402D156 PM_MRK_DTLB_MISS_4K Marked data TLB miss page size 4 KB.

000403D156 PM_MRK_DTLB_MISS_64K Marked data TLB miss page size 64 KB.

0004040154 PM_MRK_FAB_RSP_BKILL Marked store had to do a bkill.

000402F150 PM_MRK_FAB_RSP_BKILL_CYC Number of cycles L2 RC took for a bkill.

000403015E PM_MRK_FAB_RSP_CLAIM_RTY Sampled store did a rwitm and got a retry.

0004030154 PM_MRK_FAB_RSP_DCLAIM Marked store had to do a dclaim.

000402F152 PM_MRK_FAB_RSP_DCLAIM_CYC Number of cycles L2 RC took for a dclaim.

0004030156 PM_MRK_FAB_RSP_MATCH Ttype and cresp matched as specified in MMCR1.

000404F152 PM_MRK_FAB_RSP_MATCH_CYC Cresp/ttype match cycles.

000404015E PM_MRK_FAB_RSP_RD_RTY Sampled L2 cache reads retry count.

000101015E PM_MRK_FAB_RSP_RD_T_INTV Sampled read got a T intervention.

000404F150 PM_MRK_FAB_RSP_RWITM_CYC Number of cycles an L2 RC took for a rwitm.

000402015E PM_MRK_FAB_RSP_RWITM_RTY A sampled store did a rwitm resulting in a retry.

000002013C 000003012E PM_MRK_FILT_MATCH Marked filter match.

000001013C PM_MRK_FIN_STALL_CYC Number of marked instruction finish stall cycles (marked finish after NTC). Use edge detect to
count the number.

0000020134 PM_MRK_FXU_FIN FXU marked instruction finish.

0000040130 PM_MRK_GRP_CMPL A marked instruction finished (completed).

000004013A PM_MRK_GRP_IC_MISS Marked group experienced an I-cache miss.

000003013C PM_MRK_GRP_NTC Marked group NTC cycles.

00000401E0 PM_MRK_INST_CMPL Marked instruction completed.

0000020130 PM_MRK_INST_DECODED Marked instruction decoded.

00000101E0 PM_MRK_INST_DISP The thread has dispatched a randomly sampled marked instruction.

0000030130 PM_MRK_INST_FIN Marked instruction finished (any unit).

00000401E6 PM_MRK_INST_FROM_L3MISS Marked instruction was reloaded from a location beyond the local chiplet.

0000010132 PM_MRK_INST_ISSUED Marked instruction issued.

0000040134 PM_MRK_INST_TIMEO Marked instruction finished, timeout (instruction lost).

00000101E4 PM_MRK_L1_ICACHE_MISS Sampled instruction had an I-cache miss.

Table D-1. POWER8 Event List by Event Name (Sheet 37 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

read/claim

next-to-complete

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 425 of 523

00010101EA PM_MRK_L1_RELOAD_VALID Marked demand reload.

0004020114 PM_MRK_L2_RC_DISP Marked instruction RC dispatched in L2 cache.

000403012A PM_MRK_L2_RC_DONE Marked RC done.

0011040116 PM_MRK_LARX_FIN Larx finished.

000101013E PM_MRK_LD_MISS_ EXPOSED_CYC Marked load exposed miss cycles. Use edge detect to count number.

000001013F PM_MRK_LD_MISS_EXPOSED Marked load exposed miss (exposed period ended, use edge detect to count number).

00010201E2 PM_MRK_LD_MISS_L1 Marked data L1 cache demand miss counted at execution time.

000104013E PM_MRK_LD_MISS_L1_CYC Marked load latency.

0004040132 PM_MRK_LSU_FIN An LSU marked instruction finished.

000400D180 000400D180 000400D180 000400D180 PM_MRK_LSU_FLUSH Flush: (marked) all cases.

000400D188 000400D188 000400D188 000400D188 PM_MRK_LSU_FLUSH_LRQ Flush: (marked) LRQ.

000400D18A 000400D18A 000400D18A 000400D18A PM_MRK_LSU_FLUSH_SRQ Flush: (marked) SRQ.

000400D184 000400D184 000400D184 000400D184 PM_MRK_LSU_FLUSH_ULD Flush: (marked) unaligned load.

000400D186 000400D186 000400D186 000400D186 PM_MRK_LSU_FLUSH_UST Flush: (marked) unaligned store.

0004040164 PM_MRK_LSU_REJECT LSU marked reject (up to two per cycle).

0004030164 PM_MRK_LSU_REJECT_ERAT_MISS LSU marked reject due to ERAT (up to two per cycle).

0000020112 PM_MRK_NTF_FIN Marked next-to-finish instruction as finished.

000001D15E PM_MRK_RUN_CYC Marked run cycles.

001501D15A PM_MRK_SRC_PREF_TRACK_EFF Marked source prefetch tracked was effective.

001503D15A PM_MRK_SRC_PREF_TRACK_INEFF Prefetch tracked was ineffective for marked source.

001504D15C PM_MRK_SRC_PREF_TRACK_MOD Prefetch tracked was moderate for marked source.

001501D15C PM_MRK_SRC_PREF_TRACK_MOD_
L2

Prefetch tracked was moderate for marked source (source L2 cache).

001503D15C PM_MRK_SRC_PREF_TRACK_MOD_
L3

Prefetch tracked was moderate (L3 hit) for marked source.

0004010134 PM_MRK_ST_CMPL1 A marked store completed in the L2 cache (RC machine done).

00040301E2

0004030134 PM_MRK_ST_CMPL_INT Marked store complete (data home) with intervention.

000403F150 PM_MRK_ST_DRAIN_TO_L2DISP_CYC Number of cycles it takes to drain a store from the SRQ to the L2 cache.

Table D-1. POWER8 Event List by Event Name (Sheet 38 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 426 of 523

V
ersion 1.3

16 M
arch 2016

000403012C PM_MRK_ST_FWD Marked store forwards.

000401F150 PM_MRK_ST_L2DISP_TO_CMPL_CYC Cycles from L2 read/claim dispatch to L2 read/claim completion.

0004020138 PM_MRK_ST_NEST Marked store sent to nest.

000003013E PM_MRK_STALL_CMPLU_CYC Marked group completion stall cycles (use edge detect to count number of cycles).

001103E158 PM_MRK_STCX_FAIL Marked stcx failed.

001501C15A PM_MRK_TGT_PREF_TRACK_EFF Marked target prefetch track was effective.

001503C15A PM_MRK_TGT_PREF_TRACK_INEFF Prefetch tracked was ineffective for marked target.

001504C15C PM_MRK_TGT_PREF_TRACK_MOD Prefetch tracked was moderate for marked target.

001501C15C PM_MRK_TGT_PREF_TRACK_MOD_
L2

Marked target prefetch tracked was moderate (source L2 cache).

001503C15C PM_MRK_TGT_PREF_TRACK_MOD_
L3

Prefetch tracked was moderate (L3 hit) for marked target.

0000030132 PM_MRK_VSU_FIN VSU (FPU) marked instruction finished.

000003D15E PM_MULT_MRK Multiple marked instructions.

000003006E PM_NEST_REF_CLK This event increments at the frequency of the SMP interconnect. Multiply by 4 to obtain the
number of SMP interconnect cycles.

00000020B0 00000020B0 00000020B0 00000020B0 PM_NESTED_TEND Completion time nested tend.

00000020B6 00000020B6 00000020B6 00000020B6 PM_NON_FAV_TBEGIN Dispatch time nonfavored tbegin.

0000328084 PM_NON_TM_RST_SC A snoop from another core that was not working on a transaction hit on an L3 cache line that
was in the SC state for a transaction that was no longer in flight. In this case, the L3 cache
honors the snoop request and gives away the line after resetting the SC state.

000002001A PM_NTCG_ALL_FIN Cycles after all instructions have finished to group completed.

00000020AC 00000020AC 00000020AC 00000020AC PM_OUTER_TBEGIN Completion time outer tbegin.

00000020AE 00000020AE 00000020AE 00000020AE PM_OUTER_TEND Completion time outer tend.

0000020010 PM_PMC1_OVERFLOW Overflow from counter 1.

0000030010 PM_PMC2_OVERFLOW Overflow from counter 2.

0000030020 PM_PMC2_REWIND PMC2 rewind event (does not match condition).

0000010022 PM_PMC2_SAVED PMC2 rewind value saved (matched condition).

0000040010 PM_PMC3_OVERFLOW Overflow from counter 3.

Table D-1. POWER8 Event List by Event Name (Sheet 39 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 427 of 523

0000010010 PM_PMC4_OVERFLOW Overflows from PMC4 are counted. This effectively widens the PMC. The overflow from the
original PMC does not trigger an exception even if the PMU is configured to generate excep-
tions on overflow.

0000010020 PM_PMC4_REWIND PMC4 rewind event (did not match condition).

0000030022 PM_PMC4_SAVED PMC4 rewind value saved (matched condition).

0000010024 PM_PMC5_OVERFLOW Overflow from counter 5. Overflows from PMC5 are counted. This effectively widens the
PMC. The overflow from the original PMC does not trigger an exception even if the PMU is
configured to generate exceptions on overflow.

0000030024 PM_PMC6_OVERFLOW Overflow from counter 6. Overflows from PMC6 are counted. This effectively widens the
PMC. The overflow from the original PMC does not trigger an exception even if the PMU is
configured to generate exceptions on overflow.

000001005A PM_PREF_TRACK_EFF Prefetch tracked was effective.

000003005A PM_PREF_TRACK_INEFF Prefetch tracked was ineffective.

000004005A PM_PREF_TRACK_MOD Prefetch tracked was moderate.

000001005C PM_PREF_TRACK_MOD_L2 Prefetch tracked was moderate (source L2 cache).

000003005C PM_PREF_TRACK_MOD_L3 Prefetch tracked was moderate (L3 cache).

000002005A PM_PREF_TRACKED Total number of prefetch operations that were tracked.

0000040014 PM_PROBE_NOP_DISP Probe NOPs dispatched.

000000E084 000000E084 000000E084 000000E084 PM_PTE_PREFETCH PTE prefetches.

0000010054 PM_PUMP_CPRED Pump prediction correct. Counts across all types of pumps for all data types excluding data
prefetch (demand load).

0000040052 PM_PUMP_MPRED Pump misprediction. Counts across all types of pumps for all data types excluding data
prefetch (demand load).

DE200301EA PM_RC_LIFETIME_EXC_1024 Number of times the RC machine for a sampled instruction was active for more than 1024
cycles. Reload latency exceeded 1024 cycles.

DE200401EC PM_RC_LIFETIME_EXC_2048 Number of times the RC machine for a sampled instruction was active for more than 2048
cycles.

DE200101E8 PM_RC_LIFETIME_EXC_256 Number of times the RC machine for a sampled instruction was active for more than 256
cycles.

DE200201E6 PM_RC_LIFETIME_EXC_32 Number of times the RC machine for a sampled instruction was active for more than 32
cycles. Reload latency exceeded 32 cycles.

0000036088 PM_RC_USAGE1 Continuous 16-cycle (2:1) window where this signal rotates through sampling each L2 RC
machine busy. The PMU uses this wave to then do a 16-cycle count to sample the total num-
ber of machines running.0000736088

0000016081 PM_RC0_ALLOC RC machine 0 busy. Used by the PMU to sample average RC lifetime (mach0 used as sam-
ple point).

Table D-1. POWER8 Event List by Event Name (Sheet 40 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 428 of 523

V
ersion 1.3

16 M
arch 2016

0000016080 PM_RC0_BUSY1 RC machine 0 (mach0) busy. Used by the PMU to sample average RC lifetime (mach0 is
used as a sample point).

0000716080

000034808E PM_RD_CLEARING_SC Read clearing SC.

000034808C PM_RD_FORMING_SC Read forming SC.

0000428086 PM_RD_HIT_PF Read machine hit in L3 prefetch machine.

0000020004 PM_REAL_SRQ_FULL Out of real SRQ entries.

00000200F4 PM_RUN_CYC Run cycles. Processor cycles gated by the run latch. Operating systems use the run latch to
indicate when they are doing useful work. The run latch is typically cleared in the operating
system idle loop. Gating by the run latch filters out the idle loop.

000003006C PM_RUN_CYC_SMT2_MODE Number of cycles run latch is set and core is in SMT2 mode.

000002006A PM_RUN_CYC_SMT2_SHRD_MODE Number of cycles that this thread’s run latch is set and the core is in SMT2-shared mode.

000001006A PM_RUN_CYC_SMT2_SPLIT_MODE Number of cycles that the run latch is set and the core is in SMT2-split mode.

000002006C PM_RUN_CYC_SMT4_MODE Number of cycles that this thread’s run latch is set and the core is in SMT4 mode.

000004006C PM_RUN_CYC_SMT8_MODE Number of cycles that the run latch is set and the core is in SMT8 mode.

000001006C PM_RUN_CYC_ST_MODE Number of cycles that the run latch is set and the core is in ST mode.

00000400FA PM_RUN_INST_CMPL Number of PowerPC instructions that completed; gated by the run latch.

00000400F4 PM_RUN_PURR Run PURR.

0000010008 PM_RUN_SPURR Run SPURR. The Scaled Processor Utilization of Resources Register (SPURR) was incre-
mented while the run latch was set.

000000F082 000000F082 000000F082 000000F082 PM_SEC_ERAT_HIT Secondary ERAT hit.

000000508C 000000508C 000000508C 000000508C PM_SHL_CREATED Store-hit-load table entry created.

000000508E 000000508E 000000508E 000000508E PM_SHL_ST_CONVERT Store-hit-load table read hit with entry enabled.

0000005090 0000005090 0000005090 0000005090 PM_SHL_ST_DISABLE Store-hit-load table read hit with entry disabled.

000004608C PM_SN_USAGE1 Continuous 16-cycle (2:1) window where this signal rotates through sampling each L2 SN
machine busy. The PMU uses this wave to then do a 16-cycle count to sample the total num-
ber of machines running.000074608C

0000026085 PM_SN0_ALLOC SN mach 0 busy. Used by the PMU to sample average RC lifetime (mach0 is used as a
sample point).

0000026084 PM_SN0_BUSY1 SN mach0 busy. Used by the PMU to sample average RC lifetime (mach0 is used as a
sample point).

0000726084

000000D0B2 000000D0B2 000000D0B2 000000D0B2 PM_SNOOP_TLBIE TLBIE snoop.

Table D-1. POWER8 Event List by Event Name (Sheet 41 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

single-thread

Processor Utilization Resource Register

snoop

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 429 of 523

0000338088 PM_SNP_TM_HIT_M A snoop from another core for a TM store hit a line in the M or Mu state.

000033808A PM_SNP_TM_HIT_T A snoop from another core for a TM store hit a line in the T, Tn, or Te state.

0000717080 PM_ST_CAUSED_FAIL A non-TM store caused any thread to fail.

0000020016 PM_ST_CMPL Store completion count.

00000200F0 PM_ST_FIN Store instructions finished (store sent to nest).

0000020018 PM_ST_FWD Store forwards that finished.

00000300F0 PM_ST_MISS_L1 Store missed L1.

0000010028 PM_STALL_END_GCT_EMPTY Count ended because GCT went empty.

000001E058 PM_STCX_FAIL Stcx failed.

000000C090 000000C090 000000C090 000000C090 PM_STCX_LSU Stcx executed reported at sent to nest.

0000010000 0000020000 0000030000 0000040000 PM_SUSPENDED Counter off. The counter is suspended (does not count).

0000003090 0000003090 0000003090 0000003090 PM_SWAP_CANCEL Swap cancel.

0000003092 0000003092 0000003092 0000003092 PM_SWAP_CANCEL_GPR Swap cancel.

000000308C 000000308C 000000308C 000000308C PM_SWAP_COMPLETE Swap cast-in completed.

000000308E 000000308E 000000308E 000000308E PM_SWAP_COMPLETE_GPR Swap cast-in completed for GPR.

0000015152 PM_SYNC_MRK_BR_LINK Marked branch and link branch that can cause a synchronous interrupt.

000201515C PM_SYNC_MRK_BR_MPRED Marked branch mispredict that can cause a synchronous interrupt.

0018015156 PM_SYNC_MRK_FX_DIVIDE Marked fixed-point divide that can cause a synchronous interrupt.

0001015158 PM_SYNC_MRK_L2HIT Marked L2 hits that can throw a synchronous interrupt.

000101515A PM_SYNC_MRK_L2MISS Marked L2 miss that can throw a synchronous interrupt.

0001015154 PM_SYNC_MRK_L3MISS Marked L3 misses that can throw a synchronous interrupt.

0008015150 PM_SYNC_MRK_PROBE_NOP Marked probe NOPs that can cause synchronous interrupts.

0000030050 PM_SYS_PUMP_CPRED Initial and final pump scope was system pump for all data types excluding data prefetch
(demand load).

0000030052 PM_SYS_PUMP_MPRED Final pump scope (system) mispredicted. Either the original scope was too small (chip/group)
or the original scope was system and it should have been smaller. Number of counts for all
data types excluding data prefetch (demand load).

0000040050 PM_SYS_PUMP_MPRED_RTY Final pump scope (system) was larger than initial pump scope (chip/group) for all data types
excluding data prefetch (demand load).

0000010026 PM_TABLEWALK_CYC Number of cycles when a tablewalk (instruction or data) is active.

Table D-1. POWER8 Event List by Event Name (Sheet 42 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

general purpose register

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 430 of 523

V
ersion 1.3

16 M
arch 2016

000000E086 000000E086 000000E086 000000E086 PM_TABLEWALK_CYC_PREF Tablewalk qualified for PTE prefetches.

00000020B2 00000020B2 00000020B2 00000020B2 PM_TABORT_TRECLAIM Completion time treclaim.

00000300F8 PM_TB_BIT_TRANS Timebase event.

000000E0BA 000000E0BA 000000E0BA 000000E0BA PM_TEND_PEND_CYC TEND latency per thread.

000002000C PM_THRD_ALL_RUN_CYC All threads in run_cycles.

00000300F4 PM_THRD_CONC_RUN_INST PowerPC instructions finished when both threads are in run_cycles; concurrent run instruc-
tions.

0000010012 PM_THRD_GRP_CMPL_BOTH_CYC Cycles group completed on both completion slots by any thread. Two threads finished in the
same cycle (gated by a run latch).

00000040BC 00000040BC 00000040BC 00000040BC PM_THRD_PRIO_0_1_CYC Number of cycles the thread is running at priority level 0 or 1.

00000040BE 00000040BE 00000040BE 00000040BE PM_THRD_PRIO_2_3_CYC Number of cycles the thread is running at priority level 2 or 3.

0000005080 0000005080 0000005080 0000005080 PM_THRD_PRIO_4_5_CYC Number of cycles the thread is running at priority level 4 or 5.

0000005082 0000005082 0000005082 0000005082 PM_THRD_PRIO_6_7_CYC Number of cycles the thread is running at priority level 6 or 7.

0000003098 0000003098 0000003098 0000003098 PM_THRD_REBAL_CYC Number of cycles rebalance is active.

00000301EA PM_THRESH_EXC_1024 Threshold counter exceeded a value of 1024.

00000401EA PM_THRESH_EXC_128 Threshold counter exceeded a value of 128.

00000401EC PM_THRESH_EXC_2048 Threshold counter exceeded a value of 2048.

00000101E8 PM_THRESH_EXC_256 Threshold counter exceeded a count of 256.

00000201E6 PM_THRESH_EXC_32 Threshold counter exceeded a value of 32.

00000101E6 PM_THRESH_EXC_4096 Threshold counter exceeded a count of 4096.

00000201E8 PM_THRESH_EXC_512 Threshold counter exceeded a value of 512.

00000301E8 PM_THRESH_EXC_64 Threshold counter exceeded a value of 64.

00000101EC PM_THRESH_MET Threshold exceeded.

000004016E PM_THRESH_NOT_MET Threshold counter did not meet threshold.

0000020066 PM_TLB_MISS TLB miss (instruction and data).

0000030058 PM_TLBIE_FIN Tlbie finished.

00000020B8 00000020B8 00000020B8 00000020B8 PM_TM_BEGIN_ALL TM any tbegin.

0000318082 PM_TM_CAM_OVERFLOW L3 transactional memory CAM overflow during L2 castout of SC.

000074708C PM_TM_CAP_OVERFLOW TM footprint capacity overflow.

Table D-1. POWER8 Event List by Event Name (Sheet 43 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 431 of 523

00000020BA 00000020BA 00000020BA 00000020BA PM_TM_END_ALL TM any tend.

0000003088 0000003088 0000003088 0000003088 PM_TM_FAIL_CON_TM TEXAS fail reason at completion.

0000003086 0000003086 0000003086 0000003086 PM_TM_FAIL_CONF_NON_TM TEXAS fail reason at completion.

000000E0B2 000000E0B2 000000E0B2 000000E0B2 PM_TM_FAIL_DISALLOW TM fail disallowed.

0000003084 0000003084 0000003084 0000003084 PM_TM_FAIL_FOOTPRINT_
OVERFLOW

TEXAS fail reason at completion.

000000E0B8 000000E0B8 000000E0B8 000000E0B8 PM_TM_FAIL_NON_TX_CONFLICT Nontransactional conflict from the LSU as reported to the TEXAS Register.

000000308A 000000308A 000000308A 000000308A PM_TM_FAIL_SELF TEXAS fail reason at completion.

000000E0B4 000000E0B4 000000E0B4 000000E0B4 PM_TM_FAIL_TLBIE TLBIE hit bloom filter.

000000E0B6 000000E0B6 000000E0B6 000000E0B6 PM_TM_FAIL_TX_CONFLICT Transactional conflict from the LSU.

0000727086 PM_TM_FAV_CAUSED_FAIL TM load (favored) caused another thread to fail.

0000717082 PM_TM_LD_CAUSED_FAIL A non-TM load caused any thread to fail.

0000727084 PM_TM_LD_CONF A TM load (favored or nonfavored) ran into conflict (failed).

0000328086 PM_TM_RST_SC A snoop from another core that is working on a transaction hit on an L3 cache line that was in
the SC state for a transaction that was no longer in flight. In this case, the L3 cache honors
the snoop request and gives away the line after resetting the SC state.

0000318080 PM_TM_SC_CO L3 cast out of a backup store image. During a transaction, the L2 cache sends a back-up
image to the L3 cache, so that if the transaction fails, the state of the line can be recovered.
This event counts the number of times one of these back-up image lines is evicted from the
L3 cache.

000073708A PM_TM_ST_CAUSED_FAIL TM store (favored or nonfavored) caused another thread to fail.

0000737088 PM_TM_ST_CONF TM store (favored or nonfavored) ran into conflict (failed).

00000020BC 00000020BC 00000020BC 00000020BC PM_TM_TBEGIN TM nested tbegin.

0000010060 PM_TM_TRANS_RUN_CYC Run cycles in transactional state.

0000030060 PM_TM_TRANS_RUN_INST Instructions completed in transactional state.

0000003080 0000003080 0000003080 0000003080 PM_TM_TRESUME TM resume.

00000020BE 00000020BE 00000020BE 00000020BE PM_TM_TSUSPEND TM suspend.

000002E012 PM_TM_TX_PASS_RUN_CYC Run cycles spent in successful transactions.

000004E014 PM_TM_TX_PASS_RUN_INST Run instructions spent in successful transactions.

000000E08C 000000E08C 000000E08C 000000E08C PM_UP_PREF_L3 Micropartition prefetch.

000000E08E 000000E08E 000000E08E 000000E08E PM_UP_PREF_POINTER Micropartition pointer prefetches.

Table D-1. POWER8 Event List by Event Name (Sheet 44 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

P
erform

ance M
onitoring E

vents

P
age 432 of 523

V
ersion 1.3

16 M
arch 2016

000002405E PM_UTHROTTLE Cycles in which an instruction issue throttle was active in the ISU.

000000A0A4 000000A0A4 000000A0A4 000000A0A4 PM_VSU0_16FLOP Sixteen flops operation (SP vector versions of fdiv).

000000A080 000000A080 000000A080 000000A080 PM_VSU0_1FLOP One flop (fadd).

000000A098 000000A098 000000A098 000000A098 PM_VSU0_2FLOP Two flops operation (scalar fmadd).

000000A09C 000000A09C 000000A09C 000000A09C PM_VSU0_4FLOP Four flops operation (scalar fdiv).

000000A0A0 000000A0A0 000000A0A0 000000A0A0 PM_VSU0_8FLOP Eight flops operation (DP vector versions of fdiv).

000000B0A4 000000B0A4 000000B0A4 000000B0A4 PM_VSU0_COMPLEX_ISSUED Complex VMX instruction issued.

000000B0B4 000000B0B4 000000B0B4 000000B0B4 PM_VSU0_CY_ISSUED Cryptographic instruction.

000000B0A8 000000B0A8 000000B0A8 000000B0A8 PM_VSU0_DD_ISSUED 64-bit decimal issued.

000000A08C 000000A08C 000000A08C 000000A08C PM_VSU0_DP_2FLOP DP vector version of fmul.

000000A090 000000A090 000000A090 000000A090 PM_VSU0_DP_FMA DP vector version of fmadd.

000000A094 000000A094 000000A094 000000A094 PM_VSU0_DP_FSQRT_FDIV DP vector versions of fdiv.

000000B0AC 000000B0AC 000000B0AC 000000B0AC PM_VSU0_DQ_ISSUED 128-bit decimal issued.

000000B0B0 000000B0B0 000000B0B0 000000B0B0 PM_VSU0_EX_ISSUED Direct move 32- or 64-bit VRF-to-GPR.

000000A0BC 000000A0BC 000000A0BC 000000A0BC PM_VSU0_FIN VSU0 finished an instruction.

000000A084 000000A084 000000A084 000000A084 PM_VSU0_FMA Two flops operation (fmadd).

000000B098 000000B098 000000B098 000000B098 PM_VSU0_FPSCR Move to/from an FPSCR type instruction issued on Pipe0.

000000A088 000000A088 000000A088 000000A088 PM_VSU0_FSQRT_FDIV Four flops operation (fdiv).

000000B090 000000B090 000000B090 000000B090 PM_VSU0_PERMUTE_ISSUED Permute VMX instruction Issued.

000000B088 000000B088 000000B088 000000B088 PM_VSU0_SCALAR_DP_ISSUED Double-precision scalar instruction issued on Pipe0.

000000B094 000000B094 000000B094 000000B094 PM_VSU0_SIMPLE_ISSUED Simple VMX instruction issued.

000000A0A8 000000A0A8 000000A0A8 000000A0A8 PM_VSU0_SINGLE FPU single precision.

000000B09C 000000B09C 000000B09C 000000B09C PM_VSU0_SQ Store vector issued.

000000B08C 000000B08C 000000B08C 000000B08C PM_VSU0_STF FPU store (SP or DP) issued on Pipe0.

000000B080 000000B080 000000B080 000000B080 PM_VSU0_VECTOR_DP_ISSUED Double-precision vector instruction issued on Pipe0.

000000B084 000000B084 000000B084 000000B084 PM_VSU0_VECTOR_SP_ISSUED Single-precision vector instruction issued (executed).

000000A0A6 000000A0A6 000000A0A6 000000A0A6 PM_VSU1_16FLOP Sixteen flops operation (SP vector versions of fdiv).

000000A082 000000A082 000000A082 000000A082 PM_VSU1_1FLOP One flop (fadd).

Table D-1. POWER8 Event List by Event Name (Sheet 45 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

double precision

Instruction sequencing unit

single-precision

double-precision

vector scalar register file

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

P
erform

ance M
onitoring E

vents

P
age 433 of 523

000000A09A 000000A09A 000000A09A 000000A09A PM_VSU1_2FLOP Two flops operation (scalar fmadd).

000000A09E 000000A09E 000000A09E 000000A09E PM_VSU1_4FLOP Four flops operation (scalar fdiv).

000000A0A2 000000A0A2 000000A0A2 000000A0A2 PM_VSU1_8FLOP Eight flops operation (DP vector versions of fdiv).

000000B0A6 000000B0A6 000000B0A6 000000B0A6 PM_VSU1_COMPLEX_ISSUED Complex VMX instruction issued.

000000B0B6 000000B0B6 000000B0B6 000000B0B6 PM_VSU1_CY_ISSUED Cryptographic instruction.

000000B0AA 000000B0AA 000000B0AA 000000B0AA PM_VSU1_DD_ISSUED 64-bit decimal issued.

000000A08E 000000A08E 000000A08E 000000A08E PM_VSU1_DP_2FLOP DP vector version of fmul.

000000A092 000000A092 000000A092 000000A092 PM_VSU1_DP_FMA DP vector version of fmadd.

000000A096 000000A096 000000A096 000000A096 PM_VSU1_DP_FSQRT_FDIV DP vector versions of fdiv.

000000B0AE 000000B0AE 000000B0AE 000000B0AE PM_VSU1_DQ_ISSUED 128-bit decimal issued.

000000B0B2 000000B0B2 000000B0B2 000000B0B2 PM_VSU1_EX_ISSUED Direct move 32- or 64-bit VRF-to-GPR.

000000A0BE 000000A0BE 000000A0BE 000000A0BE PM_VSU1_FIN VSU1 finished an instruction.

000000A086 000000A086 000000A086 000000A086 PM_VSU1_FMA Two flops operation (fmadd).

000000B09A 000000B09A 000000B09A 000000B09A PM_VSU1_FPSCR Move to/from FPSCR type instruction issued on Pipe0.

000000A08A 000000A08A 000000A08A 000000A08A PM_VSU1_FSQRT_FDIV Four flops operation (fdiv).

000000B092 000000B092 000000B092 000000B092 PM_VSU1_PERMUTE_ISSUED Permute VMX instruction Issued.

000000B08A 000000B08A 000000B08A 000000B08A PM_VSU1_SCALAR_DP_ISSUED Double-precision scalar instruction issued on Pipe1.

000000B096 000000B096 000000B096 000000B096 PM_VSU1_SIMPLE_ISSUED Simple VMX instruction issued.

000000A0AA 000000A0AA 000000A0AA 000000A0AA PM_VSU1_SINGLE FPU single precision.

000000B09E 000000B09E 000000B09E 000000B09E PM_VSU1_SQ Store vector issued.

000000B08E 000000B08E 000000B08E 000000B08E PM_VSU1_STF FPU store (SP or DP) issued on Pipe1.

000000B082 000000B082 000000B082 000000B082 PM_VSU1_VECTOR_DP_ISSUED Double-precision vector instruction issued on Pipe1.

000000B086 000000B086 000000B086 000000B086 PM_VSU1_VECTOR_SP_ISSUED Single-precision vector instruction issued (executed).

Table D-1. POWER8 Event List by Event Name (Sheet 46 of 46)

PMC1
(Hexadecimal)

PMC2
(Hexadecimal)

PMC3
(Hexadecimal)

PMC4
(Hexadecimal)

Event Name Event Description

1. There are multiple methods to program this event.

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Performance Monitoring Events

Page 434 of 523
Version 1.3

16 March 2016

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

S
P

M
C

 P
erform

ance M
onitoring E

vents

P
age 435 of 523

Appendix E. SPMC Performance Monitoring Events

Appendix E lists all of the SPMC performance monitoring events for the POWER8 processor by event name.

There are two programmable SPMCs. Each SPMC has access to a unique set of events. The desired events must be programmed and read
from the specified SPMC.

The SPMCxSEL bits correspond to MMCRS[SPMCxSEL], where x is the SPMC number specified in the SPMC column.

The Unit column provides information about which core unit an event comes from.

The Select Event is a unique identifier for an event, consumable by certain tools.

Table E-1. SPMC Performance Monitoring Events (Sheet 1 of 7)

SPMC SPMCxSEL(0:3)
(Binary)

SPMCxSEL(4:6)
(Binary) Event Name Description Unit Select Event

(Hexadecimal)

SPMC1 1110 001 SPM_1PLUS_PPC_CMPL One or more PowerPC instructions finished (completed). ISU 00E2

SPMC2 1111 001 SPM_1PLUS_PPC_DISP Cycles at least one instruction dispatched. ISU 00F2

SPMC1 0100 100 SPM_BR_CMPL Branch instruction finished. IFU 0048

SPMC2 1111 011 SPM_BR_MPRED_CMPL Number of branch mispredicts. IFU 00F6

SPMC1 0100 101 SPM_BR_TAKEN_CMPL Branch taken. IFU 004A

SPMC1 0011 000 SPM_CHIP_PUMP_CPRED Initial and final pump scope and data sourced across this scope was chip
pump (prediction = correct) for all data types (demand load, instruction
fetch, instruction or data translation).

LSU 0030

SPMC2 0011 001 SPM_CMPLU_STALL Completion stall (any reason). ISU 0032

SPMC1 1110 000 SPM_CYC Cycles. PMU 00E0

SPMC2 0100 000 SPM_DATA_FROM_DL2L3_MOD The processor’s data cache was reloaded with modified (M) data from
another chip’s L2 or L3 cache on a different node or group (distant) from
this chip due to a demand load.

LSU 0040

SPMC2 0001 001 SPM_DATA_FROM_DL2L3_SHR The processor’s data cache was reloaded with shared (S) data from
another chip’s L2 or L3 cache on a different node or group (distant) from
this chip due to a demand load.

LSU 0012

SPMC2 0100 010 SPM_DATA_FROM_DMEM The processor’s data cache was reloaded from another chip’s memory on
the same node or group (distant) due to a demand load.

LSU 0044

SPMC1 0001 000 SPM_DATA_FROM_L2 The processor’s data cache was reloaded from the local core’s L2 cache
due to a demand load.

LSU 0010

SPMC2 0000 101 SPM_DATA_FROM_L2_DISP_CONFLICT_
LDHITST

The processor’s data cache was reloaded from the local core’s L2 cache
with a load-hit-store conflict due to a demand load.

LSU 000A

SPMC2 0011 100 SPM_DATA_FROM_L2_DISP_CONFLICT_
OTHER

The processor’s data cache was reloaded from the local core’s L2 cache
with a dispatch conflict due to a demand load.

LSU 0038

supervisor-level performance monitor counter

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

S
P

M
C

 P
erform

ance M
onitoring E

vents

P
age 436 of 523

V
ersion 1.3

16 M
arch 2016

SPMC1 0101 010 SPM_DATA_FROM_L2_MEPF The processor’s data cache was reloaded from the local core’s L2 hit with-
out a dispatch conflicts on an Mepf state due to a demand load.

LSU 0054

SPMC1 0000 111 SPM_DATA_FROM_L2_NO_CONFLICT The processor’s data cache was reloaded from the local core’s L2 cache
without a conflict due to a demand load.

LSU 000E

SPMC2 0011 111 SPM_DATA_FROM_L2.1_MOD The processor’s data cache was reloaded with modified (M) data from
another core’s L2 cache on the same chip due to a demand load.

LSU 003E

SPMC2 0001 000 SPM_DATA_FROM_L2.1_SHR The processor’s data cache was reloaded with shared (S) data from
another core’s L2 cache on the same chip due to a demand load.

LSU 0010

SPMC1 1111 111 SPM_DATA_FROM_L2MISS Demand load from an L2 miss (not an L2 hit). LSU/PMU 00FE

SPMC2 0011 101 SPM_DATA_FROM_L3 The processor’s data cache was reloaded from the local core’s L3 cache
due to a demand load.

LSU 003A

SPMC2 0000 110 SPM_DATA_FROM_L3_DISP_CONFLICT The processor’s data cache was reloaded from the local core’s L3 cache
with a dispatch conflict due to a demand load.

LSU 000C

SPMC1 0101 011 SPM_DATA_FROM_L3_MEPF The processor’s data cache was reloaded from the local core’s L3 cache
without a dispatch conflict hit on an Mepf state due to a demand load.

LSU 0056

SPMC1 0001 001 SPM_DATA_FROM_L3_NO_CONFLICT The processor’s data cache was reloaded from the local core’s L3 cache
without a conflict due to a demand load.

LSU 0012

SPMC2 0011 110 SPM_DATA_FROM_L3.1_ECO_MOD The processor’s data cache was reloaded with modified (M) data from
another core’s ECO L3 on the same chip due to a demand load.

LSU 003C

SPMC2 0000 111 SPM_DATA_FROM_L3.1_ECO_SHR The processor’s data cache was reloaded with shared (S) data from
another core’s ECO L3 on the same chip due to a demand load.

LSU 000E

SPMC1 0101 100 SPM_DATA_FROM_L3.1_MOD The processor’s data cache was reloaded with modified (M) data from
another core’s L3 cache on the same chip due to a demand load.

LSU 0058

SPMC1 0001 010 SPM_DATA_FROM_L3.1_SHR The processor’s data cache was reloaded with shared (S) data from
another core’s L3 cache on the same chip due to a demand load.

LSU 0014

SPMC2 1110 111 SPM_DATA_FROM_L3MISS Demand load from an L3 miss (not an L2 hit and not an L3 hit). LSU 00EE

SPMC1 0101 110 SPM_DATA_FROM_LMEM The processor’s data cache was reloaded from the local chip’s memory
due to a demand load.

LSU 005C

SPMC1 0110 000 SPM_DATA_FROM_MEMORY The processor’s data cache was reloaded from a memory location due to a
demand load.

LSU 0060

SPMC2 1111 111 SPM_DATA_FROM_MEMORY Data cache reload from memory. LSU 00FE

SPMC2 0100 001 SPM_DATA_FROM_OFF_CHIP_CACHE The processor's data cache was reloaded with either shared or modified
data from another core’s L2/L3 cache on a different chip (remote or dis-
tant) due to a demand load.

LSU 0042

SPMC1 0001 011 SPM_DATA_FROM_ON_CHIP_CACHE The processor’s data cache was reloaded with either shared or modified
data from another core’s L2 or L3 cache on the same chip due to a
demand load.

LSU 0016

SPMC1 0101 101 SPM_DATA_FROM_RL2L3_MOD The processor’s data cache was reloaded with modified (M) data from
another chip’s L2 or L3 cache on the same node or group (remote) as this
chip due to a demand load.

LSU 005A

Table E-1. SPMC Performance Monitoring Events (Sheet 2 of 7)

SPMC SPMCxSEL(0:3)
(Binary)

SPMCxSEL(4:6)
(Binary) Event Name Description Unit Select Event

(Hexadecimal)

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

S
P

M
C

 P
erform

ance M
onitoring E

vents

P
age 437 of 523

SPMC1 0001 100 SPM_DATA_FROM_RL2L3_SHR The processor’s data cache was reloaded with shared (S) data from
another chip’s L2 or L3 cache on the same node or group (remote) as this
chip due to a demand load.

LSU 0018

SPMC2 0001 010 SPM_DATA_FROM_RMEM The processor’s data cache was reloaded from another chip’s memory on
the same node or group (remote) due to a demand load.

LSU 0014

SPMC2 0000 011 SPM_DATA_TABLEWALK_CYC Data tablewalk active. LSU 0006

SPMC2 0110 000 SPM_DERAT_MISS_16G Data ERAT miss (data TLB Access) page size 16 GB. LSU 0060

SPMC2 0010 000 SPM_DERAT_MISS_16M Data ERAT miss (data TLB access) page size 16 MB. LSU 0020

SPMC1 0011 101 SPM_DERAT_MISS_4K Data ERAT miss (data TLB access) page size 4 KB. LSU 003A

SPMC1 0111 000 SPM_DERAT_MISS_64K Data ERAT miss (data TLB access) page size 64 KB. LSU 0070

SPMC2 0000 010 SPM_DISP_HELD_SRQ_FULL Dispatch held because the SRQ is full. ISU 0004

SPMC1 0010 101 SPM_DPTEG_FROM_L2 A page table entry was loaded into the TLB from the local core’s L2 cache
due to a data-side request.

LSU 002A

SPMC1 0010 111 SPM_DPTEG_FROM_L2MISS A page table entry was loaded into the TLB from a location other than the
local core’s L2 cache due to a data-side request.

LSU 002E

SPMC2 0101 010 SPM_DPTEG_FROM_L3 A page table entry was loaded into the TLB from the local core’s L3 cache
due to a data-side request.

LSU 0054

SPMC2 0101 100 SPM_DPTEG_FROM_L3MISS A page table entry was loaded into the TLB from a location other than the
local core’s L3 cache due to a data-side request.

LSU 0058

SPMC1 0110 101 SPM_DPTEG_FROM_LMEM A page table entry was loaded into the TLB from the local chip’s memory
due to a data-side request.

LSU 006A

SPMC1 0110 110 SPM_DPTEG_FROM_MEMORY A page table entry was loaded into the TLB from a memory location due to
a data-side request.

LSU 006C

SPMC2 0101 011 SPM_DPTEG_FROM_OFF_CHIP_CACHE A page table entry was loaded into the TLB with either shared or modified
data from another core’s L2 or L3 cache on a different chip (remote or dis-
tant) due to a data-side request.

LSU 0056

SPMC1 0010 110 SPM_DPTEG_FROM_ON_CHIP_CACHE A page table entry was loaded into the TLB with either shared or modified
data from another core’s L2 or L3 cache on the same chip due to a data-
side request.

LSU 002C

SPMC1 1110 111 SPM_DSLB_MISS Data SLB miss. ISU 00EE

SPMC2 1110 110 SPM_DTLB_MISS Data PTEG reloaded (DTLB miss). LSU 00EC

SPMC1 0011 110 SPM_DTLB_MISS_16G Data TLB miss page size 16 GB. LSU 003C

SPMC2 0110 001 SPM_DTLB_MISS_16M Data TLB miss page size 16 MB. LSU 0062

SPMC1 0111 001 SPM_DTLB_MISS_4K Data TLB miss page size 4 KB. LSU 0072

SPMC2 0010 001 SPM_DTLB_MISS_64K Data TLB miss page size 64 KB. LSU 0022

SPMC1 1111 100 SPM_EXT_INT External interrupt. ISU 00F8

Table E-1. SPMC Performance Monitoring Events (Sheet 3 of 7)

SPMC SPMCxSEL(0:3)
(Binary)

SPMCxSEL(4:6)
(Binary) Event Name Description Unit Select Event

(Hexadecimal)

page-table entry group

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

S
P

M
C

 P
erform

ance M
onitoring E

vents

P
age 438 of 523

V
ersion 1.3

16 M
arch 2016

SPMC1 1110 010 SPM_FLOP Floating-point operations finished. VSU 00E4

SPMC2 1111 100 SPM_FLUSH Flush (any type). ISU 00F8

SPMC2 0011 010 SPM_FREQ_UP Frequency is slewed up due to power management. PC 0034

SPMC1 0101 000 SPM_FXU_BUSY FXU0 busy and FXU1 busy. FXU 0050

SPMC1 0000 010 SPM_FXU_IDLE FXU0 is idle and FXU1is idle. FXU 0004

SPMC1 0000 001 SPM_FXU0_FIN FXU0 finished. FXU 0002

SPMC2 0011 011 SPM_FXU1_BUSY_FXU0_IDLE FXU0 is idle and FXU1 is busy. FXU 0036

SPMC2 0011 000 SPM_FXU1_FIN FXU1 finished. FXU 0030

SPMC1 0100 110 SPM_GCT_EMPTY_CYC No itags are assigned to either thread (GCT empty). ISU 004C

SPMC1 1110 100 SPM_GCT_NOSLOT_CYC Pipeline empty (no itags assigned, no GCT slots used). ISU 00E8

SPMC2 0000 000 SPM_GRP_CMPL Group completed. ISU 0000

SPMC2 0000 001 SPM_GRP_DISP Dispatch success (group dispatched). ISU 0002

SPMC1 0110 111 SPM_GRP_PUMP_CPRED Initial and final pump scope and data sourced across this scope was group
pump for all data types (demand load, instruction fetch, instruction or data
translation).

LSU 006E

SPMC1 0111 101 SPM_GRP_PUMP_MPRED The final pump scope (group) that is to be data sourced ended up larger
than initial pump scope or final pump scope (group) received data from a
source that was at a smaller scope (chip). Final pump was group pump
and initial pump was chip or final and initial pump was group but data was
sourced at chip scope level for all data types (demand load, instruction
fetch, instruction or data translation).

LSU 007A

SPMC1 0011 001 SPM_GRP_PUMP_MPRED_RTY The final pump scope (group) to be data sourced ended up larger than ini-
tial pump scope (chip). Final pump was group pump and initial pump was
chip pump for all data types (demand load, instruction fetch, instruction or
data translation).

LSU 0032

SPMC1 0000 011 SPM_IC_DEMAND_CYC Demand ifetch pending. IFU 0006

SPMC1 1110 011 SPM_IERAT_RELOAD I-ERAT reloaded (miss). IFU 00E6

SPMC1 1110 110 SPM_IERAT_RELOAD_16M I-ERAT reload for 16 MB page. IFU 00EC

SPMC1 1110 101 SPM_IERAT_RELOAD_4K I-ERAT reload for 4 KB page. IFU 00EA

SPMC2 0001 110 SPM_IERAT_RELOAD_64K Instruction ERAT reload for 64 KB page. PMU 001C

SPMC2 0110 101 SPM_IFU_FIN IFU finished a (nonbranch) instruction. IFU 006A

SPMC1 1111 001 SPM_INST_DISP Number of PowerPC instructions dispatched. ISU 00F2

SPMC2 1110 001 SPM_INST_DISP Number of PowerPC instructions dispatched. ISU 00E2

SPMC1 0001 111 SPM_INST_FROM_L2 The processor’s instruction cache was reloaded from the local core’s L2
cache due to an instruction fetch.

IFU 001E

Table E-1. SPMC Performance Monitoring Events (Sheet 4 of 7)

SPMC SPMCxSEL(0:3)
(Binary)

SPMCxSEL(4:6)
(Binary) Event Name Description Unit Select Event

(Hexadecimal)

fixed-unit

Global completion table

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

S
P

M
C

 P
erform

ance M
onitoring E

vents

P
age 439 of 523

SPMC1 0010 001 SPM_INST_FROM_L2MISS The processor’s instruction cache was reloaded from a location other than
the local core’s L2 cache due to an instruction fetch.

IFU 0022

SPMC2 0100 100 SPM_INST_FROM_L3 The processor’s instruction cache was reloaded from the local core’s L3
cache due to an instruction fetch.

IFU 0048

SPMC2 1110 101 SPM_INST_FROM_L3MISS Instruction from an L3 miss. IFU 00EA

SPMC1 0110 001 SPM_INST_FROM_LMEM The processor’s instruction cache was reloaded from the local chip’s mem-
ory due to an instruction fetch.

IFU 0062

SPMC1 0110 010 SPM_INST_FROM_MEMORY The processor’s instruction cache was reloaded from a memory location
due to an instruction fetch.

IFU 0064

SPMC2 0100 101 SPM_INST_FROM_OFF_CHIP_CACHE The processor’s instruction cache was reloaded with either shared or mod-
ified data from another core’s L2/L3 cache on a different chip (remote or
distant) due to an instruction fetch.

IFU 004A

SPMC1 0010 000 SPM_INST_FROM_ON_CHIP_CACHE The processor’s instruction cache was reloaded with either shared or mod-
ified data from another core’s L2 or L3 cache on the same chip due to an
instruction fetch.

IFU 0020

SPMC1 0010 010 SPM_IPTEG_FROM_L2 A page table entry was loaded into the TLB from the local core’s L2 cache
due to an instruction-side request.

IFU 0024

SPMC1 0010 100 SPM_IPTEG_FROM_L2MISS A page table entry was loaded into the TLB from a location other than the
local core’s L2 cache due to an instruction-side request.

IFU 0028

SPMC2 0100 111 SPM_IPTEG_FROM_L3 A page table entry was loaded into the TLB from the local core’s L3 cache
due to an instruction-side request.

IFU 004E

SPMC2 0101 001 SPM_IPTEG_FROM_L3MISS A page table entry was loaded into the TLB from a location other than the
local core’s L3 cache due to an instruction-side request.

IFU 0052

SPMC1 0110 011 SPM_IPTEG_FROM_LMEM A page table entry was loaded into the TLB from the local chip’s memory
due to an instruction-side request.

IFU 0066

SPMC1 0110 100 SPM_IPTEG_FROM_MEMORY A page table entry was loaded into the TLB from a memory location due to
an instruction-side request.

IFU 0068

SPMC2 0101 000 SPM_IPTEG_FROM_OFF_CHIP_CACHE A page table entry was loaded into the TLB with either shared or modified
data from another core’s L2/L3 cache on a different chip (remote or dis-
tant) due to an instruction-side request.

IFU 0050

SPMC1 0010 011 SPM_IPTEG_FROM_ON_CHIP_CACHE A page table entry was loaded into the TLB with either shared or modified
data from another core’s L2 or L3 cache on the same chip due to an
instruction-side request.

IFU 0026

SPMC2 0110 110 SPM_ISLB_MISS Instruction SLB (ISLB) miss. ISU 006C

SPMC2 1111 110 SPM_ITLB_MISS ITLB reloaded. LSU 00FC

SPMC2 1110 011 SPM_L1_DCACHE_RELOAD_VALID DL1 reloaded due to a demand load. LSU 00E6

SPMC1 0000 110 SPM_L1_DCACHE_RELOADED_ALL L1 data cache reloaded for demand or prefetch LSU 000C

SPMC1 1111 110 SPM_L1_ICACHE_MISS Demand I-cache miss. IFU 00FD

SPMC1 0111 110 SPM_L3_CO_MEPF Total number of prefetch operations that were tracked. LSU 007C

Table E-1. SPMC Performance Monitoring Events (Sheet 5 of 7)

SPMC SPMCxSEL(0:3)
(Binary)

SPMCxSEL(4:6)
(Binary) Event Name Description Unit Select Event

(Hexadecimal)

U
ser’s M

anual
S

ingle-C
hip M

odule
P

O
W

E
R

8 P
ro

cesso
r

A
d

van
ce

S
P

M
C

 P
erform

ance M
onitoring E

vents

P
age 440 of 523

V
ersion 1.3

16 M
arch 2016

SPMC2 0010 010 SPM_LARX_FIN Larx finished. LSU 0024

SPMC2 0100 011 SPM_LD_CMPL Loads completed. ISU 0046

SPMC1 0001 110 SPM_LD_L3MISS_PEND_CYC L3 miss pending. LSU 001C

SPMC2 1111 000 SPM_LD_MISS_L1 Load missed L1 cache. LSU 00F0

SPMC1 1111 011 SPM_LSU_DERAT_MISS D-ERAT reloaded (miss). LSU 00F6

SPMC2 0010 110 SPM_LSU_FIN LSU finished an instruction (up to two per cycle). LSU 002C

SPMC1 0100 011 SPM_LSU_FX_FIN LSU finished an FX operation (up to two per cycle). LSU 0046

SPMC2 0000 100 SPM_LSU_LMQ_SRQ_EMPTY_ALL_CYC All threads in the LSU are empty (LMQ and SRQ are empty). ISU 0008

SPMC1 0101 001 SPM_LSU_LMQ_SRQ_EMPTY_CYC LSU empty (LMQ and SRQ empty). ISU 0052

SPMC1 0100 010 SPM_LSU_REJECT LSU reject (up to four per cycle). LSU 0044

SPMC2 0110 010 SPM_LSU_REJECT_LHS LSU reject due to LHS (up to four per cycle). LSU 0064

SPMC1 0000 100 SPM_LSU_SRQ_FULL_CYC SRQ is full. ISU 0008

SPMC2 0110 011 SPM_MEM_CO Castouts to memory from this LPAR. L2 0066

SPMC1 0011 100 SPM_MEM_PREF Prefetch tracked was moderate (source L2 cache). PMU 0038

SPMC1 0011 011 SPM_MEM_READ Prefetch tracked was effective. PMU 0036

SPMC2 0110 100 SPM_MEM_RWITM RWITM to memory from this LPAR. L2 0068

SPMC1 0011 010 SPM_PUMP_CPRED Pump prediction correct. Counts across all types of pumps for all data
types (demand load, instruction fetch, instruction or data translation).

LSU 0034

SPMC2 0101 110 SPM_PUMP_MPRED Pump misprediction. Counts across all types of pumps for all data types
(demand load, instruction fetch, instruction or data translation).

PMU 005C

SPMC1 1111 010 SPM_RUN_CYC Run cycles. ISU 00F4

SPMC1 0100 001 SPM_RUN_CYC_SMT2_MODE Number of cycles that this thread was in SMT mode. PMU 0042

SPMC1 0111 011 SPM_RUN_CYC_SMT2_SHRD_MODE Number of cycles that this thread was in SMT-shared mode. PMU 0076

SPMC1 0111 010 SPM_RUN_CYC_SMT2_SPLIT_MODE Number of cycles that this thread was in SMT-split mode. PMU 0074

SPMC2 0010 100 SPM_RUN_CYC_SMT4_MODE Number of cycles that this thread is in SMT4 shared mode. PMU 0028

SPMC2 0010 101 SPM_RUN_CYC_SMT8_MODE Number of cycles that this thread is in SMT8 shared mode. PMU 002A

SPMC1 0100 000 SPM_RUN_CYC_ST_MODE Number of cycles that this thread was in ST mode. PMU 0040

SPMC2 1111 101 SPM_RUN_INST_CMPL Run instructions. ISU 00FA

SPMC2 1111 010 SPM_RUN_PURR Run PURR. PC 00F4

SPMC2 0010 111 SPM_ST_CMPL Store completion count. LSU 002E

Table E-1. SPMC Performance Monitoring Events (Sheet 6 of 7)

SPMC SPMCxSEL(0:3)
(Binary)

SPMCxSEL(4:6)
(Binary) Event Name Description Unit Select Event

(Hexadecimal)

load miss queue

load-hit-store

store reorder queue

read with intent to multiply

Simultaneous multithreading

single thread

U
ser’s M

anual
S

ingle-C
hip M

odule
A

d
van

ce
P

O
W

E
R

8 P
ro

cesso
r

V
ersion 1.3

16 M
arch 2016

S
P

M
C

 P
erform

ance M
onitoring E

vents

P
age 441 of 523

SPMC1 1111 000 SPM_ST_FIN Store instructions finished (store sent to nest). LSU 00F0

SPMC1 0111 111 SPM_ST_FWD Store forwarding occurred. LSU 007E

SPMC2 1110 000 SPM_ST_MISS_L1 Store missed the L1 cache. LSU 00E0

SPMC1 0011 111 SPM_STCX_FAIL Stcx failed. LSU 003E

SPMC1 0000 000 SPM_SUSPENDED Counter off. PMU 0000

SPMC2 0001 100 SPM_SYS_PUMP_CPRED Initial and final pump scope and data sourced across this scope was sys-
tem pump for all data types (demand load, instruction fetch, instruction or
data translation).

PMU 0018

SPMC2 0001 101 SPM_SYS_PUMP_MPRED The final pump scope (system) that is to get data sourced, ended up larger
than the initial pump scope (chip/group) or the final pump scope (system)
received data from a source that was at a smaller scope (chip/group). Final
pump was system pump and initial pump was chip or group or final and ini-
tial pump were system but data was sourced at chip/group scope level for
all data types (demand load, instruction fetch, instruction or data transla-
tion).

PMU 001A

SPMC2 0101 101 SPM_SYS_PUMP_MPRED_RTY The final pump scope (system) that is to get data sourced, ended up larger
than initial pump scope (chip or group) for all data types (demand load,
instruction fetch, instruction or data translation).

PMU 005A

SPMC1 0000 101 SPM_TABLEWALK_CYC Tablewalk active. LSU 000A

SPMC2 1110 100 SPM_TB_BIT_TRANS Timebase event. PC 00E8

SPMC1 0100 111 SPM_THRD_ALL_RUN_CYC All threads in run_cycles. ISU 004E

SPMC2 1110 010 SPM_THRD_CONC_RUN_INST Concurrent run instructions. ISU 00E4

SPMC1 0111 100 SPM_TLB_MISS TLB miss (instruction and data). LSU 0078

Table E-1. SPMC Performance Monitoring Events (Sheet 7 of 7)

SPMC SPMCxSEL(0:3)
(Binary)

SPMCxSEL(4:6)
(Binary) Event Name Description Unit Select Event

(Hexadecimal)

User’s Manual
Single-Chip Module
POWER8 Processor Advance

SPMC Performance Monitoring Events

Page 442 of 523
Version 1.3

16 March 2016

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Glossary

Page 443 of 450

Glossary

ABIST Array built-in self test

AES Advanced Encryption Standard

AMC Architected mapper cache

ARF Architected register file

ASIC Application-specific integrated circuit

BA Base address

BCD Binary coded decimal

BFP Binary floating-point

BFU Binary floating-point unit

BHT Branch history table

BIST Built-in self-test

BMC Baseboard management control

BR Branch register unit

BTAC Branch target address cache

CAI Coherent accelerator

CAM Content-addressable memory

CEC Central electronics complex

CI Cast-in

CIABR Current Instruction Address Breakpoint Register

CIR Chip information register

CIU Core interface unit

CLB Cache load buffer (IBuffer)

CMOS Complementary metal–oxide–semiconductor

CO Cast-out

CPI Cycles per instruction

CPU Central processing unit

CR Condition Register

CRC Cyclic redundancy check

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Glossary

Page 444 of 450
Version 1.3

16 March 2016

Cresp Combined response

CS Continuous sampling

DAWR Data Address Watch Register

DDR Double data rate

DECFP Decimal floating-point unit

DFP Decimal floating-point

DFU Decimal floating-point unit

DIMM Dual in-line memory module

DMA Direct memory attach

DMI Differential memory interface

DP Double precision

DPD Densely packed decimal

DPLL Digital phase-locked loop

DTS Digital thermal sensor

EADIR Effective address directory

EAT Effective address translation

ECC Error correcting code

ECID Electronic chip identification

ECO Extended cache option

ECRC End-to-end cyclic redundancy check

EDI Elastic differential I/O

EEH Enhance error handling

EEPROM Electrically erasable programmable read-only memory

EMQ ERAT miss queue

ERAT Effective-to-real address translation

ESID Effective segment identifier

FBC SMP interconnect controller

FCPBGA Flip-chip plastic ball grid array

FIFO First-in, first-out

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Glossary

Page 445 of 450

FIR Fault Isolation Register

FLOPs Floating-point operations per second

FPR Floating-point register

FPSCR Floating-Point Status and Control Register

FPU Floating-point unit

FXU Fixed-point units

GCM Galios counter mode

GCT Global completion table

GFW Global firmware

GHV Global history vector

GPE General purpose engine

GPU Graphics processor unit

GPR General purpose register

GPS Global Pstate

GPST Global Pstates table

HCSL Host clock signal level

HDEC Hypervisor decrementer

HMER Hypervisor Maintenance Exception Register

HMEER Hypervisor Maintenance Exception Enable Register

HMI Hypervisor maintenance interrupt

HRMOR Hypervisor Real Mode Offset Register

HSS High Speed Serial

HTM Hardware trace monitor

ICA Instruction cache access

ICP Interrupt control presenter

ICS Interrupt controller source

IEEE Institute of Electrical and Electronics Engineers

IFAR Instruction fetch address register

IFM Instruction filtering mode

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Glossary

Page 446 of 450
Version 1.3

16 March 2016

IFU Instruction fetch and decode unit

IMA In memory accumulate

IOP Internal operation

IPC Instruction per cycle

IPL Interrupt presenter layer; or initial program load

IRL Interrupt routing layer

ISU Instruction sequencing unit

JIT Just in time

LBIST Logic built-in self test

LHR Load-hit-reload

LMQ Load miss queue

LPAR Logical partition

LPID Logic partition ID

LPST Local Pstate table

LRDIMM Load-reduced dual in-line memory module

LRQ Load reorder queue

LRU Least-recently used

LS Link stack

LSI Level signalled interrupt

LSSD Level-sensitive scan design

LSU Load store units

LU Load-only unit

MBA Memory buffer asynchronous

MCI Memory channel interface

MCS Memory controller synchronous

MDS Memory domain status

MHCRO Model hardware correlation ring oscillator

MPG Multi-protocol gateway

MMCRA Monitor Mode Control Register A

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Glossary

Page 447 of 450

MMCR0 Monitor Mode Control Register 0

MMCR1 Monitor Mode Control Register 1

MMCR2 Monitor Mode Control Register 2

MMCRH Monitor Mode Control Register H

MRU Most-recently used

MSI Message signalled interrupt

NaN Not a number

NCU Noncacheable unit

NPS Nap Pstate

NTC Next-to-complete

NTF Next-to-finish

OCC On-chip controller

OCTS On-chip thermal sensor

OEM Original equipment manufacturer

OHA On-chiplet hardware assist

PAPR Power Architecture Platform Reference

PB Processor bus

PC Pervasive core unit

PCR Processor Compatibility Register

PE Partitionable endpoints

PEC PCI Express controller

PID Process ID

PLL Phase-locked loop

PMC Performance monitor counter or Power Management Control Register

POR Power-on reset

PRQ Prefetch request queue

PSN Power state number

PSPB Problem-state priority boost

PSRO Performance sort-ring oscillator

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Glossary

Page 448 of 450
Version 1.3

16 March 2016

Pstate Performance state

PTEG Page table entry group

PURR Processor Utilization Resource Register

PVR Processor Version Register

QNaN Quiet Not a number

qpos Queue position

RAIM Redundant array of independent memory

RAS Reliability, availability, and serviceability

RAW Read after write

RC Root complex or read/claim

RCD Register clock driver

RDIMM Registered dual in-line memory module

RES Random event sampling

RIS Random instruction sampling

RMSC Real mode storage control

RNG Random number generator

ROB Re-order buffer

SAO Strong access ordering

SAR Second-level Architected Register

SBE Self-boot engine

SC Store clean

SCM Single-chip module

SCOM Scan communications

SDAR Sampled Data Address Register

SDQ Store data queue

SECDED Single-error correction, double-error detection

SEEPROM Serial electrically erasable programmable read-only memory

SHA Secure hash algorithm

SHR Store-hit-reload

User’s Manual
Single-Chip Module

Advance POWER8 Processor

Version 1.3
16 March 2016

Glossary

Page 449 of 450

SIAR Sampled Instruction Address Register

SIER Sampled Instruction Event Register

SIMD Single-instruction, multiple-data

SLB Segment lookaside buffer

SMP Symmetric multiprocessing

SMT Simultaneous multithreading

SOI Silicon-on-insulator

SP Single precision

SPI Serial peripheral interconnect

SPIVID Serial Peripheral Interface - Voltage ID

SPMC Supervisor-level performance monitor counter

SPR Special purpose register

SPS Sleep Pstate

SPURR Scaled Processor Utilization Resource Register

SRAM Static random access memory

SRQ Store reorder queue

ST Single thread

STAG Storage tag

SVIC Slave VME interface controller

TCE Translation control entry

TDP Thermal design point

TEXASR Transaction Exception And Summary Register

TEXASRU Transaction Exception And Summary Register Upper

TID Thread ID

TLB Translation lookaside buffer

TLP Translation layer packet

TM Transactional memory

TOD Time of day

UE Uncorrectable error

User’s Manual
Single-Chip Module
POWER8 Processor Advance

Glossary

Page 450 of 450
Version 1.3

16 March 2016

UniQ Unified issue queues

VLE Variable length encoding

VMX Virtual machine extensions

VPD Vital product data

VPN Virtual page number

VRF Vector scalar register file

VRM Voltage regulator module

VRMA Virtualized real mode area

VS Vector scalar

VSCR Vector Status and Control Register

VSU Vector and scalar unit

VSX Vector-scalar extension

WAW Write after write

WI Write inject

WPS Winkle Pstate

XER Fixed-Point Exception Register

	Title Page
	Copyright and Disclaimer
	Contents
	List of Tables
	List of Figures
	Revision Log
	About this Document
	Who Should Read this Document
	Conventions Used in This Document
	Related Documents

	1. POWER8 Processor Overview
	1.1 General Features

	2. POWER8 Processor Core
	2.1 Key Design Fundamentals
	2.1.1 64-Bit Implementation of the Power ISA (version 2.07)
	2.1.2 Layered Implementation Strategy for High-Frequency Operation
	2.1.3 Speculative Superscalar Inner Core Organization
	2.1.4 Specific Focus on Storage Latency Management

	2.2 Pipeline Structure
	2.3 Microprocessor Core - Detailed Features
	2.3.1 Instruction Fetching and Branch Prediction
	2.3.2 Instruction Decode and Preprocessing
	2.3.3 Instruction Dispatch, Sequencing, and Completion Control
	2.3.4 Fixed-Point Execution Pipelines
	2.3.5 Load and Store Execution Pipelines
	2.3.6 Branch and Condition Register Execution Pipelines
	2.3.7 Unified Second-Level Memory Management (Address Translation)
	2.3.8 Data Prefetch
	2.3.9 VSU Execution Pipeline
	2.3.10 DFP Execution Pipeline

	3. Power Architecture Compliance
	3.1 Book I - User Instruction Set Architecture
	3.1.1 Defined Instructions
	3.1.1.1 Illegal Instructions
	3.1.1.2 Instructions Supported
	3.1.1.3 Invalid Forms

	3.1.2 Branch Processor
	3.1.2.1 Instruction Fetching
	3.1.2.2 Branch Prediction
	3.1.2.3 Instruction Cache Block Touch Hint
	3.1.2.4 Out-of-Order Execution and Instruction Flushes
	3.1.2.5 Branch Processor Instructions with Undefined Results

	3.1.3 Fixed-Point Processor
	3.1.3.1 Fixed-Point Exception Register (XER)

	3.1.4 Storage Access Alignment Support Overview
	3.1.4.1 Misaligned Flushes
	3.1.4.2 Alignment Interrupts
	3.1.4.3 Fixed-Point Load Instructions
	3.1.4.4 Fixed-Point Store Instructions
	3.1.4.5 Fixed-Point Load and Store Multiple Instructions
	3.1.4.6 Fixed-Point Move Assist Instructions
	3.1.4.7 Integer Select (ISEL)
	3.1.4.8 Fixed-Point Logical Instructions
	3.1.4.9 Move To/From Special Purpose Register (SPR) Instructions
	3.1.4.10 Move to Condition Register Fields Instruction
	3.1.4.11 Fixed-Point Invalid Forms and Undefined Conditions

	3.2 Floating-Point Processor (FP, VMX, and VSX)
	3.2.1 Vector Single-Precision Bandwidth
	3.2.2 IEEE Compliance
	3.2.3 Divide and Square-Root Latencies
	3.2.4 Early Forwarding Conditions
	3.2.5 Floating-Point Exceptions
	3.2.6 Floating-Point Load and Store Instructions
	3.2.7 Heterogeneous Precision Arithmetic
	3.2.7.1 NaN Propagation
	3.2.7.2 Square Root Overflow and Underflow
	3.2.7.3 Hardware Behavior on Enabled Underflow and Enabled Overflow Exception

	3.2.8 Handling of Denormal Single-Precision Values in Double-Precision Format
	3.2.8.1 Producing Single-Precision Denorms
	3.2.8.2 Consuming Single-Precision Denorms

	3.2.9 Floating-Point Invalid Forms and Undefined Conditions

	3.3 Optional Facilities and Instructions
	3.4 Little Endian
	3.5 Book II - Virtual Environment Architecture
	3.5.1 Classes of Instructions
	3.5.1.1 Optional Instructions

	3.5.2 Cache
	3.5.3 Data Prefetch
	3.5.4 Effect of Operand Placement on Performance
	3.5.5 Storage Model
	3.5.5.1 Atomicity
	3.5.5.2 Vector Element Atomicity
	3.5.5.3 Transactional Memory
	3.5.5.4 Storage Access Ordering

	3.5.6 Atomic Updates and Reservations
	3.5.7 Storage Control Instructions
	3.5.7.1 Overview of Key Aspects of Storage Control Instructions
	3.5.7.2 Instruction Cache Block Invalidate (icbi)
	3.5.7.3 Instruction Cache Synchronize (isync)
	3.5.7.4 Data Cache Block Touch (dcbt and dcbtst)
	3.5.7.5 Data Cache Block Touch - No Access Needed Anymore (TH = ‘10001’)
	3.5.7.6 Data Cache Block Touch - Transient (TH = ‘10000’)
	3.5.7.7 Data Cache Block Zero (dcbz)
	3.5.7.8 Data Cache Block Store (dcbst)
	3.5.7.9 Data Cache Block Flush (dcbf, dcbfl and dcbflp)
	3.5.7.10 Load and Reserve and Store Conditional Instructions
	3.5.7.11 sync Instruction
	3.5.7.12 eieio Instruction
	3.5.7.13 miso Instruction
	3.5.7.14 Transactional Memory Instructions

	3.5.8 Timer Facilities
	3.5.8.1 Time Base

	3.5.9 Hypervisor Decrementer (HDEC)
	3.5.10 Decrementer (DEC)
	3.5.11 Book II Invalid Forms

	3.6 Book III - Operating Environment Architecture
	3.6.1 Classes of Instructions
	3.6.1.1 Storage Control Instructions
	3.6.1.2 Reserved Instructions

	3.6.2 Branch Processor
	3.6.2.1 SRR1 Register
	3.6.2.2 MSR Register
	3.6.2.3 Branch Processor Instructions
	3.6.2.4 Current Instruction Address Breakpoint (CIABR)
	3.6.2.5 Instruction Effective to Real Address Translation Cache (I-ERAT)

	3.6.3 Fixed-Point Processor
	3.6.3.1 Processor Version Register (PVR)
	3.6.3.2 Processor ID Register (PIR)
	3.6.3.3 Chip Information Register (CIR)
	3.6.3.4 Move To/From Special Purpose Register Instructions

	3.7 HID Registers (HID0, HID1, HID4, and HID5)
	3.7.1 HID0 Register
	3.7.2 HID1 Register
	3.7.3 HID4 Register
	3.7.4 HID5 Register
	3.7.5 Real Mode Offset (RMO) Region Sizes
	3.7.6 Hypervisor Real Mode Offset (HRMO) Register Update Sequence
	3.7.7 Core-to-Core Trace SPR
	3.7.8 Trigger Registers
	3.7.9 IMC Array Access Register
	3.7.10 Performance Monitor Registers
	3.7.11 Other Fixed-Point Instructions

	3.8 Storage Control
	3.8.1 Virtual and Physical Address Ranges Supported
	3.8.2 Data Effective-to-Real-Address Translation (D-ERAT)
	3.8.3 Translation Lookaside Buffer (TLB)
	3.8.4 Large-Page Support
	3.8.5 PTE Prefetching
	3.8.6 Segment Lookaside Buffer (SLB)
	3.8.7 Address Space Register
	3.8.8 Support for 32-Bit Operating Systems
	3.8.9 Reference and Change Bits
	3.8.10 Storage Protection
	3.8.11 Block Address Translation
	3.8.12 Real Mode Storage Control
	3.8.13 Storage Access Modes - WIMG Bits
	3.8.14 Speculative Storage Accesses
	3.8.15 mtsr, mtsrin, mfsr, and mfsrin Instructions
	3.8.16 TLB Invalidate Entry (tlbie and tlbiel) Instructions
	3.8.17 TLB Invalidate All (tlbia) Instruction
	3.8.18 TLB Synchronize (tlbsync) Instruction
	3.8.19 Page Replacement Policy
	3.8.20 Support for Store Gathering
	3.8.21 Cache Coherency Paradoxes
	3.8.22 Handling Parity Error, Multi-Hit, and Uncorrectable Errors
	3.8.22.1 Parity Error
	3.8.22.2 Multi-Hit
	3.8.22.3 Both Multi-Hit and Parity Error
	3.8.22.4 Uncorrectable Error Handling
	3.8.22.5 TLB Parity Error and Multi-Hit Action

	3.8.23 Interrupts
	3.8.23.1 Interrupt Vectors
	3.8.23.2 Interrupt Definitions
	3.8.23.3 System Reset Interrupt
	3.8.23.4 Machine Check Interrupt
	3.8.23.5 Hypervisor Maintenance Interrupt
	3.8.23.6 External Interrupt
	3.8.23.7 Alignment Interrupt
	3.8.23.8 Trace Interrupt
	3.8.23.9 Performance Monitor Interrupt
	3.8.23.10 SPMC Performance Monitor Interrupt
	3.8.23.11 Facility Unavailable Interrupt

	3.8.24 Logical Partitioning Support
	3.8.24.1 Thread-to-LPAR Mapping
	3.8.24.2 Dynamic LPAR Switching

	3.8.25 Strong Access Ordering Mode (SAO)
	3.8.26 Graphics Data Stream Support
	3.8.27 Performance Monitoring, Sampling, and Trace
	3.8.28 Processor Compatibility Mode

	4. Storage Subsystem
	4.1 L1 Cache
	4.2 L2 Cache
	4.2.1 L2 Cache Features

	4.3 L3 Cache
	4.3.1 L3 Features, Queues and Resources

	4.4 NCU
	4.4.1 NCU Characteristics

	4.5 Memory Controller
	4.6 POWER8 Memory Stack Partitioning
	4.7 POWER8 Chip Memory Controller Unit Features
	4.7.1 Bandwidth
	4.7.2 POWER8 Memory Controller Characteristics

	5. Simultaneous Multithreading
	5.1 Overview
	5.2 Partitioning of Resources in Different SMT Modes
	5.3 Program Priority Register (PPR)
	5.4 Thread Priority NOPs
	5.5 Control Register
	5.6 Thread Priority, Status, and Control Requirements
	5.7 Thread Balance Control Requirements
	5.8 Thread Switch Control Register (Hypervisor Access Only)
	5.9 Thread Time-Out Register (Hypervisor only)
	5.10 Forward Progress Timer
	5.11 Thread Priority Boosting
	5.12 Priority Boosting to Medium-High in User Mode
	5.13 Thread Priority Boosting on Asynchronous Interrupt
	5.13.1 When to Boost Thread Priority

	5.14 Thread Prioritization Implementation
	5.14.1 Thread Switch Fetch Priority
	5.14.1.1 SMT2 Fetch Pattern

	5.14.2 Thread Switch Decode Priority
	5.14.3 Software-Set Thread Priority
	5.14.4 Low-Power Modes for Application
	5.14.5 Dynamic Thread Priority

	5.15 Support for Multiple LPARs
	5.15.1 Instruction Fetch
	5.15.2 Decode
	5.15.3 Microcode Fairness
	5.15.4 Instruction Cache
	5.15.5 Thread Set Allocation
	5.15.6 Data Cache
	5.15.7 ERATs

	5.16 Controlling the Flow of Instructions in SMT
	5.16.1 Dispatch Flush
	5.16.1.1 Dispatch Flush Rules
	5.16.1.2 Stall at Dispatch

	5.16.2 Decode Hold
	5.16.2.1 Balance Flush

	5.17 Dynamic Thread Transitioning
	5.17.1 Overview
	5.17.2 Thread Set Definition
	5.17.3 SMT Mode Boundary Crossings
	5.17.4 Thread Set Reconfiguration
	5.17.4.1 Balancing
	5.17.4.2 Mixing
	5.17.4.3 Action

	6. POWER8 SMP Interconnect
	6.1 POWER8 SMP Interconnect Features
	6.1.1 General Features
	6.1.2 POWER8 Specific Features
	6.1.3 Off-Chip Features
	6.1.4 Power Management Features
	6.1.5 RAS Features

	6.2 External POWER8 SMP Interconnect
	6.2.1 POWER8 SMP Interconnect Multichip Configurations
	6.2.2 Protocol and Data Routing in Multichip Configurations

	6.3 Coherency Flow
	6.3.1 Physical Broadcast Flow
	6.3.2 Broadcast Scope Definition

	6.4 Command Ordering Support
	6.5 Memory Coherence Directory
	6.5.1 Directory Size
	6.5.2 Operation

	7. Interrupt Control Presenter
	7.1 Features
	7.1.1 Routing Layer
	7.1.2 Presentation Layer

	7.2 Interrupt Control Presenter Registers
	7.2.1 ICP Address Map
	7.2.2 Interrupt Base Address Register (ICPBAR)
	7.2.3 External Interrupt Request Register (XIRRt with t = 0 - 7)
	7.2.4 Most Favored Request Register (MFRRt with t = 0 - 7)
	7.2.5 Link Register A (LinkAt with t = 0 - 7)
	7.2.6 Link Register B (LinkBt with t = 0 - 7)
	7.2.7 Link Register C (LinkCt with t = 0 - 7)

	8. PCI Express Controller
	8.1 Specification Compliance
	8.2 PEC Feature Summary
	8.2.1 Supported Configuration

	9. Power Management
	9.1 Overview
	9.2 Power Management Infrastructure
	9.3 Power Management Policies and Modes of Operation
	9.3.1 Maximum Power Savings Based on Utilization and Idle
	9.3.2 Adaptive Power Savings with Performance Loss Floor
	9.3.3 Power Cap
	9.3.4 Turbo Performance Boost

	9.4 Feature Summary
	9.5 Overview of Chip Hardware Power-Management Features
	9.5.1 Communication Paths for System Controllers
	9.5.2 Sensors
	9.5.3 Accelerators
	9.5.4 Actuators/Controls
	9.5.4.1 Configurations with Unused Components

	9.6 Chip Hardware Power-Management Features
	9.6.1 Chiplet Voltage Control
	9.6.2 Chip-Level Voltage Control Sequencing
	9.6.2.1 SPIVID VRM Control Sequencing

	9.7 Functional Description of Processor Core Chiplet
	9.7.1 Power Gating
	9.7.2 Idle States
	9.7.2.1 Core and Thread Doze
	9.7.2.2 Single Thread Nap, Sleep, and Winkle
	9.7.2.3 Sleep
	9.7.2.4 Nap
	9.7.2.5 Winkle

	9.7.3 Special Wake-up
	9.7.4 Pstates
	9.7.4.1 Architectural Overview
	9.7.4.2 Definitions
	9.7.4.3 Permissible Behavior
	9.7.4.4 Interaction with Idle Modes

	9.7.5 Resonant Clocking

	9.8 Architected Control Facilities
	9.8.1 Power Management Control Register (PMCR)
	9.8.2 Power Management Idle Control Register (PMICR)
	9.8.3 Power Management Status Register (PMSR)
	9.8.4 Power Management Memory Activity Register (PMMAR)

	10. Performance Profile
	10.1 Core
	10.1.1 Level-1 Instruction Cache
	10.1.2 Level-1 Instruction ERAT
	10.1.3 Instruction Prefetch
	10.1.4 Branch Prediction
	10.1.4.1 Branch Direction Prediction using the Branch History Tables
	10.1.4.2 Branch Prediction using Static Prediction and “a”, “t” Bits
	10.1.4.3 Address Prediction Using the Link Stack
	10.1.4.4 Address Prediction using the Count Cache
	10.1.4.5 Round-Trip Branch Processing
	10.1.4.6 BC+4 Handling
	10.1.4.7 BC+8 Handling

	10.1.5 Store-Hit-Load Avoidance Table
	10.1.6 Instruction Buffer
	10.1.7 Group Formation
	10.1.7.1 General Rules
	10.1.7.2 Rules Specific to ST Mode
	10.1.7.3 Rules Specific to SMT Modes

	10.1.8 Group Ending NOP
	10.1.9 First and Last Instructions
	10.1.10 2-Way and 3-Way Cracked Instructions
	10.1.11 Microcode
	10.1.12 Instruction Fusion
	10.1.13 Instruction Dispatch
	10.1.14 Instruction Issue
	10.1.14.1 Steering Policy
	10.1.14.2 BRQ and CRQ Operation
	10.1.14.3 UniQ Issue Policies
	10.1.14.4 FXU and VSU Selection
	10.1.14.5 LU Selection
	10.1.14.6 LSU Selection
	10.1.14.7 Dispatch Bypass Instruction Selection
	10.1.14.8 Back-to-Back Issue Policy
	10.1.14.9 Limitations of Back-to-Back
	10.1.14.10 Dual-Issued Stores
	10.1.14.11 Wake-up Misspeculations
	10.1.14.12 Chains of Misspeculations
	10.1.14.13 Other Issue Inefficiencies
	10.1.14.14 Issue-to-Issue Latencies

	10.1.15 Pipeline Hazards
	10.1.15.1 ISU Rejects
	10.1.15.2 LSU Rejects
	10.1.15.3 Flush Conditions

	10.1.16 Level-1 Data Cache
	10.1.16.1 Storage Alignment
	10.1.16.2 Special Case of Store Crossing a 64-Byte Boundary

	10.1.17 Level-1 Data ERAT
	10.1.18 Level-2 Data ERAT
	10.1.19 Translation Look-Aside Buffer
	10.1.20 Load Miss Queue
	10.1.21 Transactional Memory
	10.1.22 Store Queue and Store Forwarding
	10.1.22.1 Stores in Real Mode (MSR[DR] = 0)

	10.1.23 Data Prefetch

	10.2 Chiplet
	10.2.1 Level-2 Cache
	10.2.2 Level-3 Cache

	10.3 Latencies
	10.3.1 Cache Latencies and Bandwidth
	10.3.2 Instructional Latencies and Throughputs

	10.4 PCI Express Performance
	10.4.1 Bandwidth
	10.4.2 Latency
	10.4.3 Cluster Latency 2K Message
	10.4.4 I/O Bandwidth
	10.4.5 PCIe Performance Goals

	10.5 Performance Specific Instructions
	10.5.1 Store Multiple and Store String
	10.5.1.1 Store Quadword
	10.5.1.2 eieio

	10.6 Other Topics
	10.6.1 Hot/Cold Page Affinity Support
	10.6.2 Instruction That Can Soft Patch

	11. Performance Monitor
	11.1 Performance Monitor Overview
	11.2 Performance Monitor Functions
	11.2.1 Performance Monitor Event Selection
	11.2.2 Machine States and Enabling the Performance Monitor Counters
	11.2.3 Trigger Events and Enabling the Performance Monitor Counters
	11.2.4 Performance Monitor Exceptions, Alerts, and Interrupts
	11.2.5 Sampling
	11.2.6 Thresholding
	11.2.7 Trace Support Facilities

	11.3 Special Purpose Registers and Fields Associated with Instrumentation
	11.4 Enhanced Sampling Support
	11.5 POWER8 Performance Monitor Event Selection
	11.5.1 Event Bus Events and Event Bus Ramp
	11.5.2 Direct Events

	11.6 Performance Monitor Facility
	11.6.1 Performance Monitor Facility Registers
	11.6.1.1 Performance Monitor Counters (PMC1 - 6)
	11.6.1.2 Monitor Control Register 0 (MMCR0)
	11.6.1.3 Monitor Mode Control Register 1 (MMCR1)
	11.6.1.4 Monitor Mode Control Register 2 (MMCR2)
	11.6.1.5 Monitor Mode Control Register A (MMCRA)
	11.6.1.6 Core Monitor Mode Control Register (MMCRC)

	11.7 Hypervisor Performance Monitor
	11.7.1 Hypervisor Performance Monitor Counters (HPMC1 - 4)
	11.7.2 Monitor Mode Control Register H (MMCRH)

	11.8 Supervisor Performance Monitor
	11.8.1 Supervisor Performance Monitor Counters (SPMC1 - 2)
	11.8.2 Monitor Mode Control Register S (MMCRS) Register

	11.9 Sampled Instruction Event Register (SIER)
	11.10 POWER8 CPI Stack
	11.10.1 Completion Stall Accounting: LSU Related Stalls
	11.10.1.1 Completion Stall Accounting: Data Cache Misses
	11.10.1.2 Completion Stalls: Data Cache Miss that Resolves in a Local Core’s L2 or L3 Cache
	11.10.1.3 Completion Stalls: Data Cache Miss that Resolves in a Local Chip’s L2 or L3 Cache
	11.10.1.4 Completion Stalls: Data Cache Miss that Resolves from Remote Chip’s Cache or Memory
	11.10.1.5 Completion Stalls: Data Cache Miss that Resolves from Local Core’s L2 or L3 (Dispatch Conflict)
	11.10.1.6 Completion Stalls: Data Cache Miss that Resolves from Local Memory
	11.10.1.7 Completion Stalls: Stores
	11.10.1.8 Completion Stalls: Store Forwarding
	11.10.1.9 Completion Stalls: LSU Rejects
	11.10.1.10 Completion Stalls: LSU Rejects Due to ERAT Miss
	11.10.1.11 Completion Stalls: LSU Rejects Due to LMQ Full
	11.10.1.12 Completion Stalls: LSU Rejects Due to Load-Hit-Store Reject

	11.10.2 Completion Stalls: FXU
	11.10.3 Completion Stalls: VSU
	11.10.4 Completion Stalls: IFU
	11.10.5 Front-End Stalls
	11.10.5.1 GCT Empty: I-Cache Miss
	11.10.5.2 GCT Empty: I-Cache Miss That Also Missed the Local L3 Cache
	11.10.5.3 GCT Empty: Branch Redirects
	11.10.5.4 GCT Empty: Branch Redirects and I-Cache Miss
	11.10.5.5 GCT Empty: Dispatch Hold Conditions

	11.11 Exploiting Advanced Features of the PMU
	11.11.1 Correlating Fabric Responses to Effective Addresses
	11.11.1.1 Operation
	11.11.1.2 Tools Exploitation

	11.11.2 Finding Wasted L3 Prefetches
	11.11.2.1 PMU Usage

	11.11.3 Per LPAR Memory Bandwidth
	11.11.4 Monitoring Fabric Command Scope at a Thread Level

	11.12 PMC Events
	11.13 SPMC Events

	Appendix A. POWER8 Instruction Summary by Category
	Appendix B. POWER8 Instruction Summary by Mnemonic
	Appendix C. POWER8 Instruction Summary by Opcode
	Appendix D. Performance Monitoring Events
	Appendix E. SPMC Performance Monitoring Events
	Glossary

